
Nov 2013 Rev 2 1/391

UM0434
e200z3 PowerPC core

Reference manual

Introduction
The primary objective of this user’s manual is to describe the functionality of the e200z3
embedded microprocessor core for software and hardware developers. This book is
intended as a companion to the EREF: A Programmer's Reference Manual for Freescale
Book E Processors (hereafter referred to as EREF).

Book E is a PowerPC™ architecture definition for embedded processors that ensures binary
compatibility with the user-instruction set architecture (UISA) portion of the PowerPC
architecture as it was jointly developed by Apple, IBM, and Motorola (referred to as the AIM
architecture).

This document distinguishes among the three levels of the architectural and implementation
definition, as follows:

● The Book E architecture—Book E defines a set of user-level instructions and registers
that are drawn from the user instruction set architecture (UISA) portion of the AIM
definition PowerPC architecture. Book E also includes numerous supervisor-level
registers and instructions as they were defined in the AIM version of the PowerPC
architecture for the virtual environment architecture (VEA) and the operating
environment architecture (OEA).

Because the operating system resources (such as the MMU and interrupts) defined by
Book E differ greatly from those defined by the AIM architecture, Book E introduces
many new registers and instructions.

● Freescale Book E implementation standards (EIS)—In many cases, the Book E
architecture definition provides a general framework, leaving specific details up to the
implementation. To ensure consistency among its Book E implementations, Freescale
has defined implementation standards that provide an additional layer of architecture
between Book E and the actual devices.

● e200z3 implementation details—Each processor typically defines instructions,
registers, register fields, and other aspects that are more detailed than either the
Book E definition or the EIS. This book describes all of the instructions and registers
implemented on the e200z3, including those defined by Book E and by the EIS, as well
as those that are e200z3-specific.

Information in this book is subject to change without notice, as described in the disclaimers
on the title page of this book. As with any technical documentation, it is the readers’
responsibility to be sure they are using the most recent version of the documentation.

www.st.com

http://www.st.com

Table of contents UM0434

2/391

Table of contents

1 Organization . 20

1.1 Bibliography . 20

1.2 Related documentation . 21

1.3 Audience . 21

2 Conventions . 22

2.1 Terminology conventions . 22

2.2 Acronyms and abbreviations . 23

3 e200z3 core complex overview . 24

3.1 Overview of the e200z3 . 24

3.1.1 Features . 25

3.2 Programming model . 26

3.2.1 Register set . 26

3.3 Instruction set . 27

3.4 VLE APU . 29

3.5 Interrupts and exception handling . 29

3.5.1 Interrupt handling . 29

3.5.2 Interrupt classes . 30

3.5.3 Interrupt types . 30

3.5.4 Interrupt registers . 31

3.6 Microarchitecture summary . 32

3.6.1 Instruction unit features . 34

3.6.2 Integer unit features . 34

3.6.3 Load/Store unit (LSU) features . 34

3.6.4 Memory management unit (MMU) features . 34

3.6.5 System bus (core complex interface) features . 35

3.6.6 Nexus3 module features . 35

3.7 Legacy support of PowerPC architecture . 35

3.7.1 Instruction set compatibility . 35

3.7.2 Memory subsystem . 36

3.7.3 Interrupt handling . 36

3.7.4 Memory management . 36

UM0434 Table of contents

 3/391

3.7.5 Reset . 37

3.7.6 Little-endian mode . 37

4 Register model . 38

4.1 PowerPC Book E registers . 39

4.2 e200z3 - Specific registers . 42

4.3 e200z3-Specific Device Control Registers . 43

4.4 Processor control registers . 43

4.4.1 Machine state register (MSR) . 43

4.4.2 Processor ID register (PIR) . 45

4.4.3 Processor version register (PVR) . 45

4.4.4 System version register (SVR) . 46

4.5 Registers for integer operations . 46

4.5.1 General purpose registers (GPRs) . 46

4.5.2 Integer exception register (XER) . 47

4.6 Registers for branch operations . 47

4.6.1 Condition register (CR) . 47

4.6.2 Count register (CTR) . 51

4.6.3 Link register (LR) . 51

4.7 SPE and SPFP APU registers . 52

4.7.1 Signal processing/embedded floating-point status and control
register (SPEFSCR) 52

4.7.2 Accumulator (ACC) . 55

4.8 Interrupt Registers . 55

4.8.1 Interrupt Registers Defined by Book E . 56

4.9 Exception syndrome register (ESR) . 59

4.9.1 VLE mode instruction syndrome . 60

4.9.2 Misaligned instruction fetch syndrome . 61

4.9.3 Precise external termination error syndrome . 61

4.9.4 e200z3 specific interrupt registers . 61

4.10 Software use SPRs (SPRG0–SPRG7 and USPRG0) 63

4.11 Timer registers . 63

4.11.1 Timer control register (TCR) . 64

4.11.2 Timer status register (TSR) . 66

4.11.3 Time base (TBU and TBL) . 67

4.11.4 Decrementer register . 68

Table of contents UM0434

4/391

4.11.5 Decrementer auto-reload register (DECAR) . 69

4.12 Debug registers . 69

4.12.1 Debug address and value registers . 69

4.12.2 Debug counter register (DBCNT) . 70

4.12.3 Debug control and status registers (DBCR0–DBCR3) 71

4.12.4 Debug status register (DBSR) . 82

4.13 Hardware implementation dependent registers . 84

4.13.1 Hardware implementation dependent register 0 (HID0) 84

4.13.2 Hardware implementation dependent register 1 (HID1) 86

4.14 Branch target buffer (BTB) registers . 87

4.14.1 Branch unit control and status register (BUCSR) 87

4.15 L1 cache configuration registers . 88

4.15.1 L1 cache configuration register 0 (L1CFG0) . 88

4.16 MMU registers . 88

4.16.1 MMU control and status register 0 (MMUCSR0) 88

4.16.2 MMU configuration register (MMUCFG) . 89

4.16.3 TLB configuration registers (TLBnCFG) . 90

4.16.4 MMU assist registers (MAS0–MAS4, MAS6) . 91

4.16.5 Process ID register (PID0) . 96

4.17 Support for fast context switching . 97

4.17.1 Context control register (CTXCR) . 97

4.18 SPR register access . 97

4.18.1 Invalid SPR references . 97

4.18.2 Synchronization requirements for SPRs . 98

4.18.3 Special purpose register summary . 99

4.18.4 Reset settings . 101

4.19 Parallel signature unit registers . 103

4.19.1 Parallel signature control register (PSCR) . 104

4.19.2 Parallel signature status register (PSSR) . 105

4.19.3 Parallel signature high register (PSHR) . 105

4.19.4 Parallel signature low register (PSLR) . 106

4.19.5 Parallel signature counter register (PSCTR) . 106

4.19.6 Parallel signature update high register (PSUHR) 106

4.19.7 Parallel signature update low register (PSULR) 107

5 Instruction model . 108

UM0434 Table of contents

 5/391

5.1 Operand conventions . 108

5.1.1 Data organization in memory and data transfers 108

5.1.2 Alignment and misaligned accesses . 108

5.1.3 e200z3 Floating-Point implementation . 108

5.2 Unsupported instructions and instruction forms 109

5.3 Optionally supported instructions and instruction forms 109

5.4 Implementation-Specific instructions . 109

5.5 BookE instruction extensions . 110

5.6 Memory access alignment support . 110

5.7 Memory synchronization and reservation instructions 111

5.8 Branch prediction . 111

5.9 Interruption of instructions by interrupt requests 112

5.10 e200z3-Specific instructions . 112

5.10.1 Integer select APU . 112

5.10.2 Debug APU . 112

5.10.3 SPE APU instructions . 113

5.10.4 Embedded vector and scalar single precision floating point APU
instructions 120

5.11 Unimplemented SPRs and read only SPRs . 122

5.12 Invalid instruction forms . 122

5.13 Instruction summary . 123

5.13.1 Instruction index sorted by mnemonic . 123

5.13.2 Instruction index sorted by opcode . 133

6 Interrupts and exceptions . 160

6.1 Overview . 160

6.2 e200z3 interrupts . 161

6.3 Exception syndrome register (ESR) . 163

6.4 Machine state register (MSR) . 164

6.4.1 Machine check syndrome register (MCSR) . 166

6.5 Interrupt vector offset registers (IVORn) . 167

6.6 Interrupt definitions . 168

6.6.1 Critical input interrupt (IVOR0) . 169

6.6.2 Machine check interrupt (IVOR1) . 169

6.6.3 Data storage interrupt (IVOR2) . 171

Table of contents UM0434

6/391

6.6.4 Instruction storage interrupt (IVOR3) . 172

6.6.5 External input interrupt (IVOR4) . 173

6.6.6 Alignment interrupt (IVOR5) . 174

6.6.7 Program interrupt (IVOR6) . 174

6.6.8 Floating-Point unavailable interrupt (IVOR7) . 175

6.6.9 System call interrupt (IVOR8) . 176

6.6.10 Auxiliary processor unavailable interrupt (IVOR9) 176

6.6.11 Decrementer interrupt (IVOR10) . 177

6.6.12 Fixed-Interval timer interrupt (IVOR11) . 177

6.6.13 Watchdog timer interrupt (IVOR12) . 178

6.6.14 Data TLB error interrupt (IVOR13) . 179

6.6.15 Instruction TLB error interrupt (IVOR14) . 179

6.6.16 Debug interrupt (IVOR15) . 180

6.6.17 System reset . 182

6.6.18 SPE APU unavailable interrupt (IVOR32) . 183

6.6.19 SPE Floating-Point data interrupt (IVOR33) . 184

6.6.20 SPE Floating-Point round interrupt (IVOR34) 185

6.7 Exception recognition and priorities . 185

6.7.1 Interrupt priorities . 186

6.8 Interrupt processing . 189

6.8.1 Enabling and disabling exceptions . 190

6.8.2 Returning from an interrupt handler . 191

6.9 Process switching . 191

7 Memory management unit . 192

7.1 Overview . 192

7.1.1 MMU features . 192

7.1.2 TLB entry maintenance features summary . 192

7.2 Effective to real address translation . 193

7.2.1 Effective addresses . 195

7.2.2 Address spaces . 195

7.2.3 Virtual addresses and process ID . 195

7.2.4 Translation flow . 196

7.2.5 Permissions . 197

7.3 Translation lookaside buffer . 197

7.3.1 IPROT invalidation protection in TLB1 . 198

UM0434 Table of contents

7/391

7.3.2 Replacement algorithm for TLB1 . 199

7.3.3 The G bit (of WIMGE) . 199

7.3.4 TLB entry field summary . 199

7.4 Software interface and TLB instructions . 200

7.5 TLB operations . 201

7.5.1 Translation reload . 202

7.5.2 Reading the TLB . 202

7.5.3 Writing the TLB . 202

7.5.4 Searching the TLB . 202

7.5.5 TLB coherency control . 202

7.5.6 TLB miss exception update . 203

7.5.7 TLB load on reset . 203

7.6 MMU configuration and control registers . 203

7.6.1 MMU configuration register (MMUCFG) . 204

7.6.2 TLB0 and TLB1 configuration registers . 204

7.6.3 Data exception address register (DEAR) . 204

7.6.4 MMU control and status register 0 (MMUCSR0) 204

7.6.5 MMU assist registers (MAS) . 204

7.7 Effect of hardware debug on MMU operation . 205

8 Instruction pipeline and execution timing . 206

8.1 Overview of operation . 206

8.1.1 Control unit . 207

8.1.2 Instruction unit . 207

8.1.3 Branch unit . 208

8.1.4 Instruction decode unit . 208

8.1.5 Exception handling . 208

8.2 Execution units . 208

8.2.1 Integer execution unit . 208

8.2.2 Load/Store unit . 208

8.3 Instruction pipeline . 209

8.3.1 Description of pipeline stages . 209

8.3.2 Instruction buffers . 210

8.3.3 Single-Cycle instruction pipeline operation . 212

8.3.4 Basic load and store instruction pipeline operation 212

8.3.5 Change-of-Flow instruction pipeline operation 213

Table of contents UM0434

8/391

8.3.6 Basic Multi-Cycle instruction pipeline operation 214

8.3.7 Additional examples of instruction pipeline operation for load & store . 214

8.3.8 Move to/from SPR instruction pipeline operation 215

8.4 Stalls caused by accessing SPRs . 217

8.5 Instruction serialization . 217

8.6 Interrupt recognition and exception processing 218

8.7 Instruction timings . 220

8.7.1 SPE and embedded Floating-Point instruction timing 226

8.8 Operand placement on performance . 234

9 External core complex interfaces . 235

9.1 Overview . 235

9.2 Signal index . 236

9.3 Signal descriptions . 241

9.3.1 Processor state signals . 255

9.3.2 JTAG ID signals . 263

9.4 Internal signals . 265

9.5 Timing diagrams . 265

9.5.1 Processor Instruction/Data transfers . 265

9.5.2 Burst accesses . 277

9.5.3 Address retraction . 282

9.5.4 Address retraction . 287

9.5.5 Power management . 289

9.5.6 Interrupt interface . 289

10 Power management . 292

10.1 Overview . 292

10.1.1 Power management signals . 293

10.1.2 Power management control bits . 294

10.1.3 Software considerations for power management 294

10.1.4 Debug considerations for power management 295

11 Debug support . 296

11.1 Introduction . 296

11.2 Overview . 296

11.2.1 Software debug facilities . 296

UM0434 Table of contents

 9/391

11.2.2 Additional debug facilities . 297

11.2.3 Hardware debug facilities . 297

11.3 Debug registers . 298

11.4 Software debug events and exceptions . 299

11.5 External debug support . 304

11.5.1 OnCE introduction . 305

11.5.2 JTAG/OnCE signals . 308

11.5.3 OnCE internal interface signals . 308

11.5.4 OnCE interface signals . 309

11.5.5 OnCE controller and serial interface . 310

11.5.6 Access to debug resources . 317

11.5.7 Methods for entering debug mode . 318

11.5.8 CPU status and control scan chain register (CPUSCR) 319

11.5.9 Instruction address FIFO buffer (PC FIFO) . 324

11.5.10 Reserved registers . 326

11.6 Watchpoint support . 326

11.7 MMU and cache operation during debug . 327

11.8 Enabling, using, and exiting external debug Mode: example 327

12 Nexus3 module . 329

12.1 Introduction . 329

12.1.1 General description . 329

12.1.2 Terms and definitions . 329

12.1.3 Feature list . 330

12.2 Enabling Nexus3 operation . 332

12.3 TCODEs supported . 332

12.4 Nexus3 Programmer’s model . 336

12.4.1 Client select control register (CSC) . 337

12.4.2 Port configuration register (PCR) . 338

12.4.3 Development control register 1, 2 (DC1, DC2) 339

12.4.4 Development status register (DS) . 340

12.4.5 Read/Write access Control/Status register (RWCS) 341

12.4.6 Read/Write access data register (RWD) . 342

12.4.7 Read/Write access address register (RWA) . 344

12.4.8 Watchpoint trigger register (WT) . 344

12.4.9 Data trace control register (DTC) . 346

Table of contents UM0434

10/391

12.4.10 Data trace start address 1 and 2 registers (DTSA1 and DTSA2) 347

12.4.11 Data trace end address registers 1 and 2 (DTEA1 and DTEA2) 347

12.5 Nexus3 register access through JTAG/OnCE . 348

12.6 Ownership trace . 348

12.6.1 Overview . 348

12.6.2 Ownership trace messaging (OTM) . 349

12.6.3 OTM error messages . 349

12.6.4 OTM flow . 350

12.7 Program trace . 350

12.7.1 Branch trace messaging (BTM) . 350

12.7.2 BTM message formats . 352

12.7.3 BTM operation . 357

12.7.4 Program trace timing diagrams (2 MDO/1 MSEO Configuration) 359

12.8 Data trace . 360

12.8.1 Data trace messaging (DTM) . 360

12.8.2 DTM message formats . 361

12.8.3 DTM operation . 363

12.8.4 Data trace timing diagrams (8 MDO/2 MSEO Configuration) 365

12.9 Watchpoint support . 365

12.9.1 Overview . 365

12.9.2 Watchpoint messaging . 366

12.9.3 Watchpoint error message . 366

12.9.4 Watchpoint timing diagram (2 MDO/1 MSEO Configuration) 367

12.10 Nexus3 Read/Write access to Memory-Mapped resources 367

12.10.1 Single write access . 367

12.10.2 Block write access (Non-Burst Mode) . 368

12.10.3 Block write access (Burst Mode) . 369

12.10.4 Single read access . 369

12.10.5 Block read access (Non-Burst Mode) . 370

12.10.6 Block read access (Burst Mode) . 370

12.10.7 Error handling . 371

12.11 Nexus3 pin interface . 371

12.11.1 Pins implemented . 371

12.11.2 Pin protocol . 373

12.12 Rules for output messages . 375

12.13 Auxiliary port arbitration . 376

UM0434 Table of contents

 11/391

12.14 Examples . 376

12.15 IEEE 1149.1 (JTAG) RD/WR sequences . 379

12.15.1 JTAG sequence for accessing internal nexus registers 379

12.15.2 JTAG sequence for read access of Memory-Mapped resources 379

12.15.3 JTAG sequence for write access of Memory-Mapped resources 380

13 Glossary . 381

14 Revision history . 390

List of tables UM0434

12/391

List of tables

Table 1. Terminology conventions . 22
Table 2. Acronyms and abbreviated terms . 23
Table 3. Scalar and vector embedded floating-point APU instructions. 28
Table 4. Interrupt registers . 31
Table 5. Exceptions and conditions . 32
Table 6. Machine state register (MSR) . 43
Table 7. MSR field descriptions . 43
Table 8. Processor ID register (PIR). 45
Table 9. PIR Field Descriptions . 45
Table 10. Processor version register (PVR) . 45
Table 11. PVR field descriptions. 46
Table 12. SVR field description . 46
Table 13. Integer Exception Register (XER). 47
Table 14. XER field descriptions. 47
Table 15. Condition register (CR) . 48
Table 16. BI operand settings for CR fields . 48
Table 17. CR0 field descriptions. 50
Table 18. CR setting for compare instructions . 50
Table 19. Count register (CTR) . 51
Table 20. Link register (LR) . 52
Table 21. Signal processing and embedded floating point status and control register (SPEFSCR) . 52
Table 22. SPEFSCR field descriptions . 53
Table 23. Save/restore register 0 (SRR0) . 56
Table 24. Save/restore register 1 (SRR1) . 56
Table 25. Critical save/restore register 0 (CSRR0). 57
Table 26. Critical save/restore register 1 (CSRR1). 57
Table 27. Data exception address register (DEAR) . 57
Table 28. Interrupt vector prefix register (IVPR) . 58
Table 29. IVPR field descriptions . 58
Table 30. Interrupt vector offset registers (IVOR). 58
Table 31. IVOR field descriptions . 58
Table 32. IVOR assignments . 59
Table 33. Exception syndrome register (ESR) . 59
Table 34. ESR field descriptions. 60
Table 35. Debug save/restore register 0 (DSRR0) . 61
Table 36. Debug save/restore register 1 (DSRR1) . 62
Table 37. Machine check syndrome register (MCSR) . 62
Table 38. MCSR field descriptions . 62
Table 39. Software use SPRs (SPRG0–SPRG7 and USPRG0) . 63
Table 40. Timer control register (TCR) . 65
Table 41. TCR field descriptions. 65
Table 42. Timer status register (TSR) . 66
Table 43. Timer status register field descriptions . 66
Table 44. Time base upper/lower registers (TBU/TBL) . 67
Table 45. Decrementer register (DEC) . 68
Table 46. Decrementer auto-reload register (DECAR). 69
Table 47. Instruction address compare registers (IAC1–IAC4) . 69
Table 48. Data address compare registers (DAC1–DAC2) . 70

UM0434 List of tables

 13/391

Table 49. DBCNT register . 70
Table 50. DBCR0 Register . 71
Table 51. DBCR0 field descriptions . 72
Table 52. Debug control register 1 (DBCR1) . 74
Table 53. DBCR1 field descriptions . 74
Table 54. DBCR2 field descriptions . 76
Table 55. DBCR3 register. 79
Table 56. DBCR3 field descriptions . 79
Table 57. DBSR register . 83
Table 58. DBSR field descriptions . 83
Table 59. Hardware implementation dependent register 0 (HID0) . 84
Table 60. HID0 field descriptions . 85
Table 61. Hardware implementation dependent register 1 (HID1) . 87
Table 62. HID1 field descriptions . 87
Table 63. Branch unit control and status register (BUCSR) . 87
Table 64. Branch unit control and status register . 88
Table 65. MMU Control and Status Register 0 (MMUCSR0) . 88
Table 66. MMUCSR0 field descriptions . 89
Table 67. MMU configuration register 1 (MMUCFG) . 89
Table 68. MMUCFG field descriptions . 90
Table 69. TLB configuration register 0 (TLB0CFG) . 90
Table 70. TLB0CFG field descriptions . 90
Table 71. TLB configuration register 1 (TLB1CFG) . 91
Table 72. TLB1CFG field descriptions . 91
Table 73. MAS Register 0 (MAS0) Format . 92
Table 74. MAS0 - MMU read/write and replacement control . 92
Table 75. MMU assist register 1 (MAS1) . 92
Table 76. MAS1 - descriptor context and configuration control . 93
Table 77. MMU assist register 2 (MAS2) . 93
Table 78. MAS2 - EPN and page attributes . 94
Table 79. MMU assist register 3 (MAS3) . 95
Table 80. MAS3 - RPN and access control . 95
Table 81. MMU assist register 4 (MAS4) . 95
Table 82. MAS4 - hardware replacement assist configuration register . 95
Table 83. MMU assist register 6 (MAS6)). 96
Table 84. MAS6 - TLB search context register 0 . 96
Table 85. Process ID register (PID0) . 97
Table 86. Context control register (CTXCR). 97
Table 87. System response to invalid SPR reference . 98
Table 88. Additional synchronization requirements for SPRs. 98
Table 89. Special purpose registers . 99
Table 90. Reset settings for e200z3 resources . 102
Table 91. Parallel signature control register (PSCR) . 104
Table 92. PSCR field descriptions . 104
Table 93. parallel signature status register (PSSR) . 105
Table 94. PSSR field descriptions . 105
Table 95. Parallel signature high register (PSHR) . 106
Table 96. Parallel signature low register (PSLR) . 106
Table 97. Parallel signature counter register (PSCTR). 106
Table 98. Parallel signature update high register (PSUHR) . 107
Table 99. Parallel signature update low register (PSULR) . 107
Table 100. List of unsupported instructions . 109

List of tables UM0434

14/391

Table 101. List of optionally supported instructions . 109
Table 102. Implementation-Specific instruction summary . 110
Table 103. Memory synchronization and reservation instructions e200z3 specific details. 111
Table 104. SPE APU vector multiply instruction mnemonic structure . 113
Table 105. Mnemonic extensions for multiply-accumulate instructions . 113
Table 106. SPE APU vector instructions . 114
Table 107. Vector and scalar SPFP APU floating-point instructions . 121
Table 108. Embedded floating-point APU options . 122
Table 109. Invalid instruction forms . 123
Table 110. Instructions sorted by mnemonic . 123
Table 111. Instructions sorted by opcode. 133
Table 112. Full instruction listing . 142
Table 113. Interrupt classifications . 161
Table 114. Exceptions and conditions . 162
Table 115. Exception syndrome register (ESR) . 163
Table 116. ESR field descriptions. 163
Table 117. Processor state definition of MSR . 164
Table 118. MSR field descriptions . 164
Table 119. Machine check syndrome register (MCSR) . 166
Table 120. MCSR field Descriptions. 166
Table 121. IVPR register . 167
Table 122. IVPR field descriptions . 167
Table 123. IVOR register fields. 167
Table 124. IVOR assignments . 168
Table 125. Critical input interrupt register settings . 169
Table 126. Machine check interrupt register settings . 170
Table 127. Data storage interrupt register settings. 171
Table 128. ISI exceptions and conditions . 172
Table 129. Instruction storage interrupt register settings . 172
Table 130. External input interrupt register settings . 173
Table 131. Alignment interrupt register settings . 174
Table 132. Program interrupt register settings . 175
Table 133. Floating-Point unavailable interrupt register Settings . 175
Table 134. System call interrupt register settings. 176
Table 135. Decrementer interrupt register settings . 177
Table 136. Fixed-Interval timer interrupt register settings. 177
Table 137. Watchdog timer interrupt register settings . 178
Table 138. Data TLB error interrupt register settings . 179
Table 139. Instruction TLB error interrupt register settings . 179
Table 140. Debug exceptions . 180
Table 141. Debug interrupt register settings. 181
Table 142. TSR watchdog timer reset status . 183
Table 143. DBSR most recent reset . 183
Table 144. System reset register Settings . 183
Table 145. SPE unavailable interrupt register settings. 184
Table 146. SPE Floating-Point data interrupt register settings. 184
Table 147. SPE Floating-Point round interrupt register settings. 185
Table 148. e200z3 exception priorities . 186
Table 149. MSR setting due to interrupt . 190
Table 150. TLB maintenance programming model. 193
Table 151. Page size (for e200z3 Core) and EPN field comparison . 196
Table 152. TLB entry bit fields for e200z3 . 199

UM0434 List of tables

 15/391

Table 153. tlbivax EA bit definitions . 201
Table 154. TLB entry 0 values after Reset . 203
Table 155. MMU assist registers summary. 204
Table 156. MMU assist register field updates. 205
Table 157. Pipeline stages . 209
Table 158. Instruction timing by mnemonic . 222
Table 159. Timing for integer simple instructions . 227
Table 160. SPE load and store instruction timing. 228
Table 161. SPE complex integer instruction timing . 229
Table 162. SPE vector Floating-Point instruction timing. 232
Table 163. Scalar SPE Floating-Point instruction timing . 233
Table 164. Performance effects of storage operand placement . 234
Table 165. Interface signal definitions . 238
Table 166. Processor clock signal description . 241
Table 167. Descriptions of signals related to reset . 242
Table 168. Descriptions of signals for the address and data buses . 243
Table 169. Descriptions of transfer attribute signals. 244
Table 170. Descriptions of signals for byte lane specification . 246
Table 171. Byte strobe assertion for transfers . 246
Table 172. Big-and Little-Endian storage (64-Bit GPR contains ‘A B C D E F G H’) 248
Table 173. Descriptions of signals for transfer control signals . 251
Table 174. Descriptions of master ID configuration signals . 251
Table 175. Descriptions of interrupt signals . 252
Table 176. Descriptions of timer facility signals . 253
Table 177. Descriptions of processor reservation signals . 254
Table 178. Descriptions of miscellaneous processor signals . 254
Table 179. Descriptions of processor state signals . 255
Table 180. Descriptions of power management control signals . 256
Table 181. Descriptions of debug events signals . 257
Table 182. Core Debug/Emulation support signals . 258
Table 183. Descriptions of Debug/Emulation (Nexus 1/ OnCE) support signals 259
Table 184. core development support (Nexus3) signals . 260
Table 185. JTAG primary interface signals. 260
Table 186. Descriptions of JTAG interface signals . 260
Table 187. JTAG register ID fields . 264
Table 188. JTAG ID register inputs . 264
Table 189. Descriptions of JTAG ID signals . 264
Table 190. Internal signal descriptions . 265
Table 191. Power states . 292
Table 192. Descriptions of timer facility and power management signals . 293
Table 193. Power management control bits . 294
Table 194. Debug registers . 298
Table 195. Debug event descriptions . 301
Table 196. JTAG/OnCE primary interface signals . 308
Table 197. OnCE internal interface signals . 308
Table 198. OnCE interface signals . 309
Table 199. OnCE status register (OSR) . 311
Table 200. OSR field descriptions . 311
Table 201. OCMD fields . 312
Table 202. OCMD field descriptions . 313
Table 203. OnCE control register fields . 315
Table 204. OnCE control register bit definitions . 315

List of tables UM0434

16/391

Table 205. OnCE register access requirements . 317
Table 206. Methods for entering debug mode . 319
Table 207. Control state register (CTL) . 321
Table 208. CTL field definitions . 321
Table 209. Watchpoint output signal assignments . 326
Table 210. Terms and definitions . 329
Table 211. Public TCODEs supported . 332
Table 212. Error code encodings (TCODE = 8) . 335
Table 213. Resource code encodings (TCODE = 27) . 336
Table 214. Event code encodings (TCODE = 33) . 336
Table 215. Data trace size encodings (TCODE = 5, 6, 13, or 14) . 336
Table 216. Nexus3 register map. 337
Table 217. Client Select Control Register. 337
Table 218. CSC field descriptions . 338
Table 219. Port configuration register. 338
Table 220. PCR field descriptions . 338
Table 221. Development control register 1 (DC1) . 339
Table 222. DC1 field descriptions. 339
Table 223. Development control register 2 (DC2) . 340
Table 224. DC2 field descriptions. 340
Table 225. Development status register (DS). 341
Table 226. DS field descriptions . 341
Table 227. Read write access control/status register (RWCS). 341
Table 228. RWCS field descriptions . 342
Table 229. Read/Write access status bit encodings. 342
Table 230. read/write access data register . 343
Table 231. RWD data placement for transfers . 343
Table 232. RWD byte lane data placement . 343
Table 233. Read/write access address register . 344
Table 234. Watchpoint trigger register . 344
Table 235. WT field descriptions . 345
Table 236. Data trace control register . 346
Table 237. DTC field descriptions. 346
Table 238. Data trace start address registers. 347
Table 239. Data trace end address registers . 347
Table 240. Data Trace—Address range options . 347
Table 241. Nexus3 Register Access through JTAG/OnCE (Example) . 348
Table 242. Nexus register example . 348
Table 243. Ownership trace message format . 349
Table 244. Error message format . 350
Table 245. Indirect branch message sources. 351
Table 246. Direct branch message sources . 351
Table 247. Indirect Branch Message (History) Format . 352
Table 248. Indirect Branch Message Format . 352
Table 249. Direct Branch Message Format . 353
Table 250. RCODE encoding . 353
Table 251. Debug status message format . 354
Table 252. Program correlation message format . 354
Table 253. Error message format . 355
Table 254. Direct/Indirect branch with synchronization message format . 356
Table 255. Indirect branch history with synchronization message format . 356
Table 256. Program trace exception summary. 356

UM0434 List of tables

 17/391

Table 257. Relative address generation and re-creation example . 358
Table 258. Data write message format . 361
Table 259. Data read message format . 361
Table 260. Error message format . 362
Table 261. Data write/read with synchronization message format . 362
Table 262. Data trace exception summary . 363
Table 263. e200z3 bus cycle cases . 364
Table 264. Watchpoint message format. . 366
Table 265. Watchpoint source encoding . 366
Table 266. Error message format . 367
Table 267. Single write access field settings . 368
Table 268. Single read access parameter settings. 369
Table 269. Error message format . 371
Table 270. JTAG pins for Nexus3. 372
Table 271. Nexus3 auxiliary pins . 372
Table 272. Nexus port arbitration signals . 373
Table 273. MSEO Pin(s) protocol . 374
Table 274. MDO request encodings . 376
Table 275. Indirect branch message example (2 MDO/1 MSEO). 377
Table 276. Indirect branch message example (8 MDO/2 MSEO). 377
Table 277. Direct branch message example (2 MDO/1 MSEO). 378
Table 278. Direct branch message example (8 MDO / 2 MSEO). 378
Table 279. Data write message example (8 MDO/1 MSEO) . 378
Table 280. Data write message example (8 MDO/2 MSEO) . 378
Table 281. Accessing internal Nexus3 registers through JTAG/OnCE. 379
Table 282. Accessing memory-mapped resources (reads) . 379
Table 283. Accessing memory-mapped resources (writes) . 380
Table 284. Document revision history . 390

List of figures UM0434

18/391

List of figures

Figure 1. e200z3 block diagram. 24
Figure 2. e200z3 programmer’s model . 27
Figure 3. e200z3 Programmer’s model . 39
Figure 4. System version register (SVR) . 46
Figure 5. Relationship of timer facilities to the time base. 64
Figure 6. Parallel signature unit . 104
Figure 7. Effective to real address translation flow . 194
Figure 8. Virtual address and TLB-Entry compare process . 196
Figure 9. Granting of access permission . 197
Figure 10. e200z3 TLB1 organization . 198
Figure 11. Victim selection. 199
Figure 12. e200z3 block diagram. 207
Figure 13. Pipeline diagram . 209
Figure 14. Instruction buffers . 210
Figure 15. Branch target buffer . 212
Figure 16. Basic pipeline flow, Single-Cycle instructions. 212
Figure 17. A load followed by a dependent add instruction . 212
Figure 18. Back-to-Back load instructions . 213
Figure 19. A load followed by a dependent store instruction . 213
Figure 20. Basic pipeline flow, branch instructions . 214
Figure 21. Basic pipeline flow, branch speculation . 214
Figure 22. Basic pipeline flow, Multi-Cycle instructions . 214
Figure 23. Pipelined Load/Store instructions . 215
Figure 24. Pipelined Load/Store instructions with Wait-State . 215
Figure 25. mtspr, mfspr instruction Execution—(1) . 216
Figure 26. mtmysr, wrtee, wrteei instruction execution . 216
Figure 27. DCR, MMU mtspr, mfspr, and MMU management instruction execution 217
Figure 28. Interrupt recognition and handler instruction execution . 218
Figure 29. Interrupt recog. & handler instruction exe-load/store in progress 219
Figure 30. Interrupt recog. & handler instruction exe-multi-cycle instruction abort 220
Figure 31. Core signal groups . 237
Figure 32. Example external JTAG register design . 263
Figure 33. Basic read Transfer—Single-Cycle reads, full pipelining . 267
Figure 34. Read with Wait-State, Single-Cycle reads, full pipelining . 268
Figure 35. Basic write Transfers—Single-Cycle writes, full pipelining . 269
Figure 36. Write with Wait-state, Single-Cycle writes, full pipelining . 270
Figure 37. Single-Cycle reads, Single-Cycle write, full pipelining . 271
Figure 38. Single-Cycle read, write, Read—Full pipelining . 272
Figure 39. Multiple-Cycle reads with Wait-State, Single-Cycle writes, full pipelining. 273
Figure 40. Multi-Cycle read with Wait-State, Single-Cycle write, read with Wait-State, full pipelining274
Figure 41. Misaligned read, read, full pipelining . 275
Figure 42. Misaligned write, write, full pipelining . 276
Figure 43. Misaligned write, single cycle read transfer, full pipelining . 277
Figure 44. Burst read transfer . 277
Figure 45. Burst read with Wait-state transfer . 278
Figure 46. Burst write transfer . 279
Figure 47. Burst write with Wait-State transfer . 279
Figure 48. Burst read transfers . 280

UM0434 List of figures

 19/391

Figure 49. Burst read with Wait-State transfer, retraction . 281
Figure 50. Burst write transfers, Single-Beat burst . 281
Figure 51. Read transfer with Wait-State, address retraction . 282
Figure 52. Burst read with Wait-State transfer, retraction . 283
Figure 53. Read and write Transfers: instruction read with error, data read, write, full pipelining . . . 284
Figure 54. Data read with error, data write retracted, instruction read, full pipelining 285
Figure 55. Misaligned write with error, data write retracted, burst read substituted, full pipelining . . 286
Figure 56. Burst read with error termination, burst write . 287
Figure 57. Read transfer with Wait-State, address retraction . 288
Figure 58. Burst read with Wait-State transfer, retraction . 288
Figure 59. Wakeup control signal (p_wakeup). 289
Figure 60. Interrupt interface input signals. 289
Figure 61. Interrupt pending operation. 290
Figure 62. Interrupt acknowledge operation case 1. 290
Figure 63. Interrupt acknowledge operation case 2. 291
Figure 64. Power management state diagram. 293
Figure 65. Core debug resources . 298
Figure 66. Core debug resources . 306
Figure 67. OnCE TAP controller and registers . 306
Figure 68. OnCE controller as an FSM . 307
Figure 69. OnCE controller and serial interface. 311
Figure 70. CPU scan chain register (CPUSCR). 320
Figure 71. OnCE PC FIFO. 325
Figure 72. Nexus3 functional block diagram . 331
Figure 73. Resource full message format . 353
Figure 74. Program trace—indirect branch message (traditional) . 359
Figure 75. Program trace—indirect branch message (history) . 359
Figure 76. Program trace—direct branch (traditional) and error messages. 360
Figure 77. Program Trace—Indirect branch with synchronization message 360
Figure 78. Data trace—data write message . 365
Figure 79. Data trace—data read with synchronization message . 365
Figure 80. Error message (data trace only encoded) . 365
Figure 81. Watchpoint message and watchpoint error message. 367
Figure 82. State diagram for single pin MSEO transfers . 374
Figure 83. Dual-Pin MSEO transfers . 375

Organization UM0434

20/391

1 Organization

Following is a summary and a brief description of the major sections of this manual:

● Chapter 3: e200z3 core complex overview on page 24,” provides a general description
of e200z3 functionality.

● Chapter 4: Register model on page 38,” is useful for software engineers who need to
understand the programming model for the three programming environments and the
functionality of each register.

● Chapter 5: Instruction model on page 108,” provides an overview of the addressing
modes and a description of the instructions. Instructions are organized by function.

● Chapter 6: Interrupts and exceptions on page 160,” describes how the e200z3
implements the interrupt model as it is defined by the Book E architecture.

● Chapter 7: Memory management unit on page 192,” provides specific hardware and
software details regarding the e200z3 MMU implementation.

● Chapter 8: Instruction pipeline and execution timing on page 206,” describes how
instructions are fetched, decoded, issued, executed, completed, and how instruction
results are presented to the processor and memory system. Tables are provided that
indicate latency and throughput for each of the instructions supported by the e200z3.

● Chapter 9: External core complex interfaces on page 235,” describes those aspects of
the CCB that are configurable or that provide status information through the
programming interface. It provides a glossary of signals mentioned throughout the book
to offer a clearer understanding of how the core is integrated as part of a larger device.

● Chapter 10: Power management on page 292,” describes the power management
facilities as they are defined by Book E and implemented in the e200z3 core.

● Chapter 11: Debug support on page 296,” describes the debug facilities as they are
defined by Book E and implemented in the e200z3 core.

● Chapter 12: Nexus3 module on page 329,” describes the e200z3 Nexus3 module,
which provides real-time development capabilities for e200z3 processors in compliance
with the IEEE-ISTO Nexus 5001-2003 standard.

● This book also includes an index.

1.1 Bibliography
The following documentation, published by Morgan-Kaufmann Publishers, 340 Pine Street,
Sixth Floor, San Francisco, CA, provides useful information about the PowerPC architecture
and computer architecture in general:

● The PowerPC Architecture: A Specification for a New Family of RISC Processors,
Second Edition, by International Business Machines, Inc.

For updates to the specification, see http://www.austin.ibm.com/tech/ppc-chg.html

● Computer Architecture: A Quantitative Approach, Third Edition, by John L. Hennessy
and David A. Patterson.

● Computer Organization and Design: The Hardware/Software Interface, Second Edition,
David A. Patterson and John L. Hennessy.

Note: It is assumed that the reader understands operating systems, microprocessor system
design, and the basic principles of RISC processing.

UM0434 Conventions

 21/391

2 Conventions

This document uses the following notational conventions:

2.1 Terminology conventions
Table 1 lists certain terms used in this manual that differ from the architecture terminology
conventions.

cleared/set
When a bit takes the value zero, it is said to be cleared; when it takes a value of one, it
is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, bcctrx.

Book titles in text are set in italics.

Internal signals are set in italics, for example, qual BG.

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

REG[FIELD]
Abbreviations for registers are shown in uppercase text. Specific bits, fields, or ranges
appear in brackets. For example, MSR[LE] refers to the little-endian mode enable bit
in the machine state register.

x In some contexts, such as signal encodings, an unitalicized x indicates a don’t care.

x An italicized x indicates an alphanumeric variable.

n An italicized n indicates a numeric variable.

¬ NOT logical operator

& AND logical operator

| OR logical operator

Table 1. Terminology conventions

Architecture specification This manual

Change bit Changed bit

Extended mnemonics Simplified mnemonics

Out of order memory accesses Speculative memory accesses

Privileged mode (or privileged state) Supervisor level

Problem mode (or problem state) User level

Reference bit Referenced bit

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

Conventions UM0434

22/391

2.2 Acronyms and abbreviations
Table 2 contains acronyms and abbreviations that are used in this document.

Table 2. Acronyms and abbreviated terms

Term Meaning

CR Condition register

CTR Count register

DCR Data control register

DTLB Data translation lookaside buffer

EA Effective address

ECC Error checking and correction

FPR Floating-point register

GPR General-purpose register

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

L2 Secondary cache

LIFO Last-in-first-out

LR Link register

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

NIA Next instruction address

No-op No operation

PTE Page table entry

RISC Reduced instruction set computing

RTL Register transfer language

SIMM Signed immediate value

SPR Special-purpose register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VA Virtual address

VLE Variable-length encoding

XER
Register used primarily for indicating conditions such as carries and overflows for
integer operations

e200z3 core complex overview UM0434

24/391

3 e200z3 core complex overview

This chapter provides an overview of the PowerPC™ e200z3 microprocessor core. It
includes the following:

● An overview of the Book E version of the PowerPC architecture features as
implemented in this core

● A summary of the core feature set

● An overview of the programming model

● An overview of interrupts and exception handling

● A summary of instruction pipeline and flow

● A description of the memory-management architecture

● High-level details of the e200z3 core memory and coherency model

● A summary of the Book E architecture compatibility and migration from the original
version of the PowerPC architecture as it is defined by Apple, IBM, (referred to as the
AIM version of the PowerPC architecture)

● Information regarding e200z3 features that are defined by the Book E implementation
standards (EIS)

3.1 Overview of the e200z3
The e200z3 processor family is a set of CPU cores that are low-cost implementations of the
PowerPC Book E architecture. e200z3 processors are designed for deeply embedded
control applications that require low-cost solutions rather than maximum performance.

The e200z3 core implements the variable-length encoding (VLE) APU, providing improved
code density. See the EREF for more information about the VLE extension.

Figure 1. e200z3 block diagram

Instruction Bus Interface Unit

Software-Managed

Unified Memory Unit

MAS
Registers

32 GPRs
(64-Bit)

XER
CR

4-, 16-, 64-,
256-Kbyte;

Execution Units

SPRs

Integer

+ x ÷
Unit

SPE APU

+ x ÷
Unit

Embedded

+ x ÷
Scalar FPU

Embedded

+ x ÷
Vector FPU

Load/Store

Branch
Unit

Write-Back Stage

Two/Four
instructions

32 64 N

Address Data Control

Additional
Features

– OnCe/Nexus
1/Nexus 3
control logic

– AMBA AHB-
Lite bus

+

L1 Unified MMU

Unit

CTR
LR

Single-instruction, in-order dispatch

Single-Instruction, In-Order Write Back

••
•

16-Entry
Fully Associative

TLB

EA Calc

Four-cycle,
single-path
execute stage
with overlapped
execution and

Fetch Unit

Branch Processing Unit

Instruction/Control Unit

Instruction Buffer
(7 instructions)

Decode
8-Entry BranchStage

+ EA Calc

Two-Cycle
Fetch Stage

Program Counter

Target Buffer

Data Bus Interface Unit

32 64 N

Address Data Control

Optional
Extension

VLE
APU

Execute Stage

feed forwarding

UM0434 e200z3 core complex overview

 25/391

The e200z3 is a single-issue, 32-bit, Book E–compliant design with 64-bit, general-purpose
registers (GPRs).

A signal processing extension (SPE) APU and embedded vector and scalar floating-point
APUs are provided to support real-time integer and single-precision embedded floating-
point operations using the GPRs. The e200z3 does not support Book E floating-point
instructions in hardware but traps them so they can be emulated by software.

All arithmetic instructions that execute in the core operate on data in the GPRs, which have
been extended to 64 bits to support vector instructions defined by the SPE and embedded
vector floating-point APUs. These instructions operate on a vector pair of 16- or 32-bit data
types and deliver vector and scalar results.

The e200z3 contains a memory management unit (MMU) and a Nexus Class 3+ module.

The e200z3 platform is specified in such a way that functional units can be added or
removed. The e200z3 can be configured with a powerful vectored interrupt controller and
one or more IP slave interfaces, as well as support for configured memory units.

3.1.1 Features

Key features of the e200z3 are summarized as follows:

● Single-issue, 32-bit Book E–compliant core

● Implementation of the VLE APU for reduced code footprint

● In-order execution and retirement

● Precise interrupt handling

● Branch processing unit (BPU)

– Dedicated branch address calculation adder

– Branch target prefetching using an eight-entry branch target buffer (BTB)

● Branch acceleration using branch lookahead instruction buffer

– Load/store unit (LSU)

– 31-cycle load latency

– Fully pipelined

– Big- and little-endian support on a per-page basis

– Misaligned access support

– Zero load-to-use pipeline bubbles

● Power management

– Low-power design—extensive clock gating

– Power-saving modes: doze, nap, sleep

– Dynamic power management of execution units, caches, and MMUs

● AMBA™ (advanced microcontroller bus architecture) AHB (advanced high-
performance bus)-Lite 64-bit system bus

● MMU with 16-entry, fully associative TLB and multiple page-size support

● Signal processing extension (SPE) APU supporting integer operations using both
halves of the 64-bit GPRs

● Single-precision embedded scalar floating-point APU

● Single-precision embedded vector floating-point APU that uses both halves of the 64-
bit GPRs

e200z3 core complex overview UM0434

26/391

● Nexus Class 3+ real-time development unit

● e200z3-specific debug interrupt. The e200z3 implements the debug interrupt as
defined in Book E with the following changes:

– When the debug APU is enabled (HID0[DAPUEN] = 1), debug is no longer a
critical interrupt, but uses DSRR0 and DSRR1 for saving machine state on context
switch.

– The Return from Debug Interrupt (rfdi) instruction supports the debug APU
save/restore registers (DSRR0 and DSRR1).

– A critical interrupt taken debug event allows critical interrupts to generate a debug
event.

● A critical interrupt return debug event allows debug events to be generated for rfci
instructions. Testability

– Synthesizable, full MuxD scan design

– ABIST/MBIST for optional memory arrays

● Testability

– Synthesizable, full MuxD scan design

– ABIST/MBIST for optional memory arrays

3.2 Programming model
This section describes the register model, instruction model, and the interrupt model as they
are defined by Book E, EIS, and the e200z3 implementation.

3.2.1 Register set

Figure 2 shows the e200z3 register set, indicating which registers are accessible in
supervisor mode and which are accessible in user mode. The number to the left of the
special-purpose registers (SPRs) is the decimal number used in the instruction syntax to
access the register. (For example, the integer exception register (XER) is SPR 1.)

GPRs are accessed through instruction operands. Access to other registers can be explicit
(by using instructions for that purpose such as the Move To Special Purpose Register
(mtspr) and Move From Special Purpose Register (mfspr) instructions) or implicit as part of
the execution of an instruction. Some registers are accessed both explicitly and implicitly.

UM0434 e200z3 core complex overview

 27/391

Figure 2. e200z3 programmer’s model

1. The 64-bit registers are accessed by the SPE as separate 32-bit registers by SPE instructions. Only SPE
vector instructions can access the upper word.

2. USPRG0 is a separate physical register from SPRG0.

3. EIS specific registers not part of the Book E architecture.

4. IVOR9 (handles auxiliary processor unavailable interupt) is defined by the EIS but not supported by the
e200z3.

5. e200z3 specific registers may not be supported by other PowerPC processors.

3.3 Instruction set
The e200z3 implements the following instructions:

● The Book E instruction set for 32-bit implementations. This is composed primarily of
the user-level instructions defined by the PowerPC user instruction set architecture

User-Level Registers
General-Purpose Registers Instructionon-Accessible Registers User General SPR (Read/Write)

0 31 32 63 0 31 32 63 32 63
User SPR
general 0(upper) GPR01 (lower)

General-
purpose
registers

CR Condition register spr 256 USPRG02

GPR1
spr 9 CTR Count register General SPRs (Read-Only)

GPR2

···· spr 8 LR Link register spr 260 SPRG4
SPR general
registers 4–7

GPR31 spr 261 SPRG5
spr 1 XER Integer exception

register spr 262 SPRG6
L1 Cache (Read-Only)

spr 512 SPEFSCR3 SP/embedded FP
status/control register spr 263 SPRG7

L1 cache
configuration
register 0

spr 515 L1CFG03

ACC3 Accumulator Time-Base Registers (Read-Only)

spr 268 TBL Time base
lower/upperspr 269 TBU

Supervisor-Level Registers
Interrupt Registers Configuration Registers

32 63 32 63 32 63

 spr 63 IVPR Interrupt vector
prefix register spr 400 IVOR0

Interrupt vector offset
registers 0–154

MSR Machine state register

spr 401 IVOR1

···· spr 26 SRR0 Save/restore
registers 0/1

spr 1023 SVR3 System version
register

spr 27 SRR1
spr 415 IVOR15 spr 286 PIR Processor ID register

spr 58 CSRR0
Critical SRR 0/1 Processor version

registerspr 528 IVOR323

Interrupt vector offset
registers 32–34

spr 287 PVR
spr 59 CSRR1

spr 529 IVOR333

spr 574 DSRR03
Debug interrupt
SRR 0/1

spr 530 IVOR343

Timer/Decrementer Registers
spr 575 DSRR13

Exception syndrome
register

 spr 22 DEC Decrementer
 spr 62 ESR MMU Control and Status (Read/Write)

Decrementer
auto-reload registerMMU control and status

register 0
 spr 54 DECAR

spr 572 MCSR3 Machine check
syndrome register spr 1012 MMUCSR03

 spr 284 TBL Time base
lower/upper spr 61 DEAR Data exception

address register
 spr 624 MAS03

MMU assist registers
0–4 and 6

 spr 285 TBU
spr 625 MAS13

Debug Registers spr 626 MAS23 spr 340 TCR Timer control register

spr 627 MAS33

 spr 308 DBCR0

Debug control
registers 0–3

 spr 336 TSR Timer status register
spr 628 MAS43

spr 309 DBCR1
spr 630 MAS63 Miscellaneous Registers

spr 310 DBCR2
Process ID
register 0spr 561 DBCR3 spr 48 PID0 spr 1008 HID03 Hardware

implementation
dependent 0–1spr 1009 HID13

 spr 304 DBSR Debug status register MMU Control and Status (Read Only)
spr 1013 BUCSR5 Branch control and

status register spr 562 DBCNT 5 Debug count register spr 1015 MMUCFG3 MMU configuration

spr 272–279 SPRG0–7 General SPRs 0–7
spr 312 IAC1

Instruction address
compare
registers 1–4

spr 688 TLB0CFG3

TLB configuration 0/1
spr 313 IAC2 spr 689 TLB1CFG3 Context Control (Read/Write)
spr 314 IAC3 Context control

registerParallel Signature Unit Registers5 spr 560 CTXCR5
spr 315 IAC4

Data address
compare
registers 1 and 2

dcr 272 PSCR PS control
spr 316 DAC1

dcr 273 PSSR PS status
spr 317 DAC2

dcr 274 PSHR PS high

dcr 275 PSLR PS low

dcr 276 PSCTR PS counter

dcr 277 PSUHR PS update high

dcr 278 PSULR PS update low

e200z3 core complex overview UM0434

28/391

(UISA). The e200z3 does not include the Book E floating-point, load string, or store
string instructions.

● The e200z3 supports the following EIS-defined instructions:

– Integer select APU. This APU consists of the Integer Select instruction (isel),
which functions as an if-then-else statement that selects between two source
registers by comparison to a CR bit. This instruction eliminates conditional
branches, takes fewer clock cycles than the equivalent coding, and reduces the
code footprint.

– Debug APU. This APU defines the Return from Debug Interrupt instruction (rfdi).

– SPE APU vector instructions. New vector instructions are defined that view the 64-
bit GPRs as being composed of a vector of two 32-bit elements (some of the
instructions also read or write 16-bit elements). Some scalar instructions are
defined for DSP that produce a 64-bit scalar result.

– The embedded floating-point APUs provide single-precision scalar and vector
floating-point instructions. Scalar floating-point instructions use only the lower 32
bits of the GPRs for single-precision floating-point calculations. <Cross
Refs>Table 3 lists embedded floating-point instructions.

– e200z3 implements eight additional (four scalar and four vector) floating-point
APU instructions.

Table 3. Scalar and vector embedded floating-point APU instructions

Instruction
Mnemonic

Syntax
Scalar Vector

Convert Floating Point from Signed Fraction efscfsf evfscfsf rD,rB

Convert Floating Point from Signed Integer efscfsi evfscfsi rD,rB

Convert Floating Point from Unsigned Fraction efscfuf evfscfuf rD,rB

Convert Floating Point from Unsigned Integer efscfui evfscfui rD,rB

Convert Floating Point to Signed Fraction efsctsf evfsctsf rD,rB

Convert Floating Point to Signed Integer efsctsi evfsctsi rD,rB

Convert Floating Point to Signed Integer with Round Toward Zero efsctsiz evfsctsiz rD,rB

Convert Floating Point to Unsigned Fraction efsctuf evfsctuf rD,rB

Convert Floating Point to Unsigned Integer efsctui evfsctui rD,rB

Convert Floating Point to Unsigned Integer with Round Toward Zero efsctuiz evfsctuiz rD,rB

Floating-Point Absolute Value efsabs evfsabs rD,rA

Floating-Point Add efsadd evfsadd rD,rA,rB

Floating-Point Compare Equal efscmpeq evfscmpeq crD,rA,rB

Floating-Point Compare Greater Than efscmpgt evfscmpgt crD,rA,rB

Floating-Point Compare Less Than efscmplt evfscmplt crD,rA,rB

Floating-Point Divide efsdiv evfsdiv rD,rA,rB

Floating-Point Multiply efsmul evfsmul rD,rA,rB

Floating-Point Negate efsneg evfsneg rD,rA

UM0434 e200z3 core complex overview

 29/391

3.4 VLE APU
This section describes the extensions to the Book E instructions to support the PowerPC
VLE APU.

● rfci, rfdi, rfi do not mask bit 62 of CSRR0, DSRR0, or SRR0. The destination address
is [D,C]SRR0[32–62] || 0b0.

● bclr, bclrl, bcctr, bcctrl do not mask bit 62 of the LR or CTR. The destination address
is [LR, CTR][32–62] || 0b0.

3.5 Interrupts and exception handling
The core supports an extended exception handling model, with nested interrupt capability
and extensive interrupt vector programmability. The following sections define the interrupt
model, including an overview of interrupt handling as implemented on the e200z3 core, a
brief description of the interrupt classes, and an overview of the registers involved in the
processes.

3.5.1 Interrupt handling

In general, interrupt processing begins with an exception that occurs due to external
conditions, errors, or program execution problems. When an exception occurs, the
processor checks whether interrupt processing is enabled for that particular exception. If
enabled, the interrupt causes the state of the processor to be saved in the appropriate
registers and prepares to begin execution of the handler located at the associated vector
address for that particular exception.

Once the handler is executing, the implementation may need to check bits in the exception
syndrome register (ESR), the machine check syndrome register (MCSR), or the signal
processing and embedded floating-point status and control register (SPEFSCR), depending
on the exception type, to verify the specific cause of the exception and take appropriate
action.

The core complex supports the interrupts described in Section 3.5.4.

Floating-Point Negative Absolute Value efsnabs evfsnabs rD,rA

Floating-Point Subtract efssub evfssub rD,rA,rB

Floating-Point Test Equal efststeq evfststeq crD,rA,rB

Floating-Point Test Greater Than efststgt evfststgt crD,rA,rB

Floating-Point Test Less Than efststlt evfststlt crD,rA,rB

Floating-Point Single-Precision Multiply-Add efsmadd evfsmadd rD,rA,rB

Floating-Point Single-Precision Negative Multiply-Add efsnmadd evfsnmadd rD,rA,rB

Floating-Point Single-Precision Multiply-Subtract efsmsub evfsmsub rD,rA,rB

Floating-Point Single-Precision Negative Multiply-Subtract efsnmsub evfsnmsub rD,rA,rB

Table 3. Scalar and vector embedded floating-point APU instructions (continued)

Instruction
Mnemonic

Syntax
Scalar Vector

e200z3 core complex overview UM0434

30/391

3.5.2 Interrupt classes

All interrupts may be categorized as asynchronous/synchronous and critical/noncritical.

● Asynchronous interrupts (such as machine check, critical input, and external interrupts)
are caused by events that are independent of instruction execution. For asynchronous
interrupts, the address reported in a save/restore register is the address of the
instruction that would have executed next had the asynchronous interrupt not occurred.

● Synchronous interrupts are those that are caused directly by the execution or
attempted execution of instructions. Synchronous inputs are further divided into precise
and imprecise types.

– Synchronous precise interrupts are those that precisely indicate the address of the
instruction causing the exception that generated the interrupt or, in some cases,
the address of the immediately following instruction. The interrupt type and status
bits allow determination of which of the two instructions has been addressed in the
appropriate save/restore register.

– Synchronous imprecise interrupts are those that may indicate the address of the
instruction causing the exception that generated the interrupt, or some instruction
after the instruction causing the interrupt. If the interrupt was caused by either the
context synchronizing mechanism or the execution synchronizing mechanism, the
address in the appropriate save/restore register is the address of the interrupt-
forcing instruction. If the interrupt was not caused by either of those mechanisms,
the address in the save/restore register is the last instruction to start execution and
may not have completed. No instruction following the instruction in the
save/restore register has executed.

3.5.3 Interrupt types

The e200z3 core processes all interrupts as either debug, critical, or noncritical types.
Separate control and status register sets are provided for each type of interrupt. The core
handles interrupts from these three categories in the following order of priority:

1. Debug interrupt—The EIS defines a separate set of resources for the debug interrupt.
The debug save and restore registers (DSRR0/DSRR1) are used to save state when a
debug interrupt is taken; the rfdi instruction restores state when interrupt handling
completes.The debug enable bit, HID0[DAPUEN], determines what interrupt is taken
when a debug exception occurs, as follows:

– If DAPUEN = 0, the debug interrupt is disabled. Debug interrupts use the critical
interrupt resources: CSRR0/CSRR1 and rfci; rfdi is treated as an illegal
instruction. DCLREE, DCLRCE, CICLRDE, and MCCLRDE settings are ignored
and are assumed to be ones.

– If DAPUEN = 1, the debug APU is enabled. Debug interrupts use DSRR0/DSRR1
for saving state, and rfdi is available for returning from a debug interrupt.

2. Noncritical interrupts—First-level interrupts that allow the processor to change program
flow to handle conditions generated by external signals, errors, or unusual conditions
arising from program execution or from programmable timer events. These interrupts
are largely identical to those defined by the OEA portion of the PowerPC architecture.
They use the save and restore registers (SRR0/SRR1) to save state when they are
taken, and they use the rfi instruction to restore state. Asynchronous noncritical
interrupts can be masked by the external interrupt enable bit, MSR[EE].

3. Critical interrupts—Critical interrupts can be taken during a noncritical interrupt or
during regular program flow. They use the critical save and restore registers

UM0434 e200z3 core complex overview

 31/391

(CSRR0/CSRR1) to save state when they are taken, and they use the rfci instruction to
restore state. These interrupts can be masked by the critical enable bit, MSR[CE].
Book E defines the critical input, watchdog timer, and machine check interrupts as
critical interrupts, but the e200z3 core defines a third set of resources for the debug
interrupt, as described in Table 4.

All interrupts except debug interrupts are ordered within the two categories of noncritical
and critical, such that only one interrupt of each category is reported, and when it is
processed (taken), no program state is lost. Because save/restore register pairs are serially
reusable, program state may be lost when an unordered interrupt is taken.

3.5.4 Interrupt registers

Table 4. Interrupt registers

Register Description

Noncritical interrupt registers

SRR0
Save/restore register 0—Stores the address of the instruction causing the exception or
the address of the instruction that will execute after the rfi instruction.

SRR1
Save/restore register 1—Saves machine state on noncritical interrupts and restores
machine state after an rfi instruction is executed.

Critical interrupt registers

CSRR0
Critical save/restore register 0—On critical interrupts, stores either the address of the
instruction causing the exception or the address of the instruction that executes after the
rfci.

CSRR1
Critical save/restore register 1—Saves machine state on critical interrupts and restores
machine state after an rfci instruction is executed.

Debug interrupt registers

DSRR0
Debug save/restore register 0—Used to store the address of the instruction that will
execute after an rfdi instruction is executed.

DSRR1
Debug save/restore register 1—Stores machine state on debug interrupts and restores
machine state after an rfdi instruction is executed.

Syndrome registers

MCSR
Machine check syndrome register—Saves machine check syndrome information on
machine check interrupts.

ESR
Exception syndrome register—Provides a syndrome to differentiate among the different
kinds of exceptions that generate the same interrupt type. Upon generation of a specific
exception type, the associated bits are set and all other bits are cleared.

SPE APU interrupt registers

SPEFSCR
Signal processing and embedded floating-point status and control register—Provides
interrupt control and status as well as various condition bits associated with the
operations performed by the SPE APU.

Other interrupt registers

e200z3 core complex overview UM0434

32/391

Each interrupt has an associated interrupt vector address, obtained by concatenating
IVPR[32–47] with the address index in the associated IVOR (that is, IVPR[32–
47] || IVORn[48–59] || 0b0000). The resulting address is that of the instruction to be
executed when that interrupt occurs. IVPR and IVOR values are indeterminate on reset and
must be initialized by the system software using mtspr. Table 4 lists IVOR registers
implemented on the e200z3 core and the associated interrupts.

3.6 Microarchitecture summary
The e200z3 processor has a four-stage pipeline for instruction execution.

1. Instruction fetch

2. Instruction decode/register file read/effective address calculation

3. Execute/memory access

4. Register writeback

These stages are pipelined, allowing single-clock instruction throughput for most
instructions.

DEAR
Data exception address register—Contains the address that was referenced by a load,
store, or cache management instruction that caused an alignment, data TLB miss, or
data storage interrupt.

IVPR
IVORs

Together, IVPR[32–47] || IVORn [48–59] || 0b0000 define the address of an interrupt-
processing routine. See <Cross Refs>Table 5 and <Cross Refs>6, “Interrupts and
exceptions,” for more information.

Table 5. Exceptions and conditions

IVORn Interrupt type IVORn Interrupt type

None(1)

1. Vector to [p_rstbase[0:19]] || 0xFFC.

System reset (not an interrupt) 10 Decrementer

0(2)

2. Autovectored external and critical input interrupts use this IVOR.
Vectored interrupts supply an interrupt vector offset directly.

Critical input 11 Fixed-interval timer

1 Machine check 12 Watchdog timer

2 Data storage 13 Data TLB error

3 Instruction storage 14 Instruction TLB error

42 External input 15 Debug

5 Alignment 6–31 Reserved

6 Program 32 SPE unavailable

7 Floating-point unavailable 33 SPE data exception

8 System call 34 SPE round exception

9 APU unavailable

Table 4. Interrupt registers (continued)

Register Description

UM0434 e200z3 core complex overview

 33/391

The integer execution unit consists of a 32-bit arithmetic unit, a logic unit, a 32-bit barrel
shifter, a mask-insertion unit, a condition register manipulation unit, a count-leading-zeros
unit, a 32 × 32 hardware multiplier array, result feed-forward hardware, and support
hardware for division.

Most arithmetic and logical operations are executed in a single cycle with the exception of
the divide instructions. A count-leading-zeros unit operates in a single clock cycle.

The instruction unit contains a program counter incrementer and a dedicated branch
address adder to minimize delays during change-of-flow operations. Sequential prefetching
is performed to ensure a supply of instructions into the execution pipeline. Branch target
prefetching is performed to accelerate taken branches. Prefetched instructions are placed
into an instruction buffer capable of holding six instructions.

Conditional branches that are not taken and not folded execute in a single cycle. Branches
with successful target prefetching that are not folded have an effective execution time of
1 cycle. All other taken branches have an execution time of 2 clocks.

Memory load and store operations are provided for byte, half-word, word (32-bit), and
double-word data with automatic zero or sign extension of byte and half-word load data as
well as optional byte reversal of data. These instructions can be pipelined to allow effective
single-cycle throughput. Load and store multiple word instructions allow low-overhead
context save and restore operations. The load/store unit (LSU) contains a dedicated
effective address adder to optimize effective address generation.

The condition register unit supports the condition register (CR) and condition register
operations defined by the PowerPC architecture. The CR consists of eight 4-bit fields that
reflect the results of certain operations generated by instructions such as move, integer and
floating-point compare, arithmetic, and logical instructions. The CR also provides a
mechanism for testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support
is provided to allow multiple interrupt sources to have unique interrupt handlers invoked with
no software overhead.

The SPE APU supports vector instructions operating on 16- and 32-bit integer and fractional
data types. The vector and scalar floating-point APUs operate on 32-bit IEEE-754 single-
precision floating-point formats, and support single-precision floating-point operations in a
pipelined fashion.

The 64-bit GPRs are used for source and destination operands for all vector instructions,
and there is a unified storage model for single-precision floating-point data types of 32 bits
and the normal integer type. Low-latency integer and floating-point add, subtract, multiply,
divide, compare, and conversion operations are provided, and most operations can be
pipelined.

e200z3 core complex overview UM0434

34/391

3.6.1 Instruction unit features

The e200z3 instruction unit implements the following:

● 64-bit fetch path that supports fetching of two 32-bit or up to four 16-bit VLE APU
instructions per clock

● Instruction buffer that holds up to seven sequential instructions

● Dedicated PC (program counter) incrementer supporting instruction fetches

● Branch processing unit with dedicated branch address adder and branch target buffer
(BTB) supporting single-cycle execution of successfully predicted branches

● Target instruction buffer that holds up to two prefetched branch target instructions

3.6.2 Integer unit features

The integer unit supports single-cycle execution of most integer instructions:

● 32-bit AU for arithmetic and comparison operations

● 32-bit LU for logical operations

● 32-bit priority encoder for count-leading-zeros function

● 32-bit single-cycle barrel shifter for static shifts and rotates

● 32-bit mask unit for data masking and insertion

● Divider logic for signed and unsigned divide in 6–16 clocks with minimized execution
timing

● 32 × 32 hardware multiplier array that supports single cycle 32 × 32 > 32 multiply

3.6.3 Load/Store unit (LSU) features

The e200z3 LSU supports load, store, and load multiple/store multiple instructions:

● 32-bit effective address adder for data memory address calculations

● Pipelined operation supports throughput of one load or store operation per cycle

● Dedicated 64-bit interface to memory supports saving and restoring of up to two
registers per cycle for load multiple and store multiple word instructions

3.6.4 Memory management unit (MMU) features

The MMU is a Book E-compliant PowerPC implementation, with the following feature set:

● 32-bit effective-to-real address translation

● 8-bit process identifier (PID)

● 16-entry, fully associative TLB

● Support for multiple page sizes (4, 16, 64, 256 Kbytes; 1, 4, 16, 64, 256 Mbytes)

● Hardware assist for TLB miss exceptions

● Software managed by tlbre, tlbwe, tlbsx, tlbsync, and tlbivax instructions

● Entry flush protection

● Byte ordering (endianness) configurable on a per-page basis

UM0434 e200z3 core complex overview

 35/391

3.6.5 System bus (core complex interface) features

The features of the core complex interface are as follows:

● Independent instruction and data buses

● Advanced microcontroller bus architecture (AMBA) and advanced high-performance
bus (AHB2.v6)-Lite protocol

● 32-bit address bus plus attributes and control on each bus

● Instruction interface has 64-bit read data bus

● Data interface has separate unidirectional 64-bit read data bus and 64-bit write data
bus

● Pipelined, in-order accesses for both buses.

3.6.6 Nexus3 module features

The Nexus3 module provides real-time development capabilities for e200z3 processors in
compliance with the IEEE-ISTO Nexus 5001-2003 standard. This module provides
development support capabilities without requiring the use of address and data pins for
internal visibility.

A portion of the pin interface (the JTAG port) is shared with the OnCE/Nexus1 unit. The
IEEE-ISTO 5001-2003 standard defines an extensible auxiliary port, which is used in
conjunction with the JTAG port in e200z3 processors.

3.7 Legacy support of PowerPC architecture
This section provides an overview of the architectural differences and compatibilities of the
e200z3 core compared with the AIM PowerPC architecture. The two levels of the e200z3
core programming environment are as follows:

● User level—This defines the base user-level instruction set, registers, data types,
memory conventions, and the memory and programming models seen by application
programmers.

● Supervisor level—This defines supervisor-level resources typically required by an
operating system, the memory management model, supervisor-level registers, and the
exception model.

In general, the e200z3 core supports the user-level architecture from the classic PowerPC
architecture. The following sections are intended to highlight the main differences. For
specific implementation details refer to the relevant chapter.

3.7.1 Instruction set compatibility

The following sections describe the user and supervisor instruction sets.

User instruction set

The e200z3 core executes legacy user-mode binaries and object files except for the
following:

● The e200z3 core supports vector and scalar single-precision floating-point operations
as APUs. These instructions have different encoding than the AIM definition of the
PowerPC architecture. Additionally, the e200z3 core uses GPRs for floating-point

e200z3 core complex overview UM0434

36/391

operations, rather than the FPRs defined by the UISA. Most porting of floating-point
operations can be handled by recompiling.

● String instructions are not implemented on the e200z3 core; therefore, trap emulation
must be provided to ensure backward compatibility.

Supervisor instruction set

The supervisor-mode instruction set defined by the AIM version of the PowerPC architecture
is compatible with the e200z3 core with the following exceptions:

● The MMU architecture is different, so some TLB manipulation instructions have
different semantics.

● Instructions that support BATs and segment registers are not implemented.

3.7.2 Memory subsystem

Both Book E and the AIM version of the PowerPC architecture provide separate instruction
and data memory resources. The e200z3 core provides additional cache control features,
including cache locking.

3.7.3 Interrupt handling

Exception handling is generally the same as that defined in the AIM version of the PowerPC
architecture for the e200z3 core, with the following differences:

● Book E defines a new critical interrupt, providing an interrupt nesting. The critical
interrupt includes critical input and watchdog timer time-out inputs.

● The debug interrupt differs from the Book E and from the AIM definition. It defines the
Return from Debug Interrupt instruction, rfdi, and two debug save/restore registers,
DSRR0 and DSRR1.

● Book E processors can use IVPR and the IVORs to set exception vectors individually,
but they can be set to the address offsets defined in the OEA to provide compatibility.

● Unlike the AIM version of the PowerPC architecture, Book E does not define a reset
vector; execution begins at a fixed virtual address, 0xFFFF_FFFC. The e200z3 allows
this to be hard-wired to any page.

● Some Book E and e200z3 core-specific SPRs are different from those defined in the
AIM version of the PowerPC architecture, particularly those related to MMU functions.
Much of this information has been moved to the new exception syndrome register
(ESR).

● Timer services are generally compatible. However, Book E defines a decrementer
auto-reload feature, and two critical-type interrupts—the fixed-interval timer and the
watchdog timer interrupts—all of which are implemented in the e200z3 core.

See Chapter 3.5 for overview of Interrupts and exception handling capabilities.

3.7.4 Memory management

The e200z3 core implements a straightforward virtual address space that complies with the
Book E MMU definition, which eliminates segment registers and block address translation
resources. Book E defines resources for multiple, variable page sizes that can be configured
in a single implementation. TLB management is provided with new instructions and SPRs.

UM0434 e200z3 core complex overview

 37/391

3.7.5 Reset

Book E–compliant cores do not share a common reset vector with the AIM version of the
PowerPC architecture. Instead, at reset, fetching begins at address 0xFFFF_FFFC. In
addition to the Book E reset definition, the EIS and e200z3 core define specific aspects of
the MMU page translation and protection mechanisms. Unlike the AIM version of the
PowerPC core, as soon as instruction fetching begins, the e200z3 core is in virtual mode
with a hardware-initialized TLB entry.

3.7.6 Little-endian mode

Unlike the AIM version of the PowerPC architecture, where little-endian mode is controlled
on a system basis, Book E allows control of byte ordering on a memory-page basis. In
addition, the little-endian mode used in Book E is true little-endian byte ordering (byte
invariance).

Register model UM0434

38/391

4 Register model

This chapter describes the registers of the e200z3 core. It includes an overview of registers
defined by the Book E architecture, highlighting differences in how these registers are
implemented in the e200z3 core, and it describes the e200z3-specific registers in detail. Full
descriptions of the architecture-defined register set are provided in the EREF.

The Book E architecture defines register-to-register operations for all computational
instructions. Source data for these instructions is accessed from the on-chip registers or as
immediate values embedded in the opcode. The three-register instruction format allows
specification of a target register distinct from the two source registers, thus preserving the
original data for use by other instructions. Data is transferred between memory and registers
with explicit load and store instructions only.

The e200z3 extends the general-purpose registers (GPRs) to 64 bits to support SPE APU
operations. PowerPC Book E instructions operate on the lower 32 bits of the GPRs only, and
the upper 32 bits are unaffected by these instructions. SPE vector instructions operate on
the entire 64-bit register. The SPE APU defines load and store instructions for transferring
64-bit values to/from memory.

Figure 3 shows the complete e200z3 register set, indicating which registers are accessible
in supervisor mode and which in user mode. The number to the left of the special-purpose
registers (SPRs) is the decimal number used in the instruction syntax to access the register.
For example, the integer exception register (XER) is SPR 1.

GPRs are accessed through instruction operands. Access to other registers can be explicit,
using instructions such as Move to Special-Purpose Register (mtspr) and Move from
Special-Purpose Register (mfspr), or implicit as part of the execution of an instruction.
Some registers are accessed both explicitly and implicitly.

UM0434 Register model

 39/391

Figure 3. e200z3 Programmer’s model

6. The 64-bit registers are accessed by the SPE as separate 32-bit registers by SPE instructions. Only SPE
vector instructions can access the upper word.

7. USPRG0 is a separate physical register from SPRG0.

8. EIS specific registers not part of the Book E architecture.

9. IVOR9 (handles auxiliary processor unavailable interupt) is defined by the EIS but not supported by the
e200z3.

10. e200z3 specific registers may not be supported by other PowerPC processors.

4.1 PowerPC Book E registers
The e200z3 supports most of the registers defined by Book E architecture. Notable
exceptions are the floating-point registers FPR0–FPR31 and the FPSCR. The e200z3 does
not support the Book E floating-point architecture in hardware. The GPRs are extended to
64 bits. The Book E registers in the e200z3 are as follows:

User-Level Registers
General-Purpose Registers Instructionon-Accessible Registers User General SPR (Read/Write)

0 31 32 63 0 31 32 63 32 63
User SPR
general 0(upper) GPR01 (lower)

General-
purpose
registers

CR Condition register spr 256 USPRG02

GPR1
spr 9 CTR Count register General SPRs (Read-Only)

GPR2

···· spr 8 LR Link register spr 260 SPRG4
SPR general
registers 4–7

GPR31 spr 261 SPRG5
spr 1 XER Integer exception

register spr 262 SPRG6
L1 Cache (Read-Only)

spr 512 SPEFSCR3 SP/embedded FP
status/control register spr 263 SPRG7

L1 cache
configuration
register 0

spr 515 L1CFG03

ACC3 Accumulator Time-Base Registers (Read-Only)

spr 268 TBL Time base
lower/upperspr 269 TBU

Supervisor-Level Registers
Interrupt Registers Configuration Registers

32 63 32 63 32 63

 spr 63 IVPR Interrupt vector
prefix register spr 400 IVOR0

Interrupt vector offset
registers 0–154

MSR Machine state register

spr 401 IVOR1

···· spr 26 SRR0 Save/restore
registers 0/1

spr 1023 SVR3 System version
register

spr 27 SRR1
spr 415 IVOR15 spr 286 PIR Processor ID register

spr 58 CSRR0
Critical SRR 0/1 Processor version

registerspr 528 IVOR323

Interrupt vector offset
registers 32–34

spr 287 PVR
spr 59 CSRR1

spr 529 IVOR333

spr 574 DSRR03
Debug interrupt
SRR 0/1

spr 530 IVOR343

Timer/Decrementer Registers
spr 575 DSRR13

Exception syndrome
register

 spr 22 DEC Decrementer
 spr 62 ESR MMU Control and Status (Read/Write)

Decrementer
auto-reload registerMMU control and status

register 0
 spr 54 DECAR

spr 572 MCSR3 Machine check
syndrome register spr 1012 MMUCSR03

 spr 284 TBL Time base
lower/upper spr 61 DEAR Data exception

address register
 spr 624 MAS03

MMU assist registers
0–4 and 6

 spr 285 TBU
spr 625 MAS13

Debug Registers spr 626 MAS23 spr 340 TCR Timer control register

spr 627 MAS33

 spr 308 DBCR0

Debug control
registers 0–3

 spr 336 TSR Timer status register
spr 628 MAS43

spr 309 DBCR1
spr 630 MAS63 Miscellaneous Registers

spr 310 DBCR2
Process ID
register 0spr 561 DBCR3 spr 48 PID0 spr 1008 HID03 Hardware

implementation
dependent 0–1spr 1009 HID13

 spr 304 DBSR Debug status register MMU Control and Status (Read Only)
spr 1013 BUCSR5 Branch control and

status register spr 562 DBCNT 5 Debug count register spr 1015 MMUCFG3 MMU configuration

spr 272–279 SPRG0–7 General SPRs 0–7
spr 312 IAC1

Instruction address
compare
registers 1–4

spr 688 TLB0CFG3

TLB configuration 0/1
spr 313 IAC2 spr 689 TLB1CFG3 Context Control (Read/Write)
spr 314 IAC3 Context control

registerParallel Signature Unit Registers5 spr 560 CTXCR5
spr 315 IAC4

Data address
compare
registers 1 and 2

dcr 272 PSCR PS control
spr 316 DAC1

dcr 273 PSSR PS status
spr 317 DAC2

dcr 274 PSHR PS high

dcr 275 PSLR PS low

dcr 276 PSCTR PS counter

dcr 277 PSUHR PS update high

dcr 278 PSULR PS update low

Register model UM0434

40/391

● User-level registers, which are accessible to all software with either user or supervisor
privileges:

– General-purpose registers (GPRs). Thirty-two 64-bit GPRs (GPR0–GPR31) serve
as data source or destination registers for integer instructions and provide data to
generate addresses. PowerPC Book E instructions affect only the lower 32 bits of
the GPRs. SPE APU instructions operate on the entire 64-bit register.

– Condition register (CR). Eight 4-bit fields, CR0–CR7, reflect results of certain
arithmetic operations and provide a mechanism for testing and branching.

The remaining user-level registers are SPRs. In the PowerPC architecture, the mtspr
and mfspr instructions are for accessing SPRs.

– Integer exception register (XER). Indicates overflow and carries for integer
operations.

– Link register (LR). Provides the branch target address for the branch conditional to
link register (bclr, bclrl) instructions and holds the address of the instruction that
follows a branch and link instruction, typically for linking to subroutines.

– Count register (CTR). Holds a loop count that can be decremented during
execution of appropriately coded branch instructions. CTR also provides the
branch target address for the branch conditional to count register (bcctr, bcctrl)
instructions.

– The time base facility (TB) consists of two 32-bit registers, time base upper (TBU)
and time base lower (TBL). User-level software can read (but not write) to these
two registers.

– SPRG4–SPRG7. Software-use special-purpose registers (SPRGs). SPRG4–
SPRG7 are read only by user-level software. The e200z3 does not allow user-
mode access to SPRG3. Book E defines such access as implementation-
dependent.

– USPRG0. User-software-use SPR USPRG0, which is read-write accessible to
user-level software.

Supervisor-level registers, which are control and status registers accessible to supervisor-
level software. An operating system might use these registers for configuration, exception
handling, and other operating system functions:

● Processor control registers

– Machine state register (MSR). Defines the state of the processor. The MSR can be
modified by the move to machine state register (mtmsr), system call (sc), and
return from interrupt (rfi, rfci, rfdi) instructions. It can be read by the move from
machine state register (mfmsr) instruction. When an interrupt occurs, the contents
of the MSR are saved to one of the machine state save/restore registers (SRR1,
CSRR1, DSRR1).

– Processor version register (PVR). A read-only register that identifies the version
(model) and revision level of the PowerPC processor.

– Processor identification register (PIR). A read-only register to distinguish the
processor from other processors in the system.

● Storage control registers

– Process ID register (PID0, also referred to as PID). Indicates the current process
or task identifier. The MMU uses it as an extension to the effective address, and
the external Nexus 2 module uses it for ownership trace message generation.
PowerPC Book E allows multiple PIDs; the e200z3 implements only one.

● Interrupt registers

UM0434 Register model

 41/391

– Data exception address register (DEAR). After most data storage interrupts
(DSIs), or on an alignment interrupt or data TLB interrupt, DEAR is set to the
effective address (EA) generated by the faulting instruction.

– SPRG0–SPRG7, USPRG0. For software use. See Section 4.10: Software use
SPRs (SPRG0–SPRG7 and USPRG0) on page 63,” for details on these registers.
The e200z3 does not allow user-mode access to the SPRG3 register. Book E
defines access to SPRG3 as implementation-dependent.

– Exception syndrome register (ESR). A syndrome to differentiate between the
different kinds of exceptions that can generate the same interrupt.

– Interrupt vector prefix register (IVPR) and interrupt-specific interrupt vector offset
registers (IVORs). Provide the address of the interrupt handler for different classes
of interrupts.

– Save/restore register 0 (SRR0). Saves machine state on a non-critical interrupt
and contains the address of the instruction at which execution resumes when an
rfi instruction executes at the end of a non-critical-class interrupt handler routine.

– Save/restore register 1 (SRR1). Saves machine state from the MSR on non-critical
interrupts and restores machine state when rfi executes.

– Critical save/restore register 0 (CSRR0). Saves machine state on a critical
interrupt and contains the address of the instruction at which execution resumes
when an rfci instruction executes at the end of a critical-class interrupt handler
routine.

– Critical save/restore register 1 (CSRR1). Saves machine state from the MSR on
critical interrupts and restores machine state when rfci executes.

● Debug facility registers

– Debug control registers (DBCR0–DBCR2). Provide control for enabling and
configuring debug events.

– Debug status register (DBSR). Contains debug event status.

– Instruction address compare registers (IAC1–IAC4). Contain addresses and/or
masks to specify instruction address compare debug events.

– Data address compare registers (DAC1–DAC2). Contain addresses and/or masks
to specify data address compare debug events.

Note: The e200z3 does not implement data value compare registers (DVC1 and DVC2).
● Timer registers

– Time base (TB). Maintains the time of day and operates interval timers. The TB
consists of two 32-bit registers, time base upper (TBU) and time base lower (TBL).
Only supervisor level software can write to the time base registers, but both user
and supervisor level software can read them.

– Decrementer register (DEC). A 32-bit decrementing counter for causing a
decrementer exception after a programmable delay.

– Decrementer auto-reload (DECAR). Supports the auto-reload feature of the
decrementer.

– Timer control register (TCR). Controls the decrementer, fixed interval timer, and
watchdog timer options.

– Timer status register (TSR). Contains status on timer events and the most recent
watchdog-timer-initiated processor reset.

Register model UM0434

42/391

4.2 e200z3 - Specific registers
Book E allows implementation-specific registers. Those in the e200z3 core are as follows:

● User-level registers, which are accessible to all software with either user or supervisor
privileges:

– Signal processing/embedded floating-point status and control register
(SPEFSCR). Contains all integer and floating-point exception signal bits,
exception summary bits, exception enable bits, and rounding control bits for
compliance with the IEEE 754 standard.

– L1 cache configuration register (L1CFG0). A read-only register that allows
software to query the configuration of the L1 cache. For the e200z3, this register
returns all zeros.

– The EIS-defined accumulator, which is part of the SPE APU. See Section 4.7.2:
Accumulator (ACC) on page 55.”

● Supervisor-level registers, which are defined in the e200z3 in addition to the Book E
registers described in Section 4.1: PowerPC Book E registers on page 39:

– Configuration registers—Hardware implementation-dependent registers 0 and 1
(HID0 and HID1). Control various processor and system functions.

– Exception handling and control registers:

– Machine check syndrome register (MCSR). A syndrome to differentiate
between the different kinds of conditions that can generate a machine check.

– Debug save/restore register 0 (DSRR0). When the debug APU is enabled,
DSRR0 saves the address of the instruction at which execution continues
when rfdi executes at the end of a debug interrupt handler routine.

– Debug save/restore register 1 (DSRR1). When the debug APU is enabled,
(HID0[DAPUEN] = 1), DSRR1 saves machine state from the MSR on debug
interrupts and restores machine state when rfdi executes.

– Debug facility registers

– Debug control register 3 (DBCR3). Control for debug functions not described
in Book E

– Debug counter register (DBCNT). Counter capability for debug functions

– Context control registers

– Context control register (CTXCR). Control for register context selection.

– Branch unit control and status register (BUCSR). Controls operation of the branch
target buffer (BTB).

– Cache registers. This e200z3-specific register may not be supported by other
PowerPC processors.

– L1 cache configuration register (L1CFG0). A read-only register that allows
software to query the configuration of the L1 cache. This register returns all
zeros for e200z3 core.

– Memory management unit (MMU) registers:

– MMU configuration register (MMUCFG). A read-only register that allows
software to query the configuration of the MMU.

– MMU assist (MAS0–MAS4, MAS6) registers. The interface to the e200z3
core from the MMU.

– MMU control and status register (MMUCSR0). Controls MMU invalidation.

UM0434 Register model

 43/391

– TLB configuration registers (TLB0CFG and TLB1CFG). Read-only registers
that allow software to query the configuration of the TLBs.

– System version register (SVR). A read-only register that identifies the version
(model) and revision level of the system that includes an e200z3 processor.

Note: Although other processors may implement similar or identical registers, it is not guaranteed
that the implementation of e200z3-core-specific registers is consistent among PowerPC
processors.

All e200z3 SPR definitions comply with the Book E definitions.

4.3 e200z3-Specific Device Control Registers
In addition to the SPRs, implementations may also implement one or more device control
registers (DCRs). The e200z3 core implements a set of device control registers to perform a
parallel signature in the parallel signature unit (PSU). These registers may not be supported
by other PowerPC processors. For details, see Chapter 4.19: Parallel signature unit
registers on page 103.”

4.4 Processor control registers
This section discusses machine state, processor ID, processor version, and system version
registers.

4.4.1 Machine state register (MSR)

The MSR, shown in Figure 6, defines the state of the processor. Chapter 6: Interrupts and
exceptions,” describes how the MSR is affected by interrupts.

Table 6. Machine state register (MSR)

MSR fields are described in Table 7.

32 36 37 38 39 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 63

Field — UCLESPE — WE CE — EE PR FP ME FE0 — DE FE1 — IS DS —

Reset All zeros

R/W R/W

Table 7. MSR field descriptions

Bits Name Description

32–36 — Reserved, should be cleared.

37 UCLE

User cache lock enable.

0 Execution of the cache locking instructions is disabled in user mode
(MSR[PR] = 1).
Instead, the data storage interrupt is taken, and ILK or DLK is set in the ESR.

1 Execution of the cache lock instructions is enabled in user mode.

Register model UM0434

44/391

38 SPE

SPE available.

0 Execution of SPE APU vector instructions is disabled. Instead, the SPE
unavailable exception is taken, and ESR[SPE] is set.

1 Execution of SPE APU vector instructions is enabled.

39–44 — Reserved, should be cleared.

45 WE

Wait state (power management) enable. Defined as optional by Book E and
implemented in the e200z3.

0 Power management is disabled.
1 Power management is enabled. The processor can enter a power-saving mode
when additional conditions are present. The mode chosen is determined by
HID0[DOZE,NAP,SLEEP], described in Section 4.13.1: Hardware implementation
dependent register 0 (HID0).”

46 CE
Critical interrupt enable
0 Critical input and watchdog timer interrupts are disabled.

1 Critical input and watchdog timer interrupts are enabled.

47 — Preserved.

48 EE

External interrupt enable

0 External input, decrementer, and fixed-interval timer interrupts are disabled.
1 External input, decrementer, and fixed-interval timer interrupts are enabled.

49 PR

Problem state.
0 The processor is in supervisor mode, can execute any instruction, and can access
any resource (for example, GPRs, all SPRs, and the MSR).
1 The processor is in user mode, cannot execute any privileged instruction, and
cannot access any privileged resource.

50 FP

Floating-point available.

0 Floating-point unit is unavailable. The processor cannot execute floating-point
instructions, including floating-point loads, stores, and moves. (An FP unavailable
interrupt is generated on attempted execution of floating-point instructions).

1 Floating-point unit is available. The processor can execute floating-point
instructions. (Note that for the e200z3, the floating-point unit is not supported; an
unimplemented operation exception is generated for attempted execution of
floating-point instructions when FP is set).

51 ME

Machine check enable.

0 Machine check interrupts are disabled. Checkstop mode is entered when the
p_mcp_b input is recognized asserted or an ISI or ITLB exception occurs on a fetch
of the first instruction of an exception handler.
1 Machine check interrupts are enabled.

52 FE0 Floating-point exception mode 0 (not used by the e200z3).

53 — Reserved, should be cleared.

54 DE

Debug interrupt enable.

0 Debug interrupts are disabled.

1 Debug interrupts are enabled if DBCR0[IDM] is set.

55 FE1 Floating-point exception mode 1 (not used by the e200z3)

Table 7. MSR field descriptions (continued)

Bits Name Description

UM0434 Register model

 45/391

4.4.2 Processor ID register (PIR)

The processor ID for the CPU core is contained in the processor ID register (PIR), shown in
Figure 8. The contents of PIR reflect the hardware input signals to the e200z3 core.

PIR fields are described in Table 9.

4.4.3 Processor version register (PVR)

The processor version register (PVR), shown in Table 10, contains the processor version
number for the CPU core.

56–57 — Reserved, should be cleared.

58 IS

Instruction address space.
0 The processor directs all instruction fetches to address space 0 (TS = 0 in the
relevant TLB entry).
1 The processor directs all instruction fetches to address space 1 (TS = 1 in the
relevant TLB entry).

59 DS

Data address space.

0 The core directs all data storage accesses to address space 0 (TS = 0 in the
relevant TLB entry).

1 The core directs all data storage accesses to address space 1 (TS = 1 in the
relevant TLB entry).

60–63 — Reserved, should be cleared.

Table 7. MSR field descriptions (continued)

Bits Name Description

Table 8. Processor ID register (PIR)

32 55 56 63

Field — PID

Reset 0000_0000_0000_0000_0000_0000 p_cpuid[0:7]

R/W Read only

SPR SPR 286

Table 9. PIR Field Descriptions

Bits Name Description

32–55 — These bits always read as 0.

56–63 PID These bit reflect the values on the p_cpuid[0:7] input signals.

Table 10. Processor version register (PVR)

32 35 36 37 38 43 44 47 48 55 56 59 60 63

Field Manufacturer ID — Type Version MBG Use Major Rev MBG ID

Reset 1000 00 01_0001 0010 p_pvrin[16:31]

R/W Read only

SPR SPR 287

Register model UM0434

46/391

The PVR contains fields to specify a particular implementation of an e200z3 family member.
Interface signals p_pvrin[16:31] provide the contents of bits 48–63.

4.4.4 System version register (SVR)

The system version register (SVR) contains system version information for an e200z3-
based SoC.

SVR specifies a particular implementation of an e200z3-based system.

4.5 Registers for integer operations
This section describes the registers for integer operations.

4.5.1 General purpose registers (GPRs)

Book E implementations provide 32 GPRs (GPR0–GPR31) for integer operations. The
instruction formats provide 5-bit fields for specifying the GPRs for use in executing the
instruction. Each GPR is a 64-bit register and can contain address and integer data,
although all instructions except SPE APU vector instructions use and return 32-bit values in
GPR bits 32–63.

Table 11. PVR field descriptions

Bits Name Description

32–35 Manufacturer ID Manufacturer ID. Freescale is 0b1000.

36–37 — Reserved, should be cleared.

38–43 Type Identifies the processor type. For the e200z3, this field has a value of 0b01_0001.

44–47 Version
Identifies the version of the processor and any optional elements. For e200z3, this field
has a value of 0010.

48–55 MBG Use Distinguishes different system variants; provided by the p_pvrin[16:23] inputs.

56–59 Major Rev
Distinguishes different implementations of the version; provided by the p_pvrin[24:27]
inputs.

60–63 MBG ID Provided by the p_pvrin[28:31] input signals.

Figure 4. System version register (SVR)

32 63

Field Version

Reset SoC-dependent value (determined by p_sysvers[0:31] on the e200z3 core)

R/W Read only

SPR SPR 1023

Table 12. SVR field description

Bits Name Description

32–63 Version Distinguishes different system variants, and is provided by the p_sysvers[0:31] inputs.

UM0434 Register model

 47/391

4.5.2 Integer exception register (XER)

The XER, shown in Table 13, tracks exception conditions for integer operations.

XER fields are described in Table 14.

4.6 Registers for branch operations
This section describes registers used by Book E branch and CR operations.

4.6.1 Condition register (CR)

CR, shown in Table 15, reflects the result of certain operations and provides a mechanism
for testing and branching.

Table 13. Integer Exception Register (XER)

32 33 34 35 56 57 63

Field SO OV CA — Number of bytes

Reset All zeros

R/W R/W

SPR SPR 1

Table 14. XER field descriptions

Bits Name Description

32 SO

Summary overflow. Set when an instruction (except mtspr) sets the overflow bit (OV). SO remains
set until it is cleared by mtspr[XER] or mcrxr. SO is not altered by compare instructions or other
instructions that cannot overflow (except mtspr[XER] and mcrxr). Executing mtspr[XER] with the
values 0 for SO and 1 for OV clears SO and sets OV.

33 OV

Overflow. X-form add, subtract from, and negate instructions with OE=1 set OV if the carry out of
bit 32 is not equal to the carry out of bit 33. Otherwise, they clear OV to indicate a signed overflow.
X-form multiply low word and divide word instructions with OE=1 set OV if the result cannot be
represented in 32 bits (mullwo, divwo, and divwuo) and clear OV otherwise. OV is not altered by
compare instructions or other instructions that cannot overflow (except mtspr[XER] and mcrxr).

34 CA

Carry. Add carrying, subtract from carrying, add extended, and subtract from extended instructions
set CA if there is a carry out of bit 32 and clear it otherwise. CA can be used to indicate unsigned
overflow for add and subtract operations that set CA. Shift right algebraic word instructions set CA
if any 1 bits are shifted out of a negative operand and clear CA otherwise. Compare instructions
and instructions that cannot carry (except Shift Right Algebraic Word, mtspr[XER], and mcrxr) do
not affect CA.

35–56 — Reserved, should be cleared.

57–63

Numb
er
of

bytes

Supports emulation of load and store string instructions. Specifies the number of bytes to be
transferred by a load string indexed or store string indexed instruction.

Register model UM0434

48/391

CR bits are grouped into eight 4-bit fields, CR0–CR7, which are set as follows:

● Specified CR fields are set by a move to the CR from a GPR (mtcrf).

● A specified CR field is set by a move to the CR from another CR field (mcrf), or from
the XER (mcrxr).

● CR0 may be set as the implicit result of an integer instruction.

● A specified CR field may be set as the result of either an integer or a floating-point
compare instruction (including SPE and SPFP compare instructions).

Instructions are provided to perform logical operations on individual CR bits and to test
individual CR bits.

Note: Book E instructions that access CR bits, such as Branch Conditional (bc), CR logicals, and
Move to Condition Register Field (mtcrf), determine the bit position by adding 32 to the
value of the operand. For example, the BI operand accesses the bit BI + 32, as shown in
Table 16.

Table 15. Condition register (CR)

32 35 36 39 40 43 44 47 48 51 52 55 56 59 60 63

Field
CR
0

CR
1

CR
2

CR
3

CR
4

CR
5

CR
6

CR
7

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

Table 16. BI operand settings for CR fields

CRn
Bits

CR
Bits

BI Description

CR0[0] 32 00000

Negative (LT)—Set when the result is negative.
For SPE compare and test instructions:

Set if the high-order element of rA is equal to the high-order element of rB; cleared
otherwise.

CR0[1] 33 00001

Positive (GT)—Set when the result is positive (and not zero).
For SPE compare and test instructions:

Set if the low-order element of rA is equal to the low-order element of rB; cleared
otherwise.

CR0[2] 34 00010
Zero (EQ)—Set when the result is zero. For SPE compare and test instructions:
Set to the OR of the result of the compare of the high and low elements.

CR0[3] 35 00011
Summary overflow (SO). Copy of XER[SO] at the instruction’s completion.
For SPE compare and test instructions:

Set to the AND of the result of the compare of the high and low elements.

CR1[0] 36 00100
Negative (LT)—For SPE and SPFP compare and test instructions:

Set if the high-order element of rA is equal to the high-order element of rB; cleared
otherwise.

CR1[1] 37 00101
Positive (GT)—For SPE and SPFP compare and test instructions:
Set if the low-order element of rA is equal to the low-order element of rB; cleared
otherwise.

UM0434 Register model

 49/391

CR setting for integer instructions

For all integer word instructions with the Rc bit defined and set, and for addic., andi., and
andis., CR0[32–34] are set by signed comparison of bits 32–63 of the result to zero; CR[35]
is copied from the final state of XER[SO]. The Rc bit is not defined for double-word integer
operations.
if (target_register)32–63 < 0 then c ← 0b100
else if (target_register)32–63 > 0 then c ← 0b010
else c ← 0b001
CR0 ← c || XERSO

The value of any undefined portion of the result is undefined, and the value placed into the
first three bits of CR0 is undefined. CR0 bits are interpreted as described in Table 17.

CR1[2] 38 00110
Zero (EQ)—For SPE and SPFP compare and test instructions:
Set to the OR of the result of the compare of the high and low elements.

CR1[3] 39 00111
Summary overflow (SO)—For SPE and SPFP compare and test instructions:
Set to the AND of the result of the compare of the high and low elements.

CRn[0]

40
44

48

52
56

60

01000
01100

10000

10100
11000

11100

Less than (LT)

For integer compare instructions:
rA < SIMM or rB (signed comparison) or rA < UIMM or rB (unsigned comparison).

For SPE and SPFP compare and test instructions:

Set if the high-order element of rA = the high-order element of rB; cleared otherwise.

CRn[1]

41

45

49

53
57

61

01001

01101

10001

10101
11001

11101

Greater than (GT)

For integer compare instructions:
rA > SIMM or rB (signed comparison) or rA > UIMM or rB (unsigned comparison).

For SPE and SPFP compare and test instructions:

Set if the low-order element of rA = the low-order element of rB; cleared otherwise.

CRn[2]

42

46

50
54

58

62

01010

01110

10010
10110

11010

11110

Equal (EQ)

For integer compare instructions: rA = SIMM, UIMM, or rB.
For SPE and SPFP compare and test instructions:

Set to the OR of the result of the compare of the high and low elements.

CRn[3]

43

47
51

55

59
63

01011

01111
10011

10111

11011
11111

Summary overflow (SO).

For integer compare instructions, this is a copy of XER[SO] at the completion of the
instruction.

For SPE and SPFP vector compare and test instructions:
Set to the AND of the result of the compare of the high and low elements.

Table 16. BI operand settings for CR fields (continued)

CRn
Bits

CR
Bits

BI Description

Register model UM0434

50/391

Note that CR0 may not reflect the true (infinitely precise) result if overflow occurs. For further
details, refer to the EREF.

CR setting for store conditional instructions

CR0 is also set by the integer store conditional instruction, stwcx.. See instruction
descriptions in Chapter 5: Instruction model,” for details on how CR0 is set.

CR setting for compare instructions

For compare instructions, a CR field specified by the BI field in the instruction is set to reflect
the result of the comparison, as shown in Table 18.

A complete description of how the bits are set is given in the EREF.

Table 17. CR0 field descriptions

CR
Bit

Name Description

32 Negative (LT) Bit 32 of the result is equal to 1.

33 Positive (GT)
Bit 32 of the result is equal to 0 and at least one of bits 33–63 of the result is non-
zero.

34 Zero (EQ) Bits 32–63 of the result are equal to 0.

35 Summary overflow (SO) This is a copy of the final state of XER[SO] at the completion of the instruction.

Table 18. CR setting for compare instructions

 CRn
Bit

Bit Expression
CR Bits BI

Description
Book E 0–2 3–4

CRn[0]

4 * cr0 + lt (or lt)
4 * cr1 + lt
4 * cr2 + lt
4 * cr3 + lt
4 * cr4 + lt
4 * cr5 + lt
4 * cr6 + lt
4 * cr7 + lt

32

36
40

44

48
52

56

60

000

001
010

011

100
101

110

111

00

Less than (LT).
For integer compare instructions:
rA < SIMM or rB (signed comparison) or rA
< UIMM or rB (unsigned comparison).

CRn[1]

4 * cr0 + gt (or gt)
4 * cr1 + gt
4 * cr2 + gt
4 * cr3 + gt
4 * cr4 + gt
4 * cr5 + gt
4 * cr6 + gt
4 * cr7 + gt

33

37
41

45

49
53

57

61

000

001
010

011

100
101

110

111

01

Greater than (GT).
For integer compare instructions:
rA > SIMM or rB (signed comparison) or rA
> UIMM or rB (unsigned comparison).

UM0434 Register model

 51/391

4.6.2 Count register (CTR)

CTR can be used to hold a loop count that can be decremented and tested during execution
of branch instructions that contain an appropriately encoded BO field. If the CTR value is 0
before it is decremented, it is –1 afterward. The entire CTR can hold the branch target
address for a Branch Conditional to CTR (bcctrx) instruction.

4.6.3 Link register (LR)

The link register, shown in Table 20, provides the branch target address for the branch
conditional to LR instructions, and it holds the return address after branch and link
instructions.

CRn[2]

4 * cr0 + eq (or eq)

4 * cr1 + eq
4 * cr2 + eq
4 * cr3 + eq
4 * cr4 + eq
4 * cr5 + eq
4 * cr6 + eq
4 * cr7 + eq

34

38

42
46

50

54
58

62

000

001

010
011

100

101
110

111

10
Equal (EQ).
For integer compare instructions: rA =
SIMM, UIMM, or rB.

CRn[3]

4 * cr0 + so (or so)

4 * cr1 + so
4 * cr2 + so
4 * cr3 + so
4 * cr4 + so
4 * cr5 + so
4 * cr6 + so
4 * cr7 + so

35

39

43
47

51

55

59
63

000

001

010
011

100

101

110
111

11
Summary overflow (SO).

For integer compare instructions, this is a
copy of XER[SO] at instruction completion.

Table 18. CR setting for compare instructions (continued)

 CRn
Bit

Bit Expression
CR Bits BI

Description
Book E 0–2 3–4

Table 19. Count register (CTR)

32 63

Field Count value

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 9

Register model UM0434

52/391

LR contents are read into a GPR using mfspr. The contents of a GPR can be written to LR
using mtspr. LR[62–63] are ignored by bclr instructions.

4.7 SPE and SPFP APU registers
The SPE and SPFP include the signal processing and embedded floating-point status and
control register (SPEFSCR). The SPE implements a 64-bit accumulator that is described in
Chapter 4.7.2: Accumulator (ACC) on page 55.”

4.7.1 Signal processing/embedded floating-point status and control
register (SPEFSCR)

SPEFSCR, shown in Table 21, is used for status and control of SPE and embedded floating
point instructions.

Table 22 describes SPEFSCR fields.

Table 20. Link register (LR)

32 63

Field Link address

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 8

Table 21. Signal processing and embedded floating point status and control
register (SPEFSCR)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field SOVH OVH FGH FXH FINVHFDBZHFUNFH FOVFH — FINXS FINVS FDBZSFUNFSFOVFSMODE

Reset 0000_0000_0000_0000

R/W R/W

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Field SOV OV FG FX FINV FDBZ FUNF FOVF — FINXE FINVE FDBZEFUNFEFOVFE FRMC

Reset 0000_0000_0000_0000

R/W R/W

SPR SPR 512

High-Word Error Bits Status Bits

Enable Bits

UM0434 Register model

 53/391

Table 22. SPEFSCR field descriptions

Bits Name Description

32 SOVH
Summary integer overflow high. Set whenever an instruction sets OVH and remains set until it is
cleared by an mtspr specifying the SPEFSCR.

33 OVH
Integer overflow high. Set whenever an integer or fractional SPE instruction signals an overflow in
the upper half of the result.

34 FGH
Embedded floating-point guard bit high. For use by the floating-point round exception handler. It
is cleared by a floating-point data exception for the high elements. FGH corresponds to the high
element result. FGH is cleared by a scalar floating-point instruction.

35 FXH
Embedded floating-point sticky bit high. Supplied for use by the floating-point round exception
handler. Zeroed if a floating-point data exception occurred for the high elements. FXH
corresponds to the high element result. FXH is cleared by a scalar floating point instruction.

36 FINVH

Embedded floating-point invalid operation/input error high.

In mode 0, set if the A or B high element operand of a floating-point instruction is Infinity, NaN, or
Denorm, or if the operation is a divide and the high element dividend and divisor are both 0.

In mode 1, FINVH is set on an IEEE754 invalid operation (IEEE754-1985 sec7.1) in the high
element. Cleared by a scalar floating-point instruction.

37 FDBZH
Embedded floating-point divide by zero high. Set when a floating-point divide instruction executes
with a high element divisor of 0 and the high element dividend is a finite non-zero number.
Cleared by a scalar floating-point instruction.

38 FUNFH
Embedded floating-point underflow high. Set when the execution of a floating-point instruction
results in an underflow in the high element. FUNFH is cleared by a scalar floating-point
instruction.

39 FOVFH
Embedded floating-point overflow high. Set when the execution of a floating-point instruction
results in an overflow in the high element. Cleared by a scalar floating point instruction.

40–41 — Reserved, should be cleared.

42 FINXS

Embedded floating-point inexact sticky flag. Set under one of the following conditions:
The execution of a floating-point instruction delivers an inexact result for either the low or high
element and no floating-point data exception is taken for either element
A floating-point instruction causes overflow (FOVF=1 or FOVFH=1), but floating-point overflow
exceptions are disabled (FOVFE=0)
A floating-point instruction results in underflow (FUNF=1 or FUNFH=1), but floating-point
underflow exceptions are disabled (FUNFE=0) and no floating-point data exception occurs.
FINXS remains set until it is cleared by an mtspr specifying SPEFSCR.

43 FINVS
Embedded floating-point invalid operation sticky flag. Set when a floating-point instruction sets
FINVH or FINV. FINVS remains set until it is cleared by an mtspr instruction specifying
SPEFSCR.

44 FDBZS
Embedded floating-point divide by zero sticky flag. Set when a floating-point divide instruction
sets FDBZH or FDBZ. FDBZS remains set until it is cleared by an mtspr specifying SPEFSCR.

45 FUNFS
Embedded floating-point underflow sticky flag. Set when a floating-point instruction sets FUNFH
or FUNF. FUNFS remains set until it is cleared by an mtspr specifying SPEFSCR.

46 FOVFS
Embedded floating-point overflow sticky flag. Set when a floating-point instruction sets FOVFH or
FOVF. FOVFS remains set until it is cleared by an mtspr specifying SPEFSCR.

Register model UM0434

54/391

47 MODE

Embedded floating-point operating mode.

0 Default hardware results operating mode. The e200z3 supports only mode 0.

1 IEEE754 hardware results operating mode (not supported by the e200z3).
Controls the operating mode of the embedded floating-point APU. Software should read the value
of this bit after writing it to determine whether the implementation supports the selected mode.
Implementations return the value written if the selected mode is supported. Otherwise, the value
read indicates the hardware-supported mode.

48 SOV
Summary integer overflow. Set when an instruction sets OV. SOV remains set until it is cleared by
an mtspr specifying SPEFSCR.

49 OV
Integer overflow. Set whenever an integer or fractional SPE instruction signals an overflow in the
low element result.

50 FG
Embedded floating-point guard bit. Used by the floating-point round exception handler. Cleared if
a floating-point data exception occurs for the low elements. Corresponds to the low element
result.

51 FX
Embedded floating-point sticky bit. For use by the floating-point round exception handler. FX is
cleared if a floating-point data exception occurs for the low elements. FX corresponds to the low
element result.

52 FINV

Embedded floating-point invalid operation/input error. In mode 0, FINV is set if the A or B low
element operand of a floating-point instruction is Infinity, NaN, or Denorm, or if the operation is a
divide and the low element dividend and divisor are both 0. In mode 1, FINV is set on an IEEE754
invalid operation (IEEE754-1985 sec7.1) in the low element.

53 FDBZ
Embedded floating-point divide by zero. Set when a floating-point divide instruction executes with
a low element divisor of 0 and the low element dividend is a finite non-zero number.

54 FUNF
Embedded floating-point underflow. Set when the execution of a floating-point instruction results
in an underflow in the low element.

55 FOVF
Embedded floating-point overflow. Set when the execution of a floating-point instruction results in
an overflow in the low element.

56 — Reserved, should be cleared.

57 FINXE

Embedded floating-point inexact exception enable. If the exception is enabled, a floating-point
round exception is taken under one of the following conditions:

For both elements, the result of a floating-point instruction does not result in overflow or
underflow, and the result for either element is inexact (FG | FX = 1.

FGH | FXH =1)

The result of a floating-point instruction does result in overflow (FOVF=1 or FOVFH=1) for either
element, but floating-point overflow exceptions are disabled (FOVFE=0)

The result of a floating-point instruction results in underflow (FUNF=1 or FUNFH=1), but floating-
point underflow exceptions are disabled (FUNFE=0), and no floating-point data exception occurs.

0 Exception disabled.
1 Exception enabled.

58 FINVE

Embedded floating-point invalid operation/input error exception enable.
0 Exception disabled.

1 Exception enabled. A floating-point data exception is taken if FINV or FINVH is set by a floating-
point instruction.

Table 22. SPEFSCR field descriptions (continued)

Bits Name Description

UM0434 Register model

 55/391

4.7.2 Accumulator (ACC)

The 64-bit architectural accumulator register holds the results of the multiply accumulate
(MAC) forms of SPE integer instructions. The accumulator allows back-to-back execution of
dependent MAC instructions, as in the inner loops of DSP code such as finite impulse
response (FIR) filters. The accumulator is partially visible to the programmer in that its
results do not have to be explicitly read to use them. Instead, they are always copied into a
64-bit destination GPR specified as part of the instruction. However, the accumulator must
be explicitly initialized when a new MAC loop starts. Based upon the type of instruction, an
accumulator can hold either a single 64-bit value or a vector of two 32-bit elements.

The Initialize Accumulator instruction (evmra) initializes the accumulator. This instruction is
described in the EREF.

4.8 Interrupt Registers
This section describes the registers for interrupt handling.

59 FDBZE

Embedded floating-point divide by zero exception enable.

0 Exception disabled.

1 Exception enabled. A floating-point data exception is taken if FDBZ or FDBZH is set by a
floating-point instruction.

60 FUNFE

Embedded floating-point underflow exception enable.

0 Exception disabled.

1 Exception enabled. A floating-point data exception is taken if FUNF or FUNFH is set by a
floating-point instruction.

61 FOVFE

Embedded floating-point overflow exception enable.

0 Exception disabled.

1 Exception enabled. If the exception is enabled, a floating-point data exception is taken if FOVF
or FOVFH is set by a floating-point instruction.

62–63 FRMC

Embedded floating-point rounding mode control.

00 Round to nearest.

01 Round toward zero.

10 Round toward +infinity.
11 Round toward -infinity.

Table 22. SPEFSCR field descriptions (continued)

Bits Name Description

Register model UM0434

56/391

4.8.1 Interrupt Registers Defined by Book E

This section describes the following registers and their fields:

● Chapter : Save/restore register 0 (SRR0) on page 56”

● Chapter : Save/restore register 1 (SRR1) on page 56”

● Chapter : Critical save/restore register 0 (CSRR0) on page 56”

● Chapter : Critical save/restore register 1 (CSRR1) on page 57”

● Chapter : Data exception address register (DEAR) on page 57”

● Chapter : Interrupt vector prefix register (IVPR) on page 57”

● Chapter : Interrupt vector offset registers (IVORs) on page 58”

● Chapter 4.9: Exception syndrome register (ESR) on page 59”

Save/restore register 0 (SRR0)

During a non-critical interrupt, SRR0, shown in Table 23, holds the address of the instruction
where the interrupted process should resume. The instruction is interrupt-specific, although
for instruction-caused exceptions, the address of the instruction typically causes the
interrupt. When rfi executes, instruction execution continues at the address in SRR0. SRR0
and SRR1 are not affected by rfci or rfdi.

Save/restore register 1 (SRR1)

SRR1, shown in Table 24, is used to save and restore machine state during non-critical
interrupts. When a non-critical interrupt is taken, MSR contents are placed into SRR1. When
rfi executes, the contents of SRR1 are restored into MSR. SRR1 bits that correspond to
reserved MSR bits are also reserved. (See Chapter 4.4.1: Machine state register (MSR)”.)
SRR0 and SRR1 are not affected by rfci or rfdi. Reserved MSR bits can be altered by rfi,
rfci, or rfdi.

Critical save/restore register 0 (CSRR0)

CSRR0 is used to save and restore machine state during critical interrupts in the same way
SRR0 is used for non-critical interrupts: to hold the address of the instruction to which

Table 23. Save/restore register 0 (SRR0)

32 63

Field Next instruction address

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 26

Table 24. Save/restore register 1 (SRR1)

32 63

Field MSR state information

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 27

UM0434 Register model

 57/391

control is passed at the end of the interrupt handler. CSRR0, shown in Table 25, holds the
address of the instruction where the interrupted process should resume. The instruction is
interrupt-specific; for details, see Chapter 6: Interrupts and exceptions.” When rfci executes,
instruction execution continues at the address in CSRR0. CSRR0 and CSRR1 are not
affected by rfi or rfdi.

Critical save/restore register 1 (CSRR1)

CSRR1, shown in Table 26, is used to save and restore machine state during critical
interrupts. MSR contents are placed into CSRR1. When rfci executes, the contents of
CSRR1 are restored into MSR. CSRR1 bits that correspond to reserved MSR bits are also
reserved. (See Chapter 4.4.1: Machine state register (MSR) on page 43.”) CSRR0 and
CSRR1 are not affected by rfi or rfdi. Reserved MSR bits can be altered by rfi, rfci, or rfdi.

Data exception address register (DEAR)

DEAR, shown in Table 27, is loaded with the effective address of a data access (caused by
a load, store, or cache management instruction) that results in an alignment, data TLB miss,
or data storage interrupt.

Interrupt vector prefix register (IVPR)

The IVPR, shown in <Cross Refs>Figure 28, is used during interrupt processing to
determine the starting address for the software interrupt handler. The value contained in the
vector offset field of the IVOR selected for a particular interrupt type is concatenated with the
value in the IVPR to form an instruction address from which execution is to begin.

Table 25. Critical save/restore register 0 (CSRR0)

32 63

Field Next instruction address

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 58

Table 26. Critical save/restore register 1 (CSRR1)

32 63

Field MSR state information

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 59

Table 27. Data exception address register (DEAR)

32 63

Field Exception address

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 61

Register model UM0434

58/391

IVPR fields are defined in Table 29.

Interrupt vector offset registers (IVORs)

IVORs, shown in Table 30, hold the quad-word index from the base address provided by the
IVPR for each interrupt type.

The IVOR fields are defined in Table 31.

SPR numbers corresponding to IVOR16–IVOR31 are reserved. IVOR32–IVOR47 and
IVOR60–IVOR63 are reserved. SPR numbers for IVOR32–IVOR63 are allocated for
implementation-dependent use (IVOR32–IVOR34 (SPR 528–530) are defined by the EIS).
IVOR assignments are shown in Table 32.

Table 28. Interrupt vector prefix register (IVPR)

32 47 48 63

Field Vector Base —

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 63

Table 29. IVPR field descriptions

Bits Name Description

32–47
Vector
Base

Defines the base location of the vector table, aligned to a 64-Kbyte boundary.
Provides the high-order 16 bits of the location of all interrupt handlers. IVPR ||
IVORn values are concatenated to form the address of the handler in memory.

48–63 — Reserved, should be cleared.

Table 30. Interrupt vector offset registers (IVOR)

32 47 48 59 60 61 63

Field — Vector offset — CS

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR (See Table 24.)

Table 31. IVOR field descriptions

Bits Name Setting description

32–47 — Reserved, should be cleared.

48–59
Vector
offset

Provides a quad-word index from the base address provided by the IVPR to
locate an interrupt handler.

60 — Reserved, should be cleared.

61–63 CS

Context selector (e200z3-specific). When multiple hardware contexts are
supported, this field is used to select an operating context for the interrupt
handler. This value is loaded into the CURCTX field of the context control register
(CTXCR) as part of the interrupt vectoring process. When multiple hardware
contexts are not supported, CS is not implemented and is read as zero.

UM0434 Register model

 59/391

4.9 Exception syndrome register (ESR)
The ESR, shown in Table 33, provides a syndrome to distinguish exceptions that can
generate the same interrupt type. The e200z3 adds implementation-specific bits to this
register.

Note: ESR information is incomplete, so system software may need to identify the type of
instruction that caused the interrupt and examine the TLB entry and the ESR to identify the
exception or exceptions fully. For example, a data storage interrupt can be caused by both a

Table 32. IVOR assignments

IVOR Number SPR Interrupt type

IVOR0 400 Critical input

IVOR1 401 Machine check

IVOR2 402 Data storage

IVOR3 403 Instruction storage

IVOR4 404 External input

IVOR5 405 Alignment

IVOR6 406 Program

IVOR7 407 Floating-point unavailable

IVOR8 408 System call

IVOR9 409 Auxiliary processor unavailable. (Defined by the EIS but not supported in the e200z3.)

IVOR10 410 Decrementer

IVOR11 411 Fixed-interval timer interrupt

IVOR12 412 Watchdog timer interrupt

IVOR13 413 Data TLB error

IVOR14 414 Instruction TLB error

IVOR15 415 Debug

IVOR16–IVOR31 — Reserved for future architectural use

IVOR32 528 SPE APU unavailable (EIS–defined)

IVOR33 529 SPE floating-point data exception (EIS–defined)

IVOR34 530 SPE floating-point round exception (EIS–defined)

IVOR35–IVOR63 — Allocated for implementation-dependent use

Table 33. Exception syndrome register (ESR)

32 35 36 37 38 39 40 41 42 43 44 45 46 47 48 55 56 57 58 5 61 62 63

Field — PIL PPR PTR FP ST — DLK ILK AP PUO BO PIE — SPE — VLEMI — MIF XTE

Reset All zeros

R/W R/W

SPR SPR 62

Register model UM0434

60/391

protection violation exception and a byte-ordering exception. System software must check
beyond ESR[BO], such as the state of MSR[PR] in SRR1 and the TLB entry page protection
bits, to determine whether a protection violation also occurred.

The ESR fields are described in Table 34.

4.9.1 VLE mode instruction syndrome

ESR[VLEMI] indicates when an interrupt is caused by a VLE instruction. This syndrome bit
is set on an exception associated with execution or attempted execution of a VLE
instruction. This bit is updated for the interrupt types in Table 34.

Table 34. ESR field descriptions

Bits Name Description Associated interrupt type

32–35 — Reserved, should be cleared. —

36 PIL Illegal instruction exception Program

37 PPR Privileged instruction exception Program

38 PTR Trap exception Program

39 FP Floating-point operation Alignment, data storage, data TLB, program

40 ST Store operation Alignment, data storage, data TLB

41 — Reserved, should be cleared. —

42 DLK Data cache locking(1) Data storage

43 ILK Instruction cache locking Data storage`

44 AP
Auxiliary processor operation. (unused in the
e200z3)

Alignment, data storage, data TLB, program

45 PUO Unimplemented operation exception Program

46 BO Byte ordering exception Data storage

47 PIE
Program imprecise exception. Unused in the
e200z3 (Reserved, should be cleared.)

—

48–55 — Reserved, should be cleared. —

56 SPE SPE APU operation
SPE unavailable, SPE floating-point data
exception, SPE floating-point round exception,
alignment, data storage, data TLB

57 — Reserved, should be cleared. —

58
VLEM

I
VLE mode instruction

SPE unavailable, SPE floating-point data
exception, SPE floating-point round exception,
data storage, data TLB, instruction storage,
alignment, program, and system call

59–61 — Reserved, should be cleared. —

62 MIF Misaligned instruction fetch Instruction storage, instruction TLB

63 XTE External termination error (precise) Data storage, instruction storage

1. When optional cache is present. Unused on e200z3.

UM0434 Register model

 61/391

4.9.2 Misaligned instruction fetch syndrome

The ESR[MIF] bit indicates an Instruction Storage Interrupt caused by an attempt to fetch an
instruction from a Book E page that is not aligned on a word boundary. The fetch may have
been caused by one of the following:

● Execution of a Branch to LR instruction with LR[62]=1

● A Branch to CTR instruction with CTR[62]=1

● Execution of an rfi or se_rfi instruction with SRR0[62]=1

● Execution of an rfci or se_rfci instruction with CSRR0[62]=1

● Execution of an rfdi or se_rfdi instruction with DSRR0[62]=1, where the destination
address corresponds to an instruction page not marked as a VLE page.

The ESR[MIF] bit also indicates an Instruction TLB Interrupt caused by a TLB miss on the
second half of a misaligned 32-bit VLE Instruction. SRR0 points to the first half of the
instruction, which resides on the previous page from the miss at page offset 0xFFE. The
ITLB handler may need to note that the miss corresponds to the next page, although MMU
MAS2 contents correctly reflect the page corresponding to the miss.

4.9.3 Precise external termination error syndrome

The ESR[XTE] bit indicates a precise external termination error DSI or ISI interrupt caused
by an instruction. This syndrome bit is set on an external termination error exception
reported in a precise way via a DSI or ISI as opposed to a machine check.

4.9.4 e200z3 specific interrupt registers

In addition to the Book E-defined interrupt registers, the e200z3 implements DSRR0 and
DSRR1 to facilitate handling debug interrupts and the EIS-defined MCSR to facilitate
handling machine check interrupts.

Debug save/restore register 0 (DSRR0)

During a debug interrupt, DSRR0, shown in Table 35, holds the address of the instruction
where the interrupted process should resume. The instruction is interrupt-specific; see
Chapter 6.6.16: Debug interrupt (IVOR15) on page 180,” and particularly Table 141. When
rfdi executes, instruction execution continues at the address in DSRR0. DSRR0 and
DSRR1 are not affected by rfi or rfci.

Debug save/restore register 1 (DSRR1)

DSRR1, shown in Table 36, saves and restores machine state during debug interrupts. MSR
contents are placed into DSRR1. When rfdi executes, the contents of DSRR1 are restored
into MSR. DSRR1 bits that correspond to reserved MSR bits are also reserved. (See

Table 35. Debug save/restore register 0 (DSRR0)

32 63

Field Next instruction address

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 574

Register model UM0434

62/391

Chapter 4.4.1: Machine state register (MSR) on page 43.”) DSRR0 and DSRR1 are not
affected by rfi or rfci. Reserved MSR bits can be altered by rfi, rfci, or rfdi.

Machine check syndrome register (MCSR)

When the core complex takes a machine check interrupt, it updates the machine check
syndrome register (MCSR) to differentiate between machine check conditions. The MCSR is
shown in Table 37.

MCSR fields, described in Table 38, indicate whether the source of a machine check
condition is recoverable. When an MCSR bit is set, the core complex asserts p_mcp_out for
system information.

Table 36. Debug save/restore register 1 (DSRR1)

32 63

Field MSR state information

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 575

Table 37. Machine check syndrome register (MCSR)

32 33 34 35 36 37 58 59 60 61 6263

Field MCP — CP_PERR CPERR
EXCP_ER

R
— BUS_IRERR

BUS_DRER
R

BUS_WRER
R

—

Reset All zeros

R/W R/W

SPR SPR 572

Table 38. MCSR field descriptions

Bits Name Description Recoverable

32 MCP Machine check input signal Maybe

33 — Reserved, should be cleared. —

34 CP_PERR Cache push parity error Unlikely

35 CPERR Cache parity error Precise

36 EXCP_ERR ISI, ITLB, or bus error on first instruction fetch for an exception handler Precise

37–58 — Reserved, should be cleared. —

59 BUS_IRERR Read bus error on Instruction fetch Unlikely

60 BUS_DRERR Read bus error on data load Unlikely

61 BUS_WRERR Write bus error on buffered store or cache line push Unlikely

62–63 — Reserved, should be cleared. —

UM0434 Register model

 63/391

4.10 Software use SPRs (SPRG0–SPRG7 and USPRG0)
Software use SPRs (SPRG0 - SPRG7 and USPRG0, shown in Table 39) have no defined
functionality:

● SPRG0 - SPRG2 - Accessible only in supervisor mode.

● SPRG3 - Written only in supervisor mode. It is readable in supervisor mode, but
whether it can be read in user mode depends on the implementation. It is not readable
in user mode on th e200z3.

● SPRG4 - SPRG7 - Written only in supervisor mode. They are readable in supervisor or
user mode.

● USPRG0 - Accessible in supervisor or user mode.

Software use SPRs are read into a GPR using mfspr and are written using mtspr.

4.11 Timer registers
The time base (TB), decrementer (DEC), fixed-interval timer (FIT), and watchdog timer
provide timing functions for the system. The relationship of these timers to each other is
shown in Figure l.

Table 39. Software use SPRs (SPRG0–SPRG7 and USPRG0)

32 63

Field Software determined information

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

SPR

R/W

SPRG0 272 Read/Write Supervisor

SPRG1 273 Read/Write Supervisor

SPRG2 274 Read/Write Supervisor

SPRG3
259 Read only User(1)/Supervisor

1. User-mode access to SPRG3 is defined by Book E as implementation-dependent. It is not supported in the
e200z3.

275 Read/Write Supervisor

SPRG4
260 Read only User/Supervisor

276 Read/Write Supervisor

SPRG5
261 Read only User/Supervisor

277 Read/Write Supervisor

SPRG6
262 Read only User/Supervisor

278 Read/Write Supervisor

SPRG7
263 Read only User/Supervisor

279 Read/Write Supervisor

USPRG0 256 Read/Write User/Supervisor

Register model UM0434

64/391

Figure 5. Relationship of timer facilities to the time base

1. Watchdog timer events based on one of the TB bits selected by the Book E–defined TCR[WP]
concatenated with the EIS-defined TCR[WPEXT] (WPEXT||WP).

2. Fixed-interval timer events based on one of TB bits selected by the Book E–defined TCR[FP] concatenated
with the EIS-defined TCR[FPEXT] (FPEXT||FP).

● The decrementer, updated at the same rate as the TB, signals an exception after a
specified period unless one of the following occurs:

– Software alters DEC in the interim.

– The TB update frequency changes.

The DEC is typically used as a general-purpose software timer.

● The time base for the TB and DEC is selected by the time base enable (TBEN) and
select time base clock (SEL_TBCLK) bits in HID0, as follows:

– If HID0[TBEN] = 1 and HID0[SEL_TBCLK] = 0, the time base and decrementer
are based on processor clock.

– If HID0[TBEN] = 1 and HID0[SEL_TBCLK] = 1, the time base and decrementer
are based on the p_tbclk input.

● Software can select one from of four TB bits to signal a fixed-interval interrupt when the
bit transitions from 0 to 1. It typically triggers periodic system maintenance functions.
Bits that can be selected are implementation-dependent.

● The watchdog timer, also a selected TB bit, signals a critical exception when the
selected bit transitions from 0 to 1. It is typically used for system error recovery. If
software does not respond in time to the initial interrupt by clearing the associated
status bits in the TSR before the next expiration of the watchdog timer interval, a
watchdog timer-generated processor reset may result, if so enabled.

All timer facilities must be initialized during start-up.

4.11.1 Timer control register (TCR)

TCR, shown in Table 40, provides control information for the CPU timer facilities. The EREF
describes the TCR in detail. TCR[WRC] functions are implementation-dependent. In
addition, the core implements two implementation-specific fields, TCR[WPEXT] and
TCR[FPEXT].

Timer Clock

Time Base (incrementer)

Decrementer event = 0/1 detect
31

DECAR

0

Auto-reload

310

TBL

310

TBU

Watchdog timer events based on one of the TB bits
selected by the Book E–defined TCR[WP] concatenated
with the EIS-defined TCR[WPEXT] (WPEXTIIWP)

Fixed-interval timer events based on one of TB bits
selected by the Book E–defined TCR[FP] concatenated
with the EIS-defined TCR[FPEXT] (FPEXTIIFP)

DEC

(Time Base Clock)
core_tbclk

UM0434 Register model

 65/391

The TCR fields are described in Table 41.

Table 40. Timer control register (TCR)

32333435 36 37 3839 40 41 4243 46 47 50 51 63

Field WP WRCWIE DIE FP FIE ARE — WPEXT FPEXT —

Reset All zeros

R/W R/W

SPR SPR 340

Table 41. TCR field descriptions

Bits Name Description

32–33 WP

Watchdog timer period, When concatenated with WPEXT, specifies one of 64 bit locations of the
time base used to signal a watchdog timer exception on a transition from 0 to 1.

TCR[WPEXT]||TCR[WP] == 000000 selects TBU[32] (msb of TBU).

TCR[WPEXT]||TCR[WP] == 111111 selects TBL[63] (lsb of TBL).

34–35 WRC

Watchdog timer reset control. Software can set WRC but cannot clear it except by a software-
induced reset. After WRC is written to a non-zero value, software can no longer alter it.

00 No watchdog timer reset can occur.

01 Force processor checkstop on second time-out of the watchdog timer.
10 Assert processor reset output (p_resetout_b) on second time-out of watchdog timer.

11 Reserved.

36 WIE

Watchdog timer interrupt enable.

0 Watchdog timer interrupts disabled.

1 Watchdog timer interrupts enabled.

37 DIE

Decrementer interrupt enable.

0 Decrementer interrupts disabled.
1 Decrementer interrupts enabled.

38–39 FP

Fixed-interval timer period. When concatenated with FPEXT, specifies one of 64 bit locations of
the time base to signal a fixed-interval timer exception on a transition from 0 to 1.

TCR[FPEXT]||TCR[FP] == 000000 selects TBU[32] (msb of TBU).
TCRFP[EXT]||TCR[FP] == 111111 selects TBL[63] (lsb of TBL).

40 FIE
Fixed-interval interrupt enable.
0 Fixed-interval interrupts disabled.

1 Fixed-interval interrupts enabled.

41 ARE

Auto-reload enable. Controls whether the value in DECAR is reloaded into DEC when the DEC
value reaches 0000_0001.
0 Auto-reload disabled.

1 Auto-reload enabled.

42 — Reserved, should be cleared.

43–46 WPEXT
Watchdog timer period extension (see above description for WP). WPEXT | WP select one of the
64 TB bits used to signal a watchdog timer exception.

Register model UM0434

66/391

4.11.2 Timer status register (TSR)

TSR, shown in Table 42, provides status information for the CPU timer facilities. EREF
describes the TSR in detail. TSR[WRS] is defined as implementation-dependent.

Register fields designated as write-1-to-clear are cleared only by writing ones to them.
Writing zeros to them has no effect.

The TSR fields are described in Table 43.

47–50 FPEXT
Fixed-interval timer period extension (see description for FP). FPEXT | FP select one of the 64
TB bits used to signal a fixed-interval timer exception.

51–63 — Reserved, should be cleared.

Table 41. TCR field descriptions (continued)

Bits Name Description

Table 42. Timer status register (TSR)

32 33 34 35 36 37 38 63

Field ENW WIS WRS DIS FIS —

Reset 0b(00||WRS)_0000_0000_0000_0000_0000_0000_0000

R/W Read/Clear

SPR SPR 336

Table 43. Timer status register field descriptions

Bits Name Description

32 ENW

Enable next watchdog time. When a watchdog timer time-out occurs while WIS = 0 and the next
watchdog time-out is enabled (ENW = 1), a watchdog timer exception is generated and logged by
setting WIS. This is a watchdog timer first time out. A watchdog timer interrupt occurs if enabled by
TCR[WIE] and MSR[CE]. To avoid another watchdog timer interrupt when MSR[CE] is reenabled
(assuming TCR[WIE] is not cleared instead), the interrupt handler must reset TSR[WIS] by
executing an mtspr, setting WIS and any other bits to be cleared and a 0 in all other bits. The data
written to the TSR is not direct data, but is a mask. A 1 causes the bit to be cleared; a 0 has no
effect.

0 Action on next watchdog timer time-out is to set TSR[ENW].

1 Action on next watchdog timer time-out is governed by TSR[WIS].

33 WIS

Watchdog timer interrupt status. See the ENW description for details on how WIS is used.

0 No watchdog timer event.

1 A watchdog timer event. When MSR[CE] = 1 and TCR[WIE] = 1, a watchdog timer
interrupt is taken.

34–35 WRS

Watchdog timer reset status.

00 No second time-out of watchdog timer.

01 Force processor checkstop on second time-out of watchdog timer.

10 Assert processor reset output (p_resetout_b) on second time-out of watchdog timer.

11 Reserved.

UM0434 Register model

 67/391

Note: The TSR can be read using mfspr rD,TSR. The TSR cannot be directly written. Instead,
TSR bits corresponding to 1 bits in GPR(rS) can be cleared using mtspr TSR,rS.

4.11.3 Time base (TBU and TBL)

The time base (TB), seen in Table 44, is composed of two 32-bit registers, the time base
upper (TBU) concatenated on the right with the time base lower (TBL). The time base
registers provide timing functions for the system and are enabled by setting HID0[TBEN].
The decrementer (DEC) updates at the same frequency, which is selected in
HID0[SEL_TBCLK]. TB is a volatile resource and must be initialized during start-up. For
details, see Section 4.11: Timer registers on page 63.”

The TB is interpreted as a 64-bit unsigned integer that is periodically incremented. Each
increment adds 1 to the least-significant bit. The frequency at which the integer is updated is
implementation-dependent.

TBL increments until its value becomes 0xFFFF_FFFF (232 – 1). At the next increment, its
value becomes 0x0000_0000 and TBU is incremented. This process continues until the
TBU value becomes 0xFFFF_FFFF and the TBL value becomes 0xFFFF_FFFF (TB is
interpreted as 0xFFFF_FFFF_FFFF_FFFF (264 – 1)). At the next increment, the TBU value
becomes 0x0000_0000 and the TBL value becomes 0x0000_0000. There is no interrupt (or
any other indication).

The period depends on the driving frequency. For example, if TB is driven by 100 MHz
divided by 32, the TB period is as follows:

36 DIS

Decrementer interrupt status.

0 No decrementer event.

1 Decrementer event. When MSR[EE] = TCR[DIE] = 1, a decrementer interrupt is taken.

37 FIS

Fixed-interval timer interrupt status.

0 No fixed-interval timer event.

1 Fixed-interval timer event. When MSR[EE] = 1 and TCR[FIE] = 1, a fixed-interval timer
interrupt is taken.

38–63 — Reserved, should be cleared.

Table 43. Timer status register field descriptions (continued)

Bits Name Description

Table 44. Time base upper/lower registers (TBU/TBL)

32 63 32 63

Field TBU TBL

Reset
Undefined on m_por assertion, unchanged on

p_reset_b assertion
Undefined on m_por assertion, unchanged on

p_reset_b assertion

R/W User read/Supervisor write User read/Supervisor write

SPR 269 Read/285 Write 268 Read/284 Write

Register model UM0434

68/391

The TB is implemented to satisfy the following requirements:

● Loading a GPR from the TB has no effect on the accuracy of the TB.

● Storing a GPR to the TB replaces the value in the TB with the value in the GPR.

Book E does not specify a relationship between the TB update frequency and other
frequencies, such as the CPU clock or bus clock. The TB update frequency does not have to
be constant. One of the following is required to ensure that system software can keep time
of day and operate interval timers:

● The system provides an (implementation-dependent) interrupt to software when the
update frequency of the TB changes and a way to determine the current update
frequency.

● The update frequency of the TB is under the control of system software.

Note: Disabling the TB or making reading the time base privileged prevents the TB from being
used to implement a covert channel in a secure system. If the operating system initializes
the TB on power-on to some reasonable value and the update frequency of the TB is
constant, the TB can be used as a source of values that increase at a constant rate, such as
for time stamps in trace entries.
Even if the update frequency is not constant, values read from the TB are monotonically
increasing (except when the TB wraps from 264 – 1 to 0). If a trace entry is recorded each
time the update frequency changes, the sequence of TB values can be post-processed to
become actual time values.
Successive readings of the TB may return identical values.

The TB is useful for timing reasonably short sequences of code (a few hundred instructions)
and for low-overhead time stamps for tracing.

4.11.4 Decrementer register

DEC, shown in Table 45, is a decrementing counter that is enabled by setting HID0[TBEN].
The decrementer and time base update at the same frequency, which is selected in
HID0[SEL_TBCLK]. It provides way to signal a decrementer interrupt after a specified
period unless one of the following occurs:

● Software alters DEC in the interim.

● The TB update frequency changes.

DEC is typically used as a general-purpose software timer. The decrementer auto-reload
register (DECAR) automatically reloads a programmed value into DEC.

TTB 2
64 32

100 MHz
------------------------× 5.90 10

12
× ondssec= = (approximately 187,000 years)

Table 45. Decrementer register (DEC)

32 63

Field Decrementer value

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 22

UM0434 Register model

 69/391

4.11.5 Decrementer auto-reload register (DECAR)

If the auto-reload function is enabled (TCR[ARE] = 1), the auto-reload value in DECAR,
shown in Table 46, is written to DEC when DEC decrements from 0x0000_0001 to
0x0000_0000. Writing DEC with zeros by using an mtspr does not automatically generate a
decrementer interrupt.

4.12 Debug registers
This section describes software-accessible debug registers for use by special debug tools
and debug software, not by general application code. Software access to these registers is
conditioned by the external debug mode control bit (DBCR0[EDM]), which can be set by the
hardware debug port. If DBCR0[EDM] is set, software is prevented from modifying debug
register values. Execution of an mtspr instruction targeting a debug register does not cause
modifications to occur. In addition, since the external debugger hardware may be
manipulating debug register values, the state of these registers is not guaranteed to be
consistent if read by software with an mfspr instruction other than DBCR0[EDM].

4.12.1 Debug address and value registers

Instruction address compare registers IAC1–IAC4 hold instruction addresses for
comparison. In addition, IAC2 and IAC4 hold mask information for IAC1 and IAC3,
respectively, when address bit match compare modes are selected.

Note: During instruction address comparisons, the low-order two address bits of the instruction
address and the corresponding IAC register are ignored.

Data address compare registers DAC1 and DAC2 hold data access addresses for
comparison. In addition, DAC2 holds mask information for DAC1 when address bit match
compare mode is selected.

Instruction address compare registers (IAC1–IAC4)

IAC1–IAC4, shown in Table 47, hold instruction addresses for comparison.

Table 46. Decrementer auto-reload register (DECAR)

32 63

Field Decrementer auto-reload value

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 54

Table 47. Instruction address compare registers (IAC1–IAC4)

32 616263

Field Instruction address —

Reset All zeros

R/W R/W

SPR SPR 312 (IAC1); SPR 313 (IAC2); SPR 314 (IAC3); SPR 315 (IAC4)

Register model UM0434

70/391

A debug event can be enabled when there is an attempt to execute an instruction from an
address in one of the following contexts:

● In an IAC

● Inside or outside a range specified by IAC1 and IAC2

● Inside or outside a range specified by IAC3 and IAC4

● To blocks of addresses specified by the combination of the IAC1 and IAC2

● To blocks of addresses specified by the combination of the IAC3 and IAC4.

Because all instruction addresses must be word-aligned, the two low-order bits of the IACs
are reserved and do not participate in the comparison with the instruction address.

Data address compare registers (DAC1–DAC2)

The data address compare 1 register (DAC1) and data address compare 2 register (DAC2),
shown in Table 48, are each 32 bits. A debug event can be enabled by loads, stores, or
cache operations to an address specified in either DAC1 or DAC2, inside or outside a range
specified by the DAC1 and DAC2, or blocks of addresses specified by the combination of the
DAC1 and DAC2.

The contents of DAC1 or DAC2 are compared to the address generated by a data access
instruction.

4.12.2 Debug counter register (DBCNT)

The debug counter register (DBCNT) contains two 16-bit counters (CNT1 and CNT2) that
can be configured to operate independently or concatenated into a single 32-bit counter.
Each counter can be configured to count down (decrement) when one or more count-
enabled events occur. The counters operate regardless of whether counters are enabled to
generate debug exceptions. When a count value reaches zero, a debug count event is
signaled and a debug event can be generated (if enabled). Upon reaching zero, the counter
is frozen. A debug counter signals an event on the transition from a value of one to a final
value of zero. Loading a value of zero into the counter prevents the counter from counting.
The debug counter is configured by the contents of DBCR3. DBCNT is shown in Table 49.

Table 48. Data address compare registers (DAC1–DAC2)

32 63

Field Data address

Reset All zeros

R/W R/W

SPR SPR 316 (DAC1); SPR 317 (DAC2)

Table 49. DBCNT register

32 47 48 63

Field CNT1 CNT2

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 562

UM0434 Register model

 71/391

Refer to Section : Debug control register 3 (DBCR3) on page 77,” for details on updates to
the DBCNT register. There are restrictions on how the DBCNT and DBCR3 register are
modified when one or more counters are enabled.

4.12.3 Debug control and status registers (DBCR0–DBCR3)

DBCR0–DBCR3 enable debug events, reset the processor, control timer operation during
debug events and set the debug mode of the processor. The debug status register (DBSR)
records debug exceptions while internal or external debug mode is enabled.

To ensure that any alterations enabling/disabling debug events are effective, the e200z3
requires that a context synchronizing instruction follow an mtspr that updates a DBCR or
DBSR. The context synchronizing instruction may or may not be affected by the alteration.
Typically, an isync is used to create a synchronization boundary beyond which it can be
guaranteed that the newly written control values are in effect. For watchpoint generation and
counter operation, configuration settings in DBCR1–DBCR3 are used, even though the
corresponding events can be disabled (via DBCR0) from setting DBSR flags.

Debug Control Register 0 (DBCR0)

DBCR0 is used to enable debug modes and controls which debug events are allowed to set
DBSR flags. The e200z3 adds bits to this register, as shown in Table 50.

Table 51 provides field definitions for DBCR0.

Table 50. DBCR0 Register

32 33 3435 36 37 38 39 40 41 42 43 44 45 46 47

Field EDM IDM RST ICMP BRT IRPT TRAP IAC1 IAC2 IAC3 IAC4 DAC1 DAC2

Reset All zeros(1)

1. DBCR0[EDM] is affected by j_trst_b or m_por assertion, and while in the test_logic_reset state, but not by
p_reset_b. All other bits are reset by processor reset p_reset_b as well as by m_por.

R/W R/W

48 49 52 53 54 55 56 57 58 59 62 63

RET — DEVT1 DEVT2 DCNT1 DCNT2 CIRPT CRET VLES — FT

Reset All zeros 1

R/W R/W

SPR SPR 308

Register model UM0434

72/391

Table 51. DBCR0 field descriptions

Bits Name Description

32 EDM

External debug mode. For software, this bit is read-only. Software can use EDM to determine
whether external debug has control over debug registers. The hardware debugger must set EDM
before other DBCR0 bits (and other debug registers) can be altered. On the initial setting of EDM,
all other bits are unchanged. EDM is writable only through the OnCE port.
0External debug mode is disabled. Internal debug events not mapped into external debug events.

1External debug mode is enabled. Events do not cause the CPU to vector to interrupt code.
Software is not permitted to write to debug registers (DBCR0–DBCR3, DBSR, DBCNT, IAC1–
IAC4, DAC1–DAC2).
Note: DBSR status bits should be cleared before external debug mode is disabled to avoid
internal imprecise debug interrupts.

33 IDM

Internal debug mode.

0 Debug exceptions are disabled. Debug events do not affect DBSR.
1 Debug exceptions are enabled. Enabled debug events update the DBSR. If MSR[DE] = 1, a
debug event or the recording of an earlier debug event in the DBSR when MSR[DE] was cleared
causes a debug interrupt.

34–35 RST

Reset control.
00 No function.

01 Reserved.

10 p_resetout_b set by debug reset control. Allows external device to initiate processor reset.
11 Reserved.

36 ICMP
Instruction complete debug event enable.
0 ICMP debug events are disabled.

1 ICMP debug events are enabled.

37 BRT

Branch taken debug event enable.

0 BRT debug events are disabled.

1 BRT debug events are enabled.

38 IRPT

Interrupt taken debug event enable.

0 IRPT debug events are disabled.
1 IRPT debug events are enabled.

39 TRAP
Trap taken debug event enable.
0 TRAP debug events are disabled.

1 TRAP debug events are enabled.

40 IAC1

Instruction address compare 1 debug event enable.

0 IAC1 debug events are disabled.

1 IAC1 debug events are enabled.

41 IAC2

Instruction address compare 2 debug event enable.

0 IAC2 debug events are disabled.
1 IAC2 debug events are enabled.

42 IAC3
Instruction address compare 3 debug event enable.
0 IAC3 debug events are disabled.

1 IAC3 debug events are enabled.

UM0434 Register model

 73/391

43 IAC4

Instruction address compare 4 debug event enable.

0 IAC4 debug events are disabled.

1 IAC4 debug events are enabled.

44–45 DAC1

Data address compare 1 debug event enable

00 DAC1 debug events are disabled.
01 DAC1 debug events are enabled only for store-type data storage accesses.

10 DAC1 debug events are enabled only for load-type data storage accesses.

11 DAC1 debug events are enabled for load-type or store-type data storage accesses.

46–47 DAC2

Data address compare 2 debug event enable.

00 DAC2 debug events are disabled.
01 DAC2 debug events are enabled only for store-type data storage accesses.

10 DAC2 debug events are enabled only for load-type data storage accesses.

11 DAC2 debug events are enabled for load-type or store-type data storage accesses.

48 RET

Return debug event enable.

0 RET debug events are disabled.

1 RET debug events are enabled.

49–52 — Reserved.

53 DEVT1

External debug event 1 enable.

0 DEVT1 debug events are disabled.

1 DEVT1 debug events are enabled.

54 DEVT2

External debug event 2 enable.

0 DEVT2 debug events are disabled.
1 DEVT2 debug events are enabled.

55 DCNT1
Debug counter 1 debug event enable.
0 counter 1 debug events are disabled.

1 counter 1 debug events are enabled.

56 DCNT2

Debug counter 2 debug event enable.

0 counter 2 debug events are disabled.

1 counter 2 debug events are enabled.

57 CIRPT

Critical interrupt taken debug event enable.

0 CIRPT debug events are disabled.
1 CIRPT debug events are enabled.

58 CRET
Critical return debug event enable.
0 CRET debug events are disabled.

1 CRET debug events are enabled.

59 VLES
VLE status, Set if an ICMP, BRT, TRAP, RET, CRET, IAC, or DAC debug event occurred on a VLE
instruction. Undefined for IRPT, CIRPT, DEVT[1,2], DCNT[1,2], and UDE events.

60–62 — Reserved.

63 FT

Freeze timers on debug event.

0 Timebase timers are unaffected by set DBSR bits.

1 Disable clocking of timebase timers if any DBSR bit is set (except MRR or CNT1TRG).

Table 51. DBCR0 field descriptions (continued)

Bits Name Description

Register model UM0434

74/391

Debug control register 1 (DBCR1)

DBCR1, shown in Table 52, is used to configure instruction address compare operation.

Table 53 describes debug control register 1 fields.

Table 52. Debug control register 1 (DBCR1)

32 33 34 35 36 37 38 39 40 41 42 47 48 49 50 51 52 53 54 55 56 57 58 63

Field IAC1USIAC1ERIAC2USIAC2ERIAC12M — IAC3USIAC3ERIAC4USIAC4ERIAC34M —

Reset All zeros

R/W R/W

SPR SPR 309

Table 53. DBCR1 field descriptions

Bits Name Description

32–33 IAC1US

Instruction address compare 1 user/supervisor mode.
00 AC1 debug events are not affected by MSR[PR].

01 Reserved.

10 AC1 debug events can occur only if MSR[PR] = 0 (supervisor mode).
11 AC1 debug events can occur only if MSR[PR] = 1 (user mode).

34–35 IAC1ER

Instruction address compare 1 effective/real mode.
00 AC1 debug events are based on effective address.

01 Unimplemented in the e200z3 (Book E real address compare), no match can occur.

10 AC1 debug events are based on effective address and can occur only if MSR[IS] = 0.
11 AC1 debug events are based on effective address and can occur only if MSR[IS] = 1.

36–37 IAC2US

Instruction address compare 2 user/supervisor mode.
00 AC2 debug events are not affected by MSR[PR].

01 Reserved.

10 AC2 debug events can occur only if MSR[PR] = 0 (supervisor mode).
11 AC2 debug events can occur only if MSR[PR] = 1 (user mode).

38–39 IAC2ER

Instruction address compare 2 effective/real mode.
00 AC2 debug events are based on effective address.

01 Unimplemented in the e200z3 (Book E real address compare), no match can occur.

10 AC2 debug events are based on effective address and can occur only if MSR[IS] = 0.
11 AC2 debug events are based on effective address and can occur only if MSR[IS] = 1.

UM0434 Register model

 75/391

40–41 IAC12M

Instruction address compare 1/2 mode.

00 Exact address compare. IAC1 debug events can occur only if the address of the instruction
fetch is equal to the value specified in IAC1. IAC2 debug events can occur only if the address of
the instruction fetch is equal to the value specified in IAC2.
01 Address bit match. IAC1 debug events can occur only if the address of the instruction fetch
ANDed with the contents of IAC2 is equal to the contents of IAC1, also ANDed with the contents
of IAC2. IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

10 Inclusive address range compare. IAC1 debug events can occur only if the address of the
instruction fetch is greater than or equal to the value specified in IAC1 and less than the value
specified in IAC2. IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

11 Exclusive address range compare. IAC1 debug events can occur only if the address of the
instruction fetch is less than the value specified in IAC1 or is greater than or equal to the value
specified in IAC2. IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

42–47 — Reserved

48–49 IAC3US

Instruction address compare 3 user/supervisor mode.
00 AC3 debug events are not affected by MSR[PR].

01 Reserved.

10 AC3 debug events can occur only if MSR[PR] = 0 (supervisor mode).
11 AC3 debug events can occur only if MSR[PR] = 1 (user mode).

50–51 IAC3ER

Instruction address compare 3 effective/real mode.
00 AC3 debug events are based on effective address.

01 Unimplemented in the e200z3 (Book E real address compare), no match can occur.

10 AC3 debug events are based on effective address and can occur only if MSR[IS] = 0.
11 AC3 debug events are based on effective address and can occur only if MSR[IS] = 1.

52–53 IAC4US

Instruction address compare 4 user/supervisor mode.
00 AC4 debug events are not affected by MSR[PR].

01 Reserved.

10 IAC4 debug events can occur only if MSR[PR] = 0 (supervisor mode).
11 IAC4 debug events can occur only if MSR[PR] = 1 (user mode).

54–55 IAC4ER

Instruction address compare 4effective/real mode.
00 AC4 debug events are based on effective address.

01 Unimplemented in the e200z3 (Book E real address compare), no match can occur.

10 IAC4 debug events are based on effective address and can occur only if MSR[IS] = 0.
11 IAC4 debug events are based on effective address and can occur only if MSR[IS] = 1.

Table 53. DBCR1 field descriptions (continued)

Bits Name Description

Register model UM0434

76/391

Debug control register 2 (DBCR2)

DBCR2, shown below is used to configure data address compare operations.

Table 54 describes DBCR2 fields.

56–57 IAC34M

Instruction address compare 3/4 mode.

00 Exact address compare. IAC3 debug events can occur only if the address of the instruction
fetch is equal to the value specified in IAC3. IAC4 debug events can occur only if the address of
the instruction fetch is equal to the value specified in IAC4.
01 Address bit match. IAC3 debug events can occur only if the address of the instruction fetch
ANDed with the contents of IAC4 is equal to the contents of IAC3, also ANDed with the contents
of IAC4. IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

10 Inclusive address range compare. IAC3 debug events can occur only if the address of the
instruction fetch is greater than or equal to the value specified in IAC3 and less than the value
specified in IAC4. IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

11 Exclusive address range compare. IAC3 debug events can occur only if the address of the
instruction fetch is less than the value specified in IAC3 or is greater than or equal to the value
specified in IAC4. IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

58–63 — Reserved

Table 53. DBCR1 field descriptions (continued)

Bits Name Description

32 33 34 35 36 37 38 39 40 41 42 43 44 63

Field DAC1US DAC1ER DAC2US DAC2ER DAC12M DAC1LNK DAC2LNK —

Reset All zeros

R/W R/W

SPR SPR 310

Table 54. DBCR2 field descriptions

Bits Name Description

32–33 DAC1US

Data address compare 1 user/supervisor mode.

00 DAC1 debug events are not affected by MSR[PR].

01 Reserved.
10 DAC1 debug events can occur only if MSR[PR] = 0 (supervisor mode).

11 DAC1 debug events can occur only if MSR[PR] = 1 (User mode).

34–35 DAC1ER

Data address compare 1 effective/real mode.

00 DAC1 debug events are based on effective address.

01 Unimplemented in the e200z3 (Book E real address compare), no match can occur.
10 DAC1 debug events are based on effective address and can occur only if MSR[DS] = 0.

11 DAC1 debug events are based on effective address and can occur only if MSR[DS] = 1.

36–37 DAC2US

Data Address compare 2 user/supervisor mode.

00 DAC2 debug events are not affected by MSR[PR].

01 Reserved
10 DAC2 debug events can occur only if MSR[PR] = 0 (supervisor mode).

11 DAC2 debug events can occur only if MSR[PR] = 1 (user mode).

UM0434 Register model

 77/391

Debug control register 3 (DBCR3)

DBCR3, shown in Table 55, is an e200z3 implementation-specific register to enable and
configure the debug counter and debug counter events. For counter operation, the specific
debug events that cause counters to decrement are specified in DBCR3.

Note: Corresponding events do not need to be (and probably should not be) enabled in DBCR0.

The IAC1–IAC4 and DAC1–DAC2 control fields in DBCR0 are ignored for counter
operations and the control fields in DBCR3 determine when counting is enabled. DBCR1
and DBCR2 control fields are also used to determine the configuration of IAC1–IAC4 and
DAC1–DAC2 operations for counting, even though the setting of bits in DBSR by
corresponding events can be disabled via DBCR0. Multiple count-enabled events that occur
during execution of an instruction typically cause only one decrement of a counter. For
example, if more than one IAC or DAC register hits and is enabled for counting, only one
count can occur per counter. During execution of lmw and stmw instructions, multiple DACn
hits can occur. If the instruction is not interrupted before completion, a single decrement of a
counter occurs.

38–39 DAC2ER

Data address compare 2 effective/real mode.

00 DAC2 debug events are based on effective address.

01 Unimplemented in the e200z3 (Book E real address compare), no match can occur.
10 DAC2 debug events are based on effective address and can occur only if MSR[DS] = 0.

11 DAC2 debug events are based on effective address and can occur only if MSR[DS] = 1.

40–41 DAC12M

Data address compare 1/2 mode.

00 Exact address compare. DAC1 debug events can occur only if the address of the data
access is equal to the value specified in DAC1. DAC2 debug events can occur only if the
address of the data access is equal to the value specified in DAC2.
01 Address bit match. DAC1 debug events can occur only if the address of the data access
ANDed with the contents of DAC2 is equal to the contents of DAC1, also ANDed with the
contents of DAC2. DAC2 debug events do not occur. DAC1US and DAC1ER settings are used.

10 Inclusive address range compare. DAC1 debug events can occur only if the address of the
data access is greater than or equal to the value specified in DAC1 and less than the value
specified in DAC2. DAC2 debug events do not occur. DAC1US and DAC1ER settings are used.
11 Exclusive address range compare. DAC1 debug events can occur only if the address of the
data access is less than the value specified in DAC1 or is greater than or equal to the value
specified in DAC2. DAC2 debug events do not occur. DAC1US and DAC1ER settings are used.

42 DAC1LNK

Data address compare 1 linked.

0 No effect.

1 DAC1 debug events are linked to IAC1 debug events. IAC1 debug events do not affect DBSR.
When linked to IAC1, DAC1 debug events are conditioned based on whether the instruction
also generated an IAC1 debug event.

43 DAC2LNK

Data address compare 2 linked

0 No effect.
1DAC 2 debug events are linked to IAC3 debug events. IAC3 debug events do not affect DBSR.

When linked to IAC3, DAC2 debug events are conditioned based on whether the instruction
also generated an IAC3 debug event. DAC2 can only be linked if DAC12M specifies exact
address compare because DAC2 debug events are not generated in the other compare modes.

44–63 — Reserved for data value compare control (not supported by the e200z3).

Table 54. DBCR2 field descriptions (continued)

Bits Name Description

Register model UM0434

78/391

Note: If the counters operate independently, both may count for the same instruction.

The debug counter register (DBCNT) is configured by DBCR3[CONFIG] to operate either as
separate 16-bit counter 1 and counter 2 or as a combined 32-bit counter (using control bits
in DBCR3 for counter 1). Counters are enabled when any of their respective count enable
event control bits are set and either DBCR0 or DBCR0[EDM] is set. Counter 1 can be
configured to count down on a number of different debug events. Counter 2 is also
configurable to count down on instruction complete, instruction or data address compare
events, and external events.

Special capability is provided for counter 1 to be triggered to begin counting down by a
subset of events (IAC1, IAC3, DAC1R, DAC1W, DEVT1, DEVT2, and counter 2). When one
or more of the counter 1 trigger bits is set (IAC1T1, IAC3T1, DAC1RT1, DAC1WT1,
DEVT1T1, DEVT2T1, CNT2T1), counter 1 is frozen until at least one of the triggering events
occurs and is then enabled to begin operation. Triggering status for counter 1 is provided in
the debug status register. Triggering mode is enabled by an mtspr DBCR3 which sets one
or more of the trigger enable bits and also enables counter 1. The trigger can be re-armed
by clearing the DBSR[CNT1TRG] status bit.

Most combinations of enables do not make sense and should be avoided. For example, if
DBCR3[ICMP] is set for counter 1, no other count enable should be set for counter 1.
Conversely, multiple instruction address compare count enables are allowed to be set and
can be useful.

Due to instruction pipelining issues and other constraints, most combinations of events are
not supported for event counting. Only the following combinations are for use; other
combinations are not supported:

● Any combination of IAC[1–4]

● Any combination of DAC[1–2] including linking

● Any combination of DEVT[1–2]

● Any combination of IRPT and RET

Limited support is provided for any combination of IAC[1–4] with DAC[1–2] (linked or
unlinked).

Due to pipelining and detection of IAC events early in the pipeline and DAC events late in the
pipeline, no guarantee is made on the exact instruction boundary that a debug exception is
generated when IAC and DAC events are combined for counting. This also applies when
counter 1 is triggered by counter 2, and a combination of IAC and DAC events is enabled for
the counters, even if only one of these types is enabled for a particular counter. In general,
when an IAC event logically follows a DAC event within several instructions, it cannot be
recognized immediately because the DAC event may not be generated in the pipeline at the
time the IAC appears. Thus, the counter may not decrement to zero for the IAC event until
after the instruction with the IAC (and perhaps several additional instructions) proceeds
down the execution pipeline. The instruction boundary where the debug exception is
actually generated typically follows the IAC by up to several instructions.

Note that the counters operate regardless of whether counters are enabled to generate
debug exceptions.

If counter 2 is used to trigger counter 1, counter 2 events should not normally be enabled in
DBCR0 and are not blocked.

Note: Multiple IAC or DAC events are not counted during an lmw or stmw instruction, and no
count occurs if either is interrupted by a critical input or external input interrupt before
completion.

UM0434 Register model

 79/391

Table 56 provides field definitions for DBCR3

Table 55. DBCR3 register

32 33 34 35 36 37 38 39

Field DEVT1C1 DEVT2C1 ICMPC1 IAC1C1 IAC2C1 IAC3C1 IAC4C1 DAC1RC1

Reset All zeros

R/W R/W

40 41 42 43 44 45 46 47

Field DAC1WC1 DAC2RC1 DAC2WC1 IRPTC1 RETC1 DEVT1C2 DEVT2C2 ICMPC2

Reset All zeros

R/W R/W

48 49 50 51 52 53 54 55

IAC1C2 IAC2C2 IAC3C2 IAC4C2 DAC1RC2 DAC1WC2 DAC2RC2 DAC2WC2

Reset All zeros

R/W R/W

56 57 58 59 60 61 62 63

DEVT1T1 DEVT2T1 IAC1T1 IAC3T1 DAC1RT1 DAC1WT1 CNT2T1 CONFIG

Reset All zeros

R/W R/W

SPR SPR 561

Table 56. DBCR3 field descriptions

Bits Name Description

32 DEVT1C1
External debug event 1 count 1 enable.
0 Counting DEVT1 debug events by counter 1 is disabled.

1 Counting DEVT1 debug events by counter 1 is enabled.

33 DEVT2C1

External debug event 2 count 1 enable.

0 Counting DEVT2 debug events by counter 1 is disabled.

1 Counting DEVT2 debug events by counter 1 is enabled.

34 ICMPC1

Instruction complete debug event count 1 enable.

0 Counting ICMP debug events by counter 1 is disabled.
1 Counting ICMP debug events by counter 1 is enabled.

ICMP events are masked by MSR[DE] = 0 when operating in internal debug mode.

35 IAC1C1

Instruction address compare 1 debug event count 1 enable.

0 Counting IAC1 debug events by counter 1 is disabled.

1 Counting IAC1 debug events by counter 1 is enabled.

36 IAC2C1

Instruction address compare2 debug event count 1 enable.

0 Counting IAC2 debug events by counter 1 is disabled.
1 Counting IAC2 debug events by counter 1 is enabled.

Register model UM0434

80/391

37 IAC3C1

Instruction address compare 3 debug event count 1 enable.

0 Counting IAC3 debug events by counter 1 is disabled.

1 Counting IAC3 debug events by counter 1 is enabled.

38 IAC4C1

Instruction address compare 4 debug event count 1 enable.

0 Counting IAC4 debug events by counter 1 is disabled.
1 Counting IAC4 debug events by counter 1 is enabled.

39 DAC1RC1
Data address compare 1 read debug event count 1 enable(1).
0 Counting DAC1R debug events by counter 1 is disabled.

1 Counting DAC1R debug events by counter 1 is enabled.

40 DAC1WC1

Data address compare 1 write debug event count 1 enable (1).

0 Counting DAC1W debug events by counter 1 is disabled.

1 Counting DAC1W debug events by counter 1 is enabled.

41 DAC2RC1

Data address compare 2 read debug event count 1 enable (1).

0 Counting DAC2R debug events by counter 1 is disabled.

1 Counting DAC2R debug events by counter 1 is enabled.

42 DAC2WC1

Data address compare 2 write debug event count 1 enable (1).

0 Counting DAC2W debug events by counter 1 is disabled.
1 Counting DAC2W debug events by counter 1 is enabled.

43 IRPTC1
Interrupt taken debug event count 1 enable.
0 Counting IRPT debug events by counter 1 is disabled.

1 Counting IRPT debug events by counter 1 is enabled.

44 RETC1

Return debug event count 1 enable.

0 Counting RET debug events by counter 1 is disabled.

1 Counting RET debug events by counter 1 is enabled.

45 DEVT1C2

External debug event 1 count 2 enable.

0 Counting DEVT1 debug events by counter 2 is disabled.
1 Counting DEVT1 debug events by counter 2 is enabled.

46 DEVT2C2
External debug event 2 count 2 enable.
0 Counting DEVT2 debug events by counter 2 is disabled.

1 Counting DEVT2 debug events by counter 2 is enabled.

47 ICMPC2

Instruction complete debug event count 2 enable.

0 Counting ICMP debug events by counter 2 is disabled.

1 Counting ICMP debug events by counter 2 is enabled.
ICMP events are masked by MSR[DE] = 0 when operating in internal debug mode.

48 IAC1C2
Instruction address compare 1 debug event count 2 enable.
0 Counting IAC1 debug events by counter 2 is disabled.

1 Counting IAC1 debug events by counter 2 is enabled.

49 IAC2C2

Instruction address compare2 debug event count 2 enable.

0 Counting IAC2 debug events by counter 2 is disabled.

1 Counting IAC2 debug events by counter 2 is enabled.

Table 56. DBCR3 field descriptions (continued)

Bits Name Description

UM0434 Register model

 81/391

50 IAC3C2

Instruction address compare 3 debug event count 2 enable.

0 Counting IAC3 debug events by counter 2 is disabled.

1 Counting IAC3 debug events by counter 2 is enabled.

51 IAC4C2

Instruction address compare 4 debug event count 2 enable.

0 Counting IAC4 debug events by counter 2 is disabled.
1 Counting IAC4 debug events by counter 2 is enabled.

52 DAC1RC2
Data address compare 1 read debug event count 2 enable (1).
0 Counting DAC1R debug events by counter 2 is disabled.

1 Counting DAC1R debug events by counter 2 is enabled.

53 DAC1WC2

Data address compare 1 write debug event count 2 enable (1).

0 Counting DAC1W debug events by counter 2 is disabled.

1 Counting DAC1W debug events by counter 2 is enabled.

54 DAC2RC2

Data address compare 2 read debug event count 2 enable (1).

0 Counting DAC2R debug events by counter 2 is disabled.

1 Counting DAC2R debug events by counter 2 is enabled.

55 DAC2WC2

Data address compare 2 write debug event count 2 enable (1).

0 Counting DAC2W debug events by counter 2 is disabled.
1 Counting DAC2W debug events by counter 2 is enabled.

56 DEVT1T1
External debug event 1 trigger counter 1 enable.
0 No effect.

1 A DEVT1 debug event triggers counter 1 operation.

57 DEVT2T1

External debug event 2 trigger counter 1 enable.

0 No effect.

1 A DEVT2 debug event triggers counter 1 operation.

58 IAC1T1

Instruction address compare 1 trigger counter 1 enable.

0 No effect.
1 An IAC1 debug event triggers counter 1 operation.

59 IAC3T1
Instruction address compare 3 trigger counter 1 enable.
0 No effect.

1 An IAC3 debug event triggers counter 1 operation.

60 DAC1RT1

Data address compare 1 read trigger counter 1 enable.

0 No effect.

1 A DAC1R debug event triggers counter 1 operation.

61 DAC1WT1

Data address compare 1 write trigger counter 1 enable.

0 No effect.
1 A DAC1W debug event triggers counter 1 operation.

Table 56. DBCR3 field descriptions (continued)

Bits Name Description

Register model UM0434

82/391

Perform updates to DBCR0, DBSR, DBCR3, and DBCNT carefully if the counters are
enabled for counting ICMP events. An instruction that updates the counters or control over
the counters can cause one or more counter events (DCNT1, DCNT2, CNT1TRG), even if
the result of the instruction is to modify the counter value or control value to a state where
counter events are not expected. This is due to the pipelined nature of the counter and
control operation.
● For DBCNT, if a counter is enabled to count ICMP events, MSR[DE] = 1, and the

counter value is 1 before execution of an mtspr that loads the counter with a different
value, a counter event is generated after the mtspr completes, even though the counter
is loaded with a new value. When the mtspr finishes executing, a debug event is
posted, but the counter holds the newly written value. The new counter value is
assigned at the completion of an mtspr that modifies a counter, regardless of whether
a debug event is generated based on the old counter value. To avoid this, modify
DBCNT and DBCR3 only when there is no possibility of a counter-related debug event
on the mtspr.

● For DBCR3, if a counter is enabled to count ICMP events, MSR[DE] = 1, and the
counter value is 1 before execution of an mtspr that is loading DBCR3 with a different
value, a counter event may be generated after the mtspr completes, even though
DBCR3 is loaded with a value that prevents the particular event from being counted.
When the mtspr finishes executing, a debug event is posted, but the DBCR3 value
reflects the newly established control, which may indicate that the particular event is
not to cause a counter update.
Modifying DBCR0 to affect counter event enabling/disabling may have similar issues,
as may modifying DBSR[CNT1TRG].

4.12.4 Debug status register (DBSR)

DBSR, shown in Table 57, contains status on debug events and the most recent processor
reset. Hardware sets DBSR, and software reads and clears it by writing a 1 in any bit
position that is to be cleared and 0 in all other bit positions. The write data to the debug
status register is not direct data, but a mask. A 1 causes the bit to be cleared, and a 0 has
no effect. Debug status bits are set by debug events only while internal debug mode is
enabled or external debug mode is enabled. When debug interrupts are enabled
(MSR[DE] = 1, DBCR0[IDM] = 1, and DBCR0[EDM] = 0), a set bit in DBSR causes a debug
interrupt to be generated.

When debug interrupts are enabled (MSR[DE]=1, DBCR0[IDM]=1, and DBCR0[EDM]=0), a
set bit in DBSR other than MRR or VLES causes a debug interrupt. The debug interrupt
handler clears DBSR bits before returning to normal execution. The PowerPC VLE APU

62 CNT2T1

Debug counter 2 trigger counter 1 enable.

0 No effect.

1 Counter 2 decrementing to 0 triggers counter 1 operation.

63 CONFIG

Debug counter configuration.

0 Counter 1 and counter 2 are independent counters.
1 Counter 1 and counter 2 are concatenated into a single 32-bit counter. The event count
control bits for counter 1 are used and the event count control bits for counter 2 are ignored.

1. If the DACx field in DBCR0 is set to restrict events to only reads or only writes, only those events are counted if enabled in
DBCR3. In general, DAC events should be disabled in DBCR0.

Table 56. DBCR3 field descriptions (continued)

Bits Name Description

UM0434 Register model

 83/391

adds the DBSR[VLES] status bit to indicate debug events occurring due to a PowerPC VLE
instruction.

Table 58 provides field definitions for the debug status register.

Table 57. DBSR register

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Field IDE UDE MRR ICMP BRT IRPT TRAP IAC1 IAC2 IAC3 IAC4 DAC1R DAC1W DAC2R DAC2W

Reset 0001_0000_0000_0000

R/W Read/Clear

48 49 52 53 54 55 56 57 58 59 62 63

Field RET — DEVT1 DEVT2DCNT1DCNT2 CIRPT CRET — CNT1TRG

Reset 0000_0000_0000_0000

R/W Read/Clear

SPR SPR 304

Table 58. DBSR field descriptions

Bits Name Description

32 IDE

Imprecise debug event. Set if MSR[DE] = 0 and DBCR0[EDM] = 0 and a debug event causes
its respective debug status register bit to be set. IDE can also be set if DBCR0[EDM] = 1 and
an imprecise debug event occurs due to a DAC event on a load or store that is terminated with
error, or if an ICMP event occurs in conjunction with a SPE FP round exception.

33 UDE Unconditional debug event. Set when an unconditional debug event occurs.

34–35 MRR

Most recent reset.

00 No reset since software last cleared these bits.

01 A hard reset occurred since software last cleared these bits.

1x Reserved.

36 ICMP Instruction complete debug event. Set if an instruction complete debug event occurs.

37 BRT Branch taken debug event. Set if an branch taken debug event occurs.

38 IRPT Interrupt taken debug event. Set if an interrupt taken debug event occurs.

39 TRAP Trap taken debug event. Set if a trap taken debug event occurs.

40 IAC1 Instruction address compare 1 debug event. Set if an IAC1 debug event occurs.

41 IAC2 Instruction address compare 2 debug event. Set if an IAC2 debug event occurs.

42 IAC3 Instruction address compare 3 debug event. Set if an IAC3 debug event occurs.

43 IAC4 Instruction address compare 4 debug event. Set if an IAC4 debug event occurs.

44 DAC1R
Data address compare 1 read debug event. Set if a read-type DAC1 debug event occurs while
DBCR0[DAC1] = 0b10 or DBCR0[DAC1] = 0b11.

45 DAC1W
Data address compare 1 write debug event. Set if a write-type DAC1 debug event occurs while
DBCR0[DAC1] = 0b01 or DBCR0[DAC1] = 0b11.

46 DAC2R
Data address compare 2 read debug event. Set if a read-type DAC2 debug event occurs while
DBCR0[DAC2] = 0b10 or DBCR0[DAC2] = 0b11.

Register model UM0434

84/391

4.13 Hardware implementation dependent registers
Hardware implementation-dependent registers 0 and 1 (HID0 and HID1) are configuration
registers to control various processor and system functions.

4.13.1 Hardware implementation dependent register 0 (HID0)

HID0, shown in Table 59, is used for various configuration and control functions.

HID0 fields are described in Table 60.

47 DAC2W
Data address compare 2 write debug event. Set if a write-type DAC2 debug event occurs while
DBCR0[DAC2] = 0b01 or DBCR0[DAC2] = 0b11.

48 RET Return debug event. Set if a Return debug event occurs.

49–52 — Reserved, should be cleared.

53 DEVT1 External debug event 1 debug event. Set if a DEVT1 debug event occurs.

54 DEVT2 External debug event 2 debug event. Set if a DEVT2 debug event occurs.

55 DCNT1 Debug counter 1 debug event. Set if a DCNT1 debug event occurs.

56 DCNT2 Debug counter 2 debug event. Set if a DCNT2 debug event occurs.

57 CIRPT Critical interrupt taken debug event. Set if a critical interrupt taken debug event occurs.

58 CRET Critical return debug event. Set if a critical return debug event occurs.

59–62 — Reserved, should be cleared.

63 CNT1TRG Counter 1 triggered. Set if debug counter 1 is triggered by a trigger event.

Table 58. DBSR field descriptions (continued)

Bits Name Description

Table 59. Hardware implementation dependent register 0 (HID0)

32 33 37 38 39 40 41 42 43 45 46 47

Field EMCP — BPRED DOZENAPSLEEP — ICR NHR

Reset All zeros

R/W R/W

48 49 50 51 52 53 54 55 56 63

— TBENSEL_TBCLKDCLREEDCLRCECICLRDEMCCLRDEDAPUEN —

Reset All zeros

R/W R/W

SPR SPR 1008

UM0434 Register model

 85/391

Table 60. HID0 field descriptions

Bits Name Description

32 EMCP

Enable machine check signal (p_mcp_b). Used to mask out further machine check
exceptions caused by assertion of p_mcp_b.

0 p_mcp_b is disabled.
1 p_mcp_b is enabled. If MSR[ME] = 0, asserting p_mcp_b causes checkstop. If
MSR[ME] = 1, asserting p_mcp_b causes a machine check interrupt.

33–37 — Reserved, should be cleared.

38–39 BPRED

Branch prediction (acceleration) control. Controls BTB lookahead for branch acceleration.
Note that for branches with AA = 1, the msb of the displacement field is still used to indicate
forward/backward, even though the branch is absolute. Used in conjunction with BUCSR.

00 Branch acceleration is enabled.
01 Branch acceleration is disabled for backward branches.

10 Branch acceleration is disabled for forward branches.

11 Branch acceleration is disabled for both branch directions.

40 DOZE

Doze power management mode. Doze mode is invoked by setting MSR[WE] while DOZE = 1.

0 Doze mode is disabled.

1 Doze mode is enabled.

41 NAP

Nap power management mode. Nap mode is invoked by setting MSR[WE] while NAP=1.

0 Nap mode is disabled.
1 Nap mode is enabled.

42 SLEEP

Sleep power management mode. Sleep mode is invoked by setting MSR[WE] while WE=1.
Only one of DOZE, NAP, or SLEEP should be set for proper operation.

0 Sleep mode is disabled.
1 Sleep mode is enabled.

43–45 — Reserved, should be cleared.

46 ICR

Interrupt inputs clear reservation.

0 External and critical input interrupts do not affect reservation status.
1 External and critical input interrupts clear an outstanding reservation.

47 NHR

Not hardware reset. Provided for software use. Set anytime by software, cleared by reset.
0 Indicates a reset to a reset exception handler if software has previously set this bit.

1 Indicates to a reset exception handler that there was no reset if software has previously set
this bit.

48 — Reserved, should be cleared.

49 TBEN

Time base enable. Used to enable the time base and decrementer.

0 Time base is disabled.
1 Time base is enabled.

50
SEL_TBCL

K

Select time base clock. Selects the time base clock source. This bit must altered while the
time base is disabled to prevent counter glitches. Timer interrupts should be disabled
beforehand, and TBL and TBU are reinitialized after a change of time base clock source.

0 Time base is based on processor clock.

1 Time base is based on the p_tbclk input.

Register model UM0434

86/391

4.13.2 Hardware implementation dependent register 1 (HID1)

The HID1 register is used for bus configuration and system control. HID1 is shown in
Table 61.

51 DCLREE

Debug interrupt clears MSR[EE]. Controls whether debug interrupts force external input
interrupts to be disabled, or whether they remain unaffected.
0 MSR[EE] unaffected by debug interrupt.

1 MSR[EE] cleared by debug interrupt.

52 DCLRCE

Debug interrupt clears MSR[CE]. Controls whether debug interrupts force critical interrupts to
be disabled, or whether they remain unaffected.
0 MSR[CE] unaffected by debug interrupt.

1 MSR[CE] cleared by debug Interrupt.

53 CICLRDE

Critical interrupt clears MSR[DE]. Controls whether certain critical interrupts (critical input,
watchdog timer) force debug interrupts to be disabled, or whether they remain unaffected.
Machine check interrupts have a separate control bit.

0 MSR[DE] unaffected by critical class interrupt.
1 MSR[DE] cleared by critical class interrupt.

If critical interrupt debug events are enabled (DBCR0[CIRPT] is set, which should only be
done when the debug APU is enabled), and MSR[DE] is set at the time of a critical interrupt
(critical input, watchdog timer), a debug event is generated after the critical interrupt handler
has been fetched, and the debug handler is executed first. In this case, DSRR0[DE] will have
been cleared, such that after returning from the debug handler, the critical interrupt handler
will not be run with MSR[DE] enabled.

54 MCCLRDE

Machine check interrupt clears MSR[DE]. Controls whether machine check interrupts force
debug interrupts to be disabled or are unaffected. If critical interrupt debug events are
enabled (DBCR0[CIRPT] is set, which should only be done when the debug APU is enabled),
and MSR[DE] is set at the time of a machine check interrupt, a debug event is generated after
the machine check interrupt handler is fetched, and the debug handler executes first. In this
case, DSRR0[DE] is cleared so that after returning from the debug handler, the machine
check handler cannot be run if MSR[DE] = 1.

0 MSR[DE] unaffected by machine check interrupt.

1 MSR[DE] cleared by machine check interrupt.

55 DAPUEN

Debug APU enable. Controls whether the debug APU is enabled.

0 Debug APU disabled. Debug interrupts use the critical interrupt resources: CSRR0/CSRR1
and rfci; rfdi is treated as an illegal instruction. DCLREE, DCLRCE, CICLRDE, and
MCCLRDE settings are ignored and are assumed to be ones.

1 Debug APU enabled. Debug interrupts use DSRR0/DSRR1 for saving state and rfdi is
available for returning from a debug interrupt.

Read and write access to DSRR0/DSRR1 via mfspr and mtspr is not affected by this bit.

56–63 — Reserved, should be cleared.

Table 60. HID0 field descriptions (continued)

Bits Name Description

UM0434 Register model

 87/391

HID1 fields are described in Table 62.

4.14 Branch target buffer (BTB) registers
This section describes the only register that controls the branch target buffer.

4.14.1 Branch unit control and status register (BUCSR)

BUCSR, shown in Table 63, is for general control & status of the branch target buffer (BTB).

BUCSR fields are described in Table 64.

Table 61. Hardware implementation dependent register 1 (HID1)

32 55 56 57 62 63

Field — ATS – ARD

Reset All zeros

R/W R/W

SPR SPR 1009

Table 62. HID1 field descriptions

Bits Name Description

32–55 — Reserved, should be cleared.

56 ATS
Atomic status (read-only). Indicates state of the reservation bit in the load/store unit.
See Chapter 5.7: Memory synchronization and reservation instructions on page 111.”

57–62 — Reserved, should be cleared.

63 ARD

Address retraction disable.

0 Address retraction enabled.

1 Address retraction disabled.
Controls Address Retraction operation. For details, see Chapter 9.5.3: Address retraction on
page 282.”

Table 63. Branch unit control and status register (BUCSR)

32 53 54 55 62 63

Field — BBFI — BPEN

Reset All zeros

R/W R/W

SPR SPR 1013

Register model UM0434

88/391

4.15 L1 cache configuration registers
This section describes the register that helps not to configure the cache.

4.15.1 L1 cache configuration register 0 (L1CFG0)

The L1 cache configuration register 0 (L1CFG0) provides information on how not to
configure the e200z3 cache design. For e200z3, reads of this register return a value of all
zeros.

4.16 MMU registers
This section describes the e200z3 registers for setting up and maintaining the TLBs.

4.16.1 MMU control and status register 0 (MMUCSR0)

MMUCSR0, shown in Table 65, controls the state of the MMU.

The MMUCSR0 fields are described in Table 66.

Table 64. Branch unit control and status register

Bits Name Description

32–53 — Reserved, should be cleared.

54 BBFI
Branch target buffer flash invalidate. When set, BBFI flash clears the valid bit of all
BTB entries; clearing occurs regardless of the value of the enable bit (BPEN).

Note: BBFI is always read as 0.

55–62 — Reserved, should be cleared.

63 BPEN

Branch target buffer (BTB) enable.

0 BTB prediction disabled. No hits are generated from the BTB and no new
entries are allocated. Entries are not automatically invalidated when BPEN
is cleared; BBFI controls entry invalidation.

1 BTB prediction enabled (enables BTB to predict branches).

Table 65. MMU Control and Status Register 0 (MMUCSR0)

32 61 62 63

Field — TLB1_FI —

Reset All zeros

R/W R/W

SPR SPR 1012

UM0434 Register model

 89/391

4.16.2 MMU configuration register (MMUCFG)

The MMU configuration register (MMUCFG) is a 32-bit read-only register. The SPR number
for MMUCFG is 1015 in decimal. MMUCFG, which provides information about the
configuration of the e200z3 MMU design, is shown in Table 67.

The MMUCFG fields are described in Table 68.

Table 66. MMUCSR0 field descriptions

Bits Name Description

32–61 — Reserved, should be cleared.

62 TLB1_FI

TLB1 flash invalidate

0 No flash invalidate

1 TLB1 invalidation operation. Hardware initiates a TLB1 invalidation,
after which TLB1_FI is cleared. Setting TLB1_FI while an invalidation
operation is in progress causes an undefined operation. Clearing
TLB1_FI while an invalidation operation is in progress is ignored. TLB1
invalidation operations require 3 cycles to complete.

63 — Reserved, should be cleared.

Table 67. MMU configuration register 1 (MMUCFG)

32 48 49 52 53 57 58 59 60 61 62 63

Field — NPIDS PIDSIZE — NTLBS MAVN

Reset 0000_0000_0000_0000_0 000_1 001_11 00 01 00

R/W Read only

SPR SPR 1015

Register model UM0434

90/391

4.16.3 TLB configuration registers (TLBnCFG)

The TLBnCFG read-only registers provide information about each specific TLB that is
visible to the programming model.

TLB configuration register 0 (TLB0CFG)

TLB0CFG, shown in Table 69, provides information about the configuration of TLB0.
Because the e200z3 MMU design does not implement TLB0, this register reads as all zeros.
It is supplied to allow software to query it in a way compatible with other Book E designs.

The TLB0CFG fields are described in Table 70.

Table 68. MMUCFG field descriptions

Bits Name Description

32–48 — Reserved, should be cleared.

49–52 NPIDS
Number of PID registers.

0001 This version of the MMU implements one PID register (PID0).

53–57 PIDSIZE
PID register size.

00111 PID registers contain 8 bits in this version of the MMU.

58–59 — Reserved, should be cleared.

60–61 NTLBS

Number of TLBs.

01 This version of the MMU implements two TLB structures: a null TLB0 and a
populated TLB1.

62–63 MAVN
MMU architecture version number.

00 This version of the MMU implements version 1.0 of the Book E MMU architecture.

Table 69. TLB configuration register 0 (TLB0CFG)

32 39 40 43 44 47 48 49 50 51 52 63

Field ASSOC MINSIZE MAXSIZE IPROT AVAIL — NENTRY

Reset All zeros (TLB0 is not implemented)

R/W Read only

SPR SPR 688

Table 70. TLB0CFG field descriptions

Bits Name Description

32–39 ASSOC Associativity.

40–43 MINSIZE Minimum page size.

44–47 MAXSIZE
Maximum page size.

0

48 IPROT
Invalidate protect capability.

0

UM0434 Register model

 91/391

TLB configuration register 1 (TLB1CFG)

TLB1CFG, shown in Table 71, provides information on the TLB1 configuration.

The TLB1CFG fields are described in Table 72.

4.16.4 MMU assist registers (MAS0–MAS4, MAS6)

The e200z3 uses six special purpose registers (MAS0–MAS4, and MAS6) for reading,
writing, and searching the TLBs. The MAS registers can be read or written using the mfspr
and mtspr instructions. The e200z3 does not implement the MAS5 register, which is
present in other Book E designs, because the tlbsx instruction only searches based on a
single SPID value.

49 AVAIL
Page size availability.

0

50–51 — Reserved, should be cleared.

52–63 NENTRY
Number of entries.

0 TLB0 contains 0 entries.

Table 70. TLB0CFG field descriptions (continued)

Bits Name Description

Table 71. TLB configuration register 1 (TLB1CFG)

32 39 40 43 44 47 48 49 50 51 52 63

Field ASSOC MINSIZE MAXSIZE IPROT AVAIL — NENTRY

Reset 0010_0000 0001 1001 1 1 00 0000_0010_0000

R/W Read only

SPR SPR 689

Table 72. TLB1CFG field descriptions

Bits Name Description

32–39 ASSOC
Associativity.
0x10 Indicates that TLB1 associativity is 16

40–43 MINSIZE
Minimum page size.
0x1 Smallest page size is 4 Kbytes.

44–47 MAXSIZE
Maximum page size.
0x9 Largest page size is 256 Mbytes.

48 IPROT
Invalidate protect capability.
1 Invalidate protect capability is supported in TLB1.

49 AVAIL
Page size availability.
1 All page sizes between MINSIZE and MAXSIZE are supported.

50–51 — Reserved, should be cleared.

52–63 NENTRY
Number of entries.

0x010 TLB1 contains 16 entries.

Register model UM0434

92/391

For details on the MASn registers, see Chapter 7.6.5: MMU assist registers (MAS) on
page 204.” The MAS0 register is shown in Table 73.

MAS0 fields are defined in Table 74.

The MAS1 register is shown in Table 75.

MAS1 fields are defined in Table 76.

Table 73. MAS Register 0 (MAS0) Format

32 33 34 35 36 42 43 47 48 58 59 63

Field — TLBSEL — ESEL — NV

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 624

Table 74. MAS0 - MMU read/write and replacement control

Bits Name Description

32–33 — Reserved, should be cleared.

34–35 TLBSEL
Selects TLB for access.

01 TLB1 (ignored by the e200z3, should be written to 01 for future compatibility).

36–42 — Reserved, should be cleared.

43–47 ESEL Entry select for TLB1.

48–58 — Reserved, should be cleared.

59–63 NV
Next replacement victim for TLB1 (software managed). Software updates this field; it is copied
to the ESEL field on a TLB error (See Table 156).

Table 75. MMU assist register 1 (MAS1)

32 33 34 39 40 47 48 50 51 52 55 56 63

Field VALID IPROT — TID — TS TSIZE —

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 625

UM0434 Register model

 93/391

The MAS2 register is shown in Table 77.

MAS2 fields are defined in Table 78.

Table 76. MAS1 - descriptor context and configuration control

Bits Name Description

32 VALID
TLB entry valid.
0 This TLB entry is invalid.

1 This TLB entry is valid.

33 IPROT

Invalidation protect. Protects TLB entry from invalidation by tlbivax (TLB1 only), or flash
invalidates through MMUCSR0[TLB1_FI].

0 Entry is not protected from invalidation.

1 Entry is protected from invalidation as described in Chapter 7.3.1: IPROT
invalidation protection in TLB1 on page 198.”

34–39 — Reserved, should be cleared.

40–47 TID
Translation ID. Compared with the current process IDs of the effective address to be translated.
A TID value of 0 defines an entry as global and matches with all process IDs.

48–50 — Reserved, should be cleared.

51 TS
Translation address space. Compared with MSR[IS] or MSR[DS] (depending on the type of
access) to determine if this TLB entry may be used for translation.

52–55 TSIZE

Entry page size.

Supported page sizes are:

0001 4 Kbytes 0110 4 Mbytes.

0010 16 Kbytes 0111 16 Mbytes.

0011 64 Kbytes 1000 64 Mbytes.

0100 256 Kbytes 1001 256 Mbytes.

0101 1 Mbyte.
All other values are undefined.

56–63 — Reserved, should be cleared.

Table 77. MMU assist register 2 (MAS2)

SPR 626 Access: Supervisor read/write

0 32

R
EPN

W

Reset Undefined

32 51 52 54 55 56 57 58 59 60 61 62 63

R
EPN — VLE W I M G E

W

Register model UM0434

94/391

The MAS3 register is shown in Table 79.

Table 78. MAS2 - EPN and page attributes

Bits Name Description

32–51 EPN Effective page number.

52–57 — Reserved, should be cleared.

58 VLE

VLE mode.

Identifies pages that contain instructions from the VLE APU. VLE is implemented only if the
processor supports the VLE APU. Setting both the VLE and E fields is a programming error; an
attempt to fetch instructions from a page so marked produces an ISI byte ordering exception and
sets ESR[BO].

0 Instructions fetched from the page are decoded and executed as PowerPC or EIS
instructions.

1 Instructions fetched from the page are decoded and executed as VLE or EIS
instructions. Implementation-dependent page attribute.

59 W

Write-through required.

0 This page is a write-back with respect to the caches in the system.

1 All stores performed to this page are written through to main memory.

60 I

Cache inhibited.

0 This page is cacheable.

1 This page is cache-inhibited.

61 M

Memory coherence required.The e200z3 does not support the memory coherence required
attribute, and thus it is ignored.

0 Memory coherence is not required.

1 Memory coherence is required.

62 G

Guarded. The e200z3ignores the guarded attribute (other than for generation of the p_hprot[4:2]
attributes on an external access), since no speculative or out-of-order processing is performed.

0 Access to this page are not guarded, and can be performed before it is known if they
are required by the sequential execution model.

1 All loads and stores to this page are performed without speculation (that is, they are
known to be required).

63 E

Endianness. Determines endianness for the corresponding page.

0 The page is accessed in big-endian byte order.

1 The page is accessed in true little-endian byte order.

UM0434 Register model

 95/391

MAS3 fields are defined in Table 80.

The MAS4 register, shown in Table 81, contains fields for specifying default information to
be pre-loaded on certain MMU related exceptions.

The MAS4 fields are defined in Table 82.

Table 79. MMU assist register 3 (MAS3)

Permission bits

32 51 52 53 54 55 56 57 58 59 60 61 62 63

Field RPN — U0 U1 U2 U3 UX SX UW SW UR SR

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 627

Table 80. MAS3 - RPN and access control

Bits Name Description

32–51 RPN
Real page number.

Only bits that correspond to a page number are valid. Bits that represent offsets within a page
are ignored and should be zero.

52–53 — Reserved, should be cleared.

54–57 U0–U3 User bits.

58–63 PERMIS Permission bits (UX, SX, UW, SW, UR, SR).

Table 81. MMU assist register 4 (MAS4)

SPR 628 Access: Supervisor read/write

32 33 34 35 36 39 40 47 48 51 52 55 56 57 58 59 60 61 62 63

R
— TLBSELD — TIDSELD — TSIZED — VLED WD ID MD GD ED

W

Reset All zeros

Table 82. MAS4 - hardware replacement assist configuration register

Bits Name Description

32–33 — Reserved, should be cleared.

34–35 TLBSELD
Default TLB selected.

01 TLB1 (ignored by the e200z3, should be written to 01 for future compatibility)

36–43 — Reserved, should be cleared.

Register model UM0434

96/391

The MAS6 register is shown in Table 83.

MAS6 fields are defined in Table 84.

4.16.5 Process ID register (PID0)

The process ID register, PID0, is shown in Table 85. The Book E architecture requires that a
process ID (PID) value be associated with each effective address (instruction or data)
generated by the processor. Book E defines one PID register that maintains the value of the
PID for the current process. The number of PIDs implemented is indicated by the value of

44–47 TIDSELD

TID default selection value. 4-bit field that specifies which of the current PID registers should be
used to load the MAS1[TID] field on a TLB miss exception.

The PID registers are addressed as follows:

0000 = PID0 (PID).

0001 = PID1.

...

1110 = PID14.
A value that references a non-implemented PID register causes a value of 0 to be placed in
MAS1[TID].

48–51 — Reserved, should be cleared.

52–55 TSIZED Default TSIZE value.

56–57 — Reserved, should be cleared.

58 VLED
Default VLE value. Specifies the default value loaded into MAS2[VLE] on a TLB miss
exception.

59–63 DWIMGE Default WIMGE values.

Table 82. MAS4 - hardware replacement assist configuration register (continued)

Bits Name Description

Table 83. MMU assist register 6 (MAS6))

32 39 40 47 48 62 63

Field — SPID — SAS

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 630

Table 84. MAS6 - TLB search context register 0

Bits Name Description

32–39 — Reserved, should be cleared.

40–47 SPID PID value for searches

48–62 — Reserved, should be cleared.

63 SAS AS value for searches

UM0434 Register model

 97/391

MMUCFG[NPIDS]. (The e200z3 defines no additional PID registers.) PID values are used
to construct virtual addresses for accessing memory.

4.17 Support for fast context switching
To provide real-time capabilities for embedded systems, future versions of the e200z3 core
will include optional hardware support for fast context switching. The initial version of the
e200z3 does not implement additional register contexts.

4.17.1 Context control register (CTXCR)

The future versions of the e200z3 core may include optional hardware support for fast
context switching to provide real-time capabilities for embedded systems. The initial version
of e200z3 does not implement additional register contexts. A new privileged 32-bit special-
purpose register (SPR) called the context control register (CTXCR) is defined in the core
CPU. The CTXCR controls the context registers that are mapped to the current context and
holds current, alternate, and saved context information. Supervisor software reads the
CTXCR to determine whether multiple contexts are supported in hardware, and if so, the
number implemented. When multiple register contexts are present (CTXCR[NUMCTX] is
non-zero), CTXCR is also writable. Otherwise, writes are ignored, and the register reads as
all zeros. CTXCR is shown in Table 86.

4.18 SPR register access
SPRs are accessed with the mfspr and mtspr instructions. The following sections outline
additional access requirements.

4.18.1 Invalid SPR references

System behavior when an invalid SPR is referenced depends on the apparent privilege level
of the register, which is determined by bit 5 in the SPR address. If the invalid SPR is

Table 85. Process ID register (PID0)

32 55 56 63

Field — Process ID

Reset All zeros

R/W R/W

SPR SPR 48

Table 86. Context control register (CTXCR)

32 55 56 63

Field —

Reset All zeros

R/W R/W (Writes are ignored because no additional contexts are implemented.)

SPR SPR 560

Register model UM0434

98/391

accessible in user mode, an illegal exception is generated. If the invalid SPR is accessible
only in supervisor mode and the CPU core is in supervisor mode (MSR[PR] = 0), an illegal
exception is generated. If the invalid SPR address is accessible only in supervisor mode and
the CPU is not in supervisor mode (MSR[PR] = 1), a privilege exception is generated.

4.18.2 Synchronization requirements for SPRs

Except for the following registers, no synchronization is required for accessing SPRs beyond
those stated in Book E. EREF completely describes synchronization requirements.
Software requirements for synchronization before/after accessing these registers are shown
in Table 88. The notation CSI in the table refers to context synchronizing instructions,
including sc, isync, rfi, rfci, and rfdi.

Table 87. System response to invalid SPR reference

SPR address bit 5 Mode MSR[PR] Response

0 — — Illegal exception

1 Supervisor 0 Illegal exception

1 User 1 Privilege exception

Table 88. Additional synchronization requirements for SPRs

Context altering event or instruction Required before Required after Notes

mtmsr[UCLE] None CSI

mfspr

DBCNT Debug counter register msync None (1)

DBSR Debug status register msync None

HID0 Hardware implementation dependent register 0 None None

HID1 Hardware implementation dependent register 1 msync None

MMUCSR MMU control and status register 0 CSI None

mtspr

BUCSR Branch unit control and status register None CSI

CTXCR Context control register CSI CSI

DBCNT Debug counter register None CSI (1)

DBCR0 Debug control register 0 None CSI

DBCR1 Debug control register 1 None CSI

DBCR2 Debug control register 2 None CSI

DBCR3 Debug control register 3 None CSI

DBSR Debug status register msync None

HID0 Hardware implementation dependent reg 0 CSI CSI

MMUCSR MMU control and status register 0 CSI CSI

1. Not required if counter is not currently enabled.

UM0434 Register model

 99/391

4.18.3 Special purpose register summary

PowerPC Book E and implementation-specific SPRs for the e200z3 core are listed in
Table 89. All registers are 32 bits. Register bits are numbered from bit 32–63 (most
significant to least significant). Shaded entries represent optional registers. An SPR can be
read or written with the mfspr and mtspr instructions. In the instruction syntax, compilers
should recognize the mnemonic in the table below. For details, see Chapter 4.4: Processor
control registers on page 43.”

Table 89. Special purpose registers

Mnemonic Name
SPR

number
Access Privileged

e200z3
specific

BUCSR Branch unit control and status register 1013 R/W Yes Yes

CSRR0 Critical save/restore register 0 58 R/W Yes No

CSRR1 Critical save/restore register 1 59 R/W Yes No

CTR Count register 9 R/W No No

CTXCR Context control register 560 R/W(1) Yes Yes

DAC1 Data address compare 1 316 R/W Yes No

DAC2 Data address compare 2 317 R/W Yes No

DBCNT Debug counter register 562 R/W Yes Yes

DBCR0 Debug control register 0 308 R/W Yes No

DBCR1 Debug control register 1 309 R/W Yes No

DBCR2 Debug control register 2 310 R/W Yes No

DBCR3 Debug control register 3 561 R/W Yes Yes

DBSR Debug status register 304 Read/Clear(2) Yes No

DEAR Data exception address register 61 R/W Yes No

DEC Decrementer 22 R/W Yes No

DECAR Decrementer auto-reload 54 R/W Yes No

DSRR0 Debug save/restore register 0 574 R/W Yes Yes

DSRR1 Debug save/restore register 1 575 R/W Yes Yes

ESR Exception syndrome register 62 R/W Yes No

HID0 Hardware implementation dependent reg 0 1008 R/W Yes Yes

HID1 Hardware implementation dependent reg 1 1009 R/W Yes Yes

IAC1 Instruction address compare 1 312 R/W Yes No

IAC2 Instruction address compare 2 313 R/W Yes No

IAC3 Instruction address compare 3 314 R/W Yes No

IAC4 Instruction address compare 4 315 R/W Yes No

IVOR0 Interrupt vector offset register 0 400 R/W Yes No

IVOR1 Interrupt vector offset register 1 401 R/W Yes No

IVOR2 Interrupt vector offset register 2 402 R/W Yes No

Register model UM0434

100/391

IVOR3 Interrupt vector offset register 3 403 R/W Yes No

IVOR4 Interrupt vector offset register 4 404 R/W Yes No

IVOR5 Interrupt vector offset register 5 405 R/W Yes No

IVOR6 Interrupt vector offset register 6 406 R/W Yes No

IVOR7 Interrupt vector offset register 7 407 R/W Yes No

IVOR8 Interrupt vector offset register 8 408 R/W Yes No

IVOR9(3) Interrupt vector offset register 9 409 R/W Yes No

IVOR10 Interrupt vector offset register 10 410 R/W Yes No

IVOR11 Interrupt vector offset register 11 411 R/W Yes No

IVOR12 Interrupt vector offset register 12 412 R/W Yes No

IVOR13 Interrupt vector offset register 13 413 R/W Yes No

IVOR14 Interrupt vector offset register 14 414 R/W Yes No

IVOR15 Interrupt vector offset register 15 415 R/W Yes No

IVOR32 Interrupt vector offset register 32 528 R/W Yes Yes

IVOR33 Interrupt vector offset register 33 529 R/W Yes Yes

IVOR34 Interrupt vector offset register 34 530 R/W Yes Yes

IVPR Interrupt vector prefix register 63 R/W Yes No

LR Link register 8 R/W No No

L1CFG0 L1 cache configuration register 0 515 Read only No Yes

MAS0 MMU assist register 0 624 R/W Yes Yes

MAS1 MMU assist register 1 625 R/W Yes Yes

MAS2 MMU assist register 2 626 R/W Yes Yes

MAS3 MMU assist register 3 627 R/W Yes Yes

MAS4 MMU assist register 4 628 R/W Yes Yes

MAS6 MMU assist register 6 630 R/W Yes Yes

MCSR Machine check syndrome register 572 R/W Yes Yes

MMUCFG MMU configuration register 1015 Read only Yes Yes

MMUCSR0 MMU control and status register 0 1012 R/W Yes Yes

PID0 Process ID register 48 R/W Yes No

PIR Processor ID register 286 Read only Yes No

PVR Processor version register 287 Read only Yes No

SPEFSCR SPE APU status and control register 512 R/W No No

SPRG0 SPR general 0 272 R/W Yes No

SPRG1 SPR general 1 273 R/W Yes No

Table 89. Special purpose registers (continued)

Mnemonic Name
SPR

number
Access Privileged

e200z3
specific

UM0434 Register model

 101/391

4.18.4 Reset settings

Table 90 shows the state of the PowerPC Book E registers and other optional resources
immediately following a system reset.

SPRG2 SPR general 2 274 R/W Yes No

SPRG3 SPR general 3 275 R/W Yes No

SPRG4 SPR general 4
260 Read only No No

276 R/W Yes No

SPRG5 SPR general 5
261 Read only No No

277 R/W Yes No

SPRG6 SPR general 6
262 Read only No No

278 R/W Yes No

SPRG7 SPR general 7
263 Read only No No

279 R/W Yes No

SRR0 Save/restore register 0 26 R/W Yes No

SRR1 Save/restore register 1 27 R/W Yes No

SVR System version register 1023 Read only Yes Yes

TBL Time base lower
268 Read only No No

284 Write only Yes No

TBU Time base upper
269 Read only No No

285 Write only Yes No

TCR Timer control register 340 R/W Yes No

TLB0CFG TLB0 configuration register 688 Read only Yes Yes

TLB1CFG TLB1 configuration register 689 Read only Yes Yes

TSR Timer status register 336 Read/Clear(4) Yes No

USPRG0 User SPR general 0 256 R/W No No

XER Integer exception register 1 R/W No No

Notes:

1. Only writable when multiple contexts are implemented. Otherwise, writes are ignored

2. The debug status register (DBSR) is read using mfspr. DBSR cannot be directly written. Instead, DBSR bits corresponding
to 1 bits in the GPR can be cleared using mtspr.

3. IVOR9 handles the auxiliary processor unavailable interrupt. This interrupt is defined by the EIS but not supported in the
e200z3; therefore, use of IVOR9 is not supported in the e200z3.

4. TSR is read using mfspr, but it cannot be directly written. Instead, TSR bits corresponding to 1 bits in the GPR can be
cleared using mtspr.

Table 89. Special purpose registers (continued)

Mnemonic Name
SPR

number
Access Privileged

e200z3
specific

Register model UM0434

102/391

Table 90. Reset settings for e200z3 resources

Resource System reset setting

Program counter p_rstbase[0:19] || 0xFFC

GPRs Unaffected(1)

CR Unaffected 1

BUCSR 0x0000_0000

CSRR0 Unaffected 1

CSRR1 Unaffected 1

CTR Unaffected 1

CTXCR 000 || NUMCTX || 00_0000_0000_0000_0000_0000_0000(2)

DAC1–DAC2 0x0000_0000

DBCNT Unaffected 1

DBCR0–DBCR3 0x0000_0000

DBSR 0x1000_0000

DEAR Unaffected 1

DEC Unaffected 1

DECAR Unaffected 1

DSRR0 Unaffected 1

DSRR1 Unaffected 1

ESR 0x0000_0000

HID0–HID1 0x0000_0000

IAC1–IAC4 0x0000_0000

IVOR0–IVOR15 Unaffected 1

IVOR32–IVOR34 Unaffected 1

IVPR Unaffected 1

L1CFG0(3) —

LR Unaffected 1

MAS0–MAS4, MAS6 Unaffected 1

MCSR 0x0000_0000

MMUCFG 3 —

MMUCSR0 0x0000_0000

MSR 0x0000_0000

PID0 0x0000_0000

PIR 3 0x0000_00 || p_cpuid[0:7]

PVR 3 —

SPEFSCR 0x0000_0000

SPRG0–SPRG7 Unaffected 1

UM0434 Register model

 103/391

4.19 Parallel signature unit registers
To support applications requiring system integrity checking during operation, the e200z3
provides a Parallel Signature unit to monitor the CPU data read and data write AHB buses
and to accumulate a pair of 32-bit MISR signatures of the data values transferred over these
buses.

The primitive polynomial used is P(X)=1+X10+X30+X31+X32. Values are accumulated based
on an initially programmed seed value and are qualified based on active byte lanes of the
data read and data write buses (p_d_hrdata[63:0], p_d_hwdata[63:0]) as indicated via the
p_d_hbstrb[7:0] signals. Inactive byte lanes use a value of all zeros as input data to the
MISRs. Refer to Table 170 for active byte lane information. If a transfer error occurs on any
accumulated read data, the returned read data is ignored, a value of all zeros is used
instead, and the error is logged. Errors occurring on data writes are not logged, since the
data driven by the CPU is valid.

The unit can be independently enabled for read cycles and write cycles, allowing for flexible
usage. Software can also control accumulation of software-provided values via a pair of
update registers. In addition, there is a counter for software to monitor the number of beats
of data compressed.

Updates are performed when the parallel signature registers are initialized, when a qualified
bus cycle is terminated, when a software update is performed via a high or low update
register, and when the parallel signature high or low registers are written with an mtdcr
instruction.

Note: Updates due to qualified bus transfers are suppressed for the duration of a debug session.

SRR0 Unaffected 1

SRR1 Unaffected 1

SVR 3 —

TBL Unaffected 1

TBU Unaffected 1

TCR 0x0000_0000

TLB0CFG– TLB1CFG —

TSR Undefined on power-on reset; otherwise, 0x(0b00||WRS)000_0000

USPRG0 Unaffected 1

XER 0x0000_0000

1. Undefined on m_por assertion, unchanged on p_reset_b assertion.

2. For CTXCR 0 only, others unaffected.

3. Read-only register.

Table 90. Reset settings for e200z3 resources (continued)

Resource System reset setting

Register model UM0434

104/391

Figure 6. Parallel signature unit

The parallel signature unit consists of seven registers as described in this section. Access to
these registers is privileged. No user-mode access is allowed.

Note: Proper access of the PSU registers requires an mfdcr that reads a PSU register to be
proceeded by either mbar or msync. To ensure that the effects of an mtdcr to one of the
PSU registers takes effect, the mtdcr is followed by a context synchronizing instruction (sc,
isync, rfi, rfci, rfdi).

4.19.1 Parallel signature control register (PSCR)

PSCR, shown in Table 91, controls operation of the parallel signature unit.

PSCR field descriptions are shown in Table 92.

 .

+
d q

+
d q

+
d q

+
d q

+
d q

+
d q

+
d q... ...

D31 (D63) D30 (D62) D29 (D61) D28 (D60) D1 (D33) D0 (D32)D21 (D53)

+
d q

D20 (D52)

+
d q

D22 (D54)

Data Bus (p_d_hrdata, p_d_hwdata)

PSHR, (PSLR)

Table 91. Parallel signature control register (PSCR)

32 57 58 59 60 61 62 63

Field — CNTEN — RDEN WREN INIT

Reset All zeros

R/W R/W

DCR DCR 272

Table 92. PSCR field descriptions

Bits Name Description

32–57 — Reserved, should be cleared.

58 CNTEN

Counter enable.

0 Counter is disabled.

1 Counter is enabled. Counter is incremented on every accumulated
transfer or on an mtdcr psulr,rS.

59–60 — Reserved, should be cleared.

61 RDEN

Read enable.

0 Processor data read cycles are ignored.

1 Processor data reads cycles are accumulated. For inactive byte lanes,
zeros are used for the data values.

UM0434 Register model

 105/391

4.19.2 Parallel signature status register (PSSR)

PSSR, shown in Table 93, provides status relative to operation of the parallel signature unit.

The PSSR register fields are described in Table 94.

 .

4.19.3 Parallel signature high register (PSHR)

The PSHR, shown in Table 4.19.4, provides signature information for the high word (bits 63–
32) of the AHB data read and data write buses. Writing PSHR initializes a seed value before
enabling signature accumulation. PSCR[INIT] may also be used to clear the PSHR. PSHR
is unaffected by system reset, thus should be initialized by software before performing
parallel signature operations.

62 WREN

Write enable.

0 Processor write cycles are ignored.

1 Processor write cycles are accumulated. For inactive byte lanes, zeros
are used for the data values.

63 INIT
This bit can be written with a 1 to set the values in the PSHR, PSLR, and PSCTR
registers to all 0s. (0x00000000). This bit always reads as 0.

Table 92. PSCR field descriptions (continued)

Bits Name Description

Table 93. parallel signature status register (PSSR)

32 62 63

Field — TERR

Reset Unaffected

R/W — w1c

DCR DCR 273

Table 94. PSSR field descriptions

Bits Name Description

32–62 — Reserved, should be cleared.

63 TERR

Transfer error status. Indicates whether a transfer error occurs on accumulated read
data and that the read data values returned are ignored and 0s are used instead.
Hardware does not clear TERR; only a software write of 1 to TERR clears it.

0 No transfer error on accumulated read data since software last cleared
this bit.

1 A transfer error occurred on accumulated read data since software last
cleared this bit.

Register model UM0434

106/391

4.19.4 Parallel signature low register (PSLR)

PSLR, shown in Table 4.19.5, provides signature information for the low word (bits 31-0) of
the AHB data read and data write buses. Writing PSLR initializes a seed value prior to
enabling signature accumulation. PSCR[INIT] can also be used to clear the PSLR. PSLR is
unaffected by system reset, thus should be initialized by software prior to performing parallel
signature operations.

4.19.5 Parallel signature counter register (PSCTR)

PSCTR, shown in Table 4.19.6, provides count information for signature accumulation. It is
incremented on every accumulated transfer or on an mtdcr psulr,rS. Writing to PSCTR
initializes a value before enabling signature accumulation. PSCR[INIT] can also be used to
clear PSCTR. PSCTR is unaffected by system reset, thus should be initialized by software
before performing parallel signature operations.

 .

4.19.6 Parallel signature update high register (PSUHR)

PSUHR, shown in Table 98, updates the high signature value via software. It can be written
via an mtdcr psuhr, rS instruction to cause signature accumulation to occur in the PSHR
using the data value written. Writing to this register does not cause the PSCTR to
increment.

Table 95. Parallel signature high register (PSHR)

32 63

Field High signature

Reset Unaffected

R/W R/W

DCR DCR 274

Table 96. Parallel signature low register (PSLR)

32 63

Field Low signature

Reset Unaffected

R/W R/W

DCR DCR 275

Table 97. Parallel signature counter register (PSCTR)

32 63

Field Counter

Reset Unaffected

R/W R/W

DCR DCR 276

UM0434 Register model

 107/391

4.19.7 Parallel signature update low register (PSULR)

PSULR, shown in Table 99, updates the low signature value via software. Writing to PSULR
causes signature accumulation in the parallel signature low register (PSLR) using the data
value written. Writing to this register causes PSCTR to increment.

Table 98. Parallel signature update high register (PSUHR)

32 63

Field High signature update data

Reset Unaffected

R/W Write only

DCR DCR 277

Table 99. Parallel signature update low register (PSULR)

32 63

Field Low signature update data

Reset Unaffected

R/W Write only

DCR DCR 278

Instruction model UM0434

108/391

5 Instruction model

This chapter provides additional information about the Book E architecture as it relates
specifically to the e200z3.

The e200z3 is a 32-bit implementation of the Book E architecture. The Book E architecture
specification includes a recognition that different processor implementations may require
clarifications, extensions, or deviations from the architectural descriptions. Book E
instructions are described in the EREF: A Programmer's Reference Manual for Freescale
Book E Processors.

5.1 Operand conventions
This section describes operand conventions as they are represented in the Book E
architecture. These conventions follow the basic descriptions in the classic PowerPC
architecture with some changes in terminology. For example, distinctions between user- and
supervisor-level instructions are maintained, but the designations—UISA, VEA, and OEA—
do not apply. Detailed descriptions are provided on conventions used for storing values in
registers and memory, for accessing processor registers, and for representing data.

5.1.1 Data organization in memory and data transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands can be bytes, half-words, words, or double-words (consisting of two 32-
bit elements) or, for the load/store multiple instruction type, a sequence of bytes or words.
The address of a memory operand is the address of its first byte (that is, of its lowest-
numbered byte). Operand length is implicit for each instruction.

5.1.2 Alignment and misaligned accesses

The e200z3 core provides hardware support for misaligned memory accesses; however,
there is performance degradation for accesses that cross a 64-bit (8-byte) boundary. For
loads that hit in the cache, the throughput of the load/store unit is degraded to 1 misaligned
load every 2 cycles. Stores misaligned across a 64-bit (8 byte) boundary can be translated
at a rate of 2 cycles per store. Frequent use of misaligned memory accesses is discouraged
because of the impact on performance.

Note: Accesses that cross a translation boundary may be restarted. A misaligned access that
crosses a page boundary is restarted entirely if the second portion of the access causes a
TLB miss. This may result in the first portion being accessed twice.
Accesses that cross a translation boundary where the endianness changes cause a byte-
ordering data storage interrupt.

Note: lmw, stmw, lwarx, and stwcx. instructions that are not word aligned cause an alignment
exception.

5.1.3 e200z3 Floating-Point implementation

The e200z3 core does not implement the floating-point instructions as they are defined in
Book E. Attempts to execute a Book E–defined floating-point instruction result in an illegal

UM0434 Instruction model

 109/391

instruction exception. However, the vector SPFP APU supports single-precision vector (64-
bit, two 32-bit operand) instructions, and the scalar SPFP APU performs single-precision
floating-point operations using the lower 32 bits of the GPRs. These instructions are
described in Chapter 5.10.4: Embedded vector and scalar single precision floating point
APU instructions on page 120.” Unlike the PowerPC UISA, the SPFP APUs store floating-
point values as single-precision values in true 32-bit, single-precision format rather than in a
64-bit double-precision format used with FPRs.

5.2 Unsupported instructions and instruction forms
Because the e200z3 is a 32-bit Book E core, all of the instructions defined for 64-bit
implementations of the Book E architecture are illegal on the e200z3 and cause an illegal
instruction exception type program interruption. The e200z3 core does not support the
instructions listed in Table 100. An unimplemented instruction or floating-point-unavailable
exception is generated if the processor attempts to execute one of these instructions.

5.3 Optionally supported instructions and instruction forms
The e200z3 core optionally supports the instructions listed in Table 101 if a cache and/or
TLB is present. An instruction exception may be generated if the processor attempts to
execute one of these instructions and the related functional block is not present, or the
specific instruction may be treated as a no-op.

5.4 Implementation-Specific instructions
Book E defines some instructions that are implementation specific. Table 102 summarizes
the e200z3 implementation-specific instructions.

Table 100. List of unsupported instructions

Type/Name Mnemonics

String Instructions lswi, lswx, stswi, stswx

Floating Point Instructions fxxxx, lfxxxx, sfxxxx, mcrfs, mffs, mtfxxx

Device control register and Move from APID mfapidi, mfdcrx, mtdcrx

Table 101. List of optionally supported instructions

Type/name Mnemonics Unit

Cache management
instructions

dcba, dcbf, dcbi, dcbt, dcbtst, dcbst,
dcbz
icbi, icbt

Data cache/unified cache

Instruction cache/unified
cache

Cache locking instructions
dcbtls, dcbtstls, dcblc

icbtls, icblc

Data cache/unified cache

Instruction cache/unified
cache

TLB management
instructions

tlbivax, tlbre, tlbsx, tlbsync, tlbwe TLB

DCR management mfdcr, mtdcr DCR

Instruction model UM0434

110/391

5.5 BookE instruction extensions
The variable length encoding (VLE) provides an extension to 32-bit PowerPC Book E. There
are additional operations defined using an alternate instruction encoding to enable reduced
code footprint. This alternate encoding set is selected on an instruction page basis. A single
page attribute bit selects between standard PowerPC Book E instruction encodings and
VLE instructions for that page of memory. This page attribute is an extension to the
PowerPC Book E page attributes. Pages can be freely intermixed, allowing for a mixture of
code using both types of encodings.

Instruction encodings in pages marked as using the VLE extension are either 16 or 32 bits
long, and are aligned on 16-bit boundaries. Therefore, all instruction pages marked as VLE
are required to use big-endian byte ordering.

This section describes the various extensions to Book E instructions to support the VLE
extension.

rfci, rfdi, rfi—no longer mask bit 62 of CSRR0, DSRR0, or SRR0 respectively. The
destination address is [D,C]SRR0[32:62] || 0b0.

bclr, bclrl, bcctr, bcctrl—no longer mask bit 62 of the LR or CTR respectively. The
destination address is [LR,CTR][32:62] || 0b0.

5.6 Memory access alignment support
The e200z3 core provides hardware support for unaligned memory accesses. However,
there is a performance degradation for accesses that cross a 64-bit (8 byte) boundary. For
these cases, the throughput of the load/store unit is degraded to one misaligned load every
2 cycles. Stores misaligned across a 64-bit (8 byte) boundary can be translated at a rate of
2 cycles per store. Frequent use of unaligned memory accesses is discouraged because of
the impact on performance.

Table 102. Implementation-Specific instruction summary

 Mnemonic Implementation details

mfapidi
Unimplemented instructions

mfdcrx, mtdcrx

stwcx. Address match with prior lwarx not required for store to be performed

mfdcr, mtdcr(1)

1. The e200z3 CPU takes an illegal instruction interrupt for unsupported DCR values

Optionally supported instructions

tlbivax

tlbre

tlbsx

tlbsync

tlbwe

UM0434 Instruction model

 111/391

Note: Accesses that cross a translation boundary may be restarted. A misaligned access that
crosses a page boundary is restarted in its entirety in the event of a TLB miss of the second
portion of the access. This may result in the first portion being accessed twice.
Accesses that cross a translation boundary where endianness changes cause a byte-
ordering data storage interrupt.

5.7 Memory synchronization and reservation instructions
Table 103 lists the e200z3 implementation details for the memory synchronization and load
and store with reservation instructions.

5.8 Branch prediction
The e200z3 instruction fetching mechanism uses a branch target buffer (BTB), which holds
branch target addresses combined with a 2-bit saturating up-down counter scheme for
branch prediction. These bits can take four values: strongly taken, weakly taken, weakly not
taken, and strongly not taken. This mechanism is described in Chapter 8.3.5: Change-of-
Flow instruction pipeline operation on page 213.”

Branch paths are predicted by a BTB and subsequently checked to see if the prediction was
correct. This enables operation beyond a conditional branch without waiting for the branch to

Table 103. Memory synchronization and reservation instructions e200z3 specific details

Instruction e200z3 implementation

msync
Provides synchronization and memory barrier functions. msync completes only after all preceding
instructions and data memory accesses complete. Subsequent instructions in the stream are not
dispatched until after the msync ensures these functions have been performed.

mbar Behaves identically to msync; the mbar MO field is ignored by the e200z3 core.

lwarx/
stwcx.

Implemented as described in the EREF. If the EA for either instruction is not a multiple of four, an
alignment interrupt is invoked. The e200z3 allows lwarx and stwcx. to access a page marked as
write-through required without invoking a data storage interrupt.
As Book E allows, the e200z3 does not require the EAs for a stwcx. and the preceding lwarx to be to
the same reservation granule.
Reservation granularity is implementation dependent. The e200z3 does not define a reservation
granule explicitly; it is defined by external logic. When no external logic is provided, the e200z3 does
not compare addresses; thus, the effective implementation granularity is null.

The e200z3 implements an internal status flag, HID1[ATS], which is set when an lwarx completes
without error. It remains set until it is cleared by one of the following:

– An stwcx. executes without error
– The e200z3 core p_rsrv_clr input is asserted. See Chapter 9.”

– The reservation is invalidated when an external interrupt is signaled and HID0[ICR] is set.

The e200z3 treats lwarx and stwcx. as cache-inhibited and guarded, regardless of page attributes.
The e200z3 core input p_xfail_b is sampled at termination of an stwcx. store transfer to allow an
external agent or mechanism to indicate that the stwcx. failed to update memory, even though a
reservation existed for the store when it was issued. This is not considered an error and causes the
condition codes for the stwcx. to be written as if it had no reservation. Also, any outstanding
reservation is cleared.

Instruction model UM0434

112/391

be decoded and resolved. The instruction fetch unit predicts the direction of the branch as
follows:

● Predict not taken for any branch whose fetch address misses in the BTB or hits in the
BTB and is predicted not taken by the counter.

● Predict taken for any branch that hits in the BTB and is predicted taken by the counter.

Note that the static branch prediction bit defined by the Book E architecture in the BO
operand is ignored.

5.9 Interruption of instructions by interrupt requests
In general, the e200z3 core samples pending external input and critical input interrupt
requests at instruction boundaries. However, in order to reduce interrupt latency, long-
running instructions may be interrupted prior to completion. Instructions in this class include
divides (divw[uo][.], efsdiv, evfsdiv, evdivw[su]), Load Multiple Word (lmw), and Store
Multiple Word (stmw). When an instruction is interrupted before completion, the value saved
in SRR0/CSRR0 is the address of the interrupted instruction.

5.10 e200z3-Specific instructions
The e200z3 core implements the following instructions that are not defined by the Book E
architecture:

● The EIS-defined integer select (isel) APU consists of the isel instruction, described in
Chapter 5.10.1: Integer select APU.”

● The Return from Debug Interrupt instruction (rfdi) is defined by the Book E debug APU.
This instruction is described in Chapter 5.10.2: Debug APU.”

● The signal processing extension (SPE) APU provides a set of 64-bit SIMD instructions.
These are listed in Chapter 5.10.3: SPE APU instructions,” and described in the EREF.

● The embedded vector and scalar single-precision floating-point APUs are listed along
with supporting instructions in Chapter 5.10.4: Embedded vector and scalar single
precision floating point APU instructions.” These instructions are described in detail in
the EREF.

5.10.1 Integer select APU

The integer select APU defines the Integer Select (isel) instruction, which provides a means
to select one of two registers and place the result in a destination register under the control
of a predicate value supplied by a bit in the condition register. isel can be used to eliminate
branches in software and in many cases improve performance; it can also increase program
execution time determinism by eliminating the need to predict the target and direction of the
branches replaced by the integer select function.

The isel instruction form and definition are described in the EREF

5.10.2 Debug APU

The e200z3 implements the Book E debug APU to support the ability to handle the debug
interrupt as an additional interrupt level. To support this interrupt level, the Return from
Debug Interrupt instruction (rfdi) is defined as part of the debug APU, along with a pair of
save/restore registers, DSRR0, and DSRR1.

UM0434 Instruction model

 113/391

When the debug APU is enabled (HID0[DAPUEN] = 1), rfdi provides a way to return from a
debug interrupt. See Chapter 4.13.1: Hardware implementation dependent register 0 (HID0)
on page 84,” for more information about enabling the debug APU.

The instruction form and definition is provided in the EREF.

5.10.3 SPE APU instructions

SPE APU instructions treat 64-bit GPRs as a vector of two 32-bit elements. (Some
instructions also read or write 16-bit elements.) The SPE APU supports a number of forms
of multiply and multiply-accumulate operations, and of add and subtract to accumulator
operations. The SPE supports signed and unsigned forms, and optional fractional forms. For
these instructions, the fractional form does not apply to unsigned forms because integer and
fractional forms are identical for unsigned operands.

Table 104 shows how SPE APU vector multiply instruction mnemonics are structured.

Table 105 defines mnemonic extensions for these instructions.

Table 104. SPE APU vector multiply instruction mnemonic structure

Prefix Multiply element Data type element Accumulate element

evm

ho
he

hog

heg
wh

wl

whg
wlg

w

half odd (16x16→32)

half even (16x16→32)
half odd guarded
(16x16→32)
half even guarded
(16x16→32)
word high (32x32→32)

word low (32x32→32)

word high guarded
(32x32→32)

word low guarded
(32x32→32)

word (32x32→64)

usi
umi

ssi

ssf(1)

smi

smf(1)

unsigned saturate
integer

unsigned modulo
integer

signed saturate integer
signed saturate
fractional
signed modulo integer

signed modulo fractional

a

aa
an

aaw

anw

write to ACC

write to ACC & added ACC

write to ACC & negate ACC
write to ACC & ACC in words

write to ACC & negate ACC in
words

1. Low word versions of signed saturate and signed modulo fractional instructions are not supported. Attempting to execute
an opcode corresponding to these instructions causes boundedly undefined results.

Table 105. Mnemonic extensions for multiply-accumulate instructions

Extension Meaning Comments

Multiply form

he Half word even 16×16→32

heg Half word even guarded 16×16→32, 64-bit final accumulator result

ho Half word odd 16×16→32

hog Half word odd guarded 16×16→32, 64-bit final accumulator result

w Word 32×32→64

wh Word high 32×32→32, high-order 32 bits of product

wl Word low 32×32→32, low-order 32 bits of product

Instruction model UM0434

114/391

Table 106 lists SPE APU instructions.

Data type

smf Signed modulo fractional (Wrap, no saturate)

smi Signed modulo integer (Wrap, no saturate)

ssf Signed saturate fractional

ssi Signed saturate integer

umi Unsigned modulo integer (Wrap, no saturate)

usi Unsigned saturate integer

Accumulate options

a Update accumulator Update accumulator (no add)

aa Add to accumulator Add result to accumulator (64-bit sum)

aaw Add to accumulator (words) Add word results to accumulator words (pair of 32-bit sums)

an Add negated Add negated result to accumulator (64-bit sum)

anw
Add negated to accumulator
(words)

Add negated word results to accumulator words (pair of 32-bit
sums)

Table 105. Mnemonic extensions for multiply-accumulate instructions

Extension Meaning Comments

Table 106. SPE APU vector instructions

Instruction Mnemonic Syntax

Bit Reversed Increment(1) brinc rD,rA,rB

Initialize Accumulator evmra rD,rA

Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate evmhegsmfaa rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate
Negative

evmhegsmfan rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate evmhegsmiaa rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate
Negative

evmhegsmian rD,rA,rB

Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate evmhegumiaa rD,rA,rB

Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate
Negative

evmhegumian rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate evmhogsmfaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate
Negative

evmhogsmfan rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate evmhogsmiaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate
Negative

evmhogsmian rD,rA,rB

Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate evmhogumiaa rD,rA,rB

UM0434 Instruction model

 115/391

Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate
Negative

evmhogumian rD,rA,rB

Vector Absolute Value evabs rD,rA

Vector Add Immediate Word evaddiw rD,rB,UIMM

Vector Add Signed, Modulo, Integer to Accumulator Word evaddsmiaaw rD,rA

Vector Add Signed, Saturate, Integer to Accumulator Word evaddssiaaw rD,rA

Vector Add Unsigned, Modulo, Integer to Accumulator Word evaddumiaaw rD,rA

Vector Add Unsigned, Saturate, Integer to Accumulator Word evaddusiaaw rD,rA

Vector Add Word evaddw rD,rA,rB

Vector AND evand rD,rA,rB

Vector AND with Complement evandc rD,rA,rB

Vector Compare Equal evcmpeq crD,rA,rB

Vector Compare Greater Than Signed evcmpgts crD,rA,rB

Vector Compare Greater Than Unsigned evcmpgtu crD,rA,rB

Vector Compare Less Than Signed evcmplts crD,rA,rB

Vector Compare Less Than Unsigned evcmpltu crD,rA,rB

Vector Convert Floating-Point from Signed Fraction evfscfsf rD,rB

Vector Convert Floating-Point from Signed Integer evfscfsi rD,rB

Vector Convert Floating-Point from Unsigned Fraction evfscfuf rD,rB

Vector Convert Floating-Point from Unsigned Integer evfscfui rD,rB

Vector Convert Floating-Point to Signed Fraction evfsctsf rD,rB

Vector Convert Floating-Point to Signed Integer evfsctsi rD,rB

Vector Convert Floating-Point to Signed Integer with Round toward Zero evfsctsiz rD,rB

Vector Convert Floating-Point to Unsigned Fraction evfsctuf rD,rB

Vector Convert Floating-Point to Unsigned Integer evfsctui rD,rB

Vector Convert Floating-Point to Unsigned Integer with Round toward Zero evfsctuiz rD,rB

Vector Count Leading Sign Bits Word evcntlsw rD,rA

Vector Count Leading Zeros Word evcntlzw rD,rA

Vector Divide Word Signed evdivws rD,rA,rB

Vector Divide Word Unsigned evdivwu rD,rA,rB

Vector Equivalent eveqv rD,rA,rB

Vector Extend Sign Byte evextsb rD,rA

Vector Extend Sign Half Word evextsh rD,rA

Vector Floating-Point Absolute Value evfsabs rD,rA

Vector Floating-Point Add evfsadd rD,rA,rB

Table 106. SPE APU vector instructions (continued)

Instruction Mnemonic Syntax

Instruction model UM0434

116/391

Vector Floating-Point Compare Equal evfscmpeq crD,rA,rB

Vector Floating-Point Compare Greater Than evfscmpgt crD,rA,rB

Vector Floating-Point Compare Less Than evfscmplt crD,rA,rB

Vector Floating-Point Divide evfsdiv rD,rA,rB

Vector Floating-Point Multiply evfsmul rD,rA,rB

Vector Floating-Point Negate evfsneg rD,rA

Vector Floating-Point Negative Absolute Value evfsnabs rD,rA

Vector Floating-Point Subtract evfssub rD,rA,rB

Vector Floating-Point Test Equal evfststeq crD,rA,rB

Vector Floating-Point Test Greater Than evfststgt crD,rA,rB

Vector Floating-Point Test Less Than evfststlt crD,rA,rB

Vector Load Double into Half Words evldh rD,d(rA)

Vector Load Double into Half Words Indexed evldhx rD,rA,rB

Vector Load Double into Two Words evldw rD,d(rA)

Vector Load Double into Two Words Indexed evldwx rD,rA,rB

Vector Load Double Word into Double Word evldd rD,d(rA)

Vector Load Double Word into Double Word Indexed evlddx rD,rA,rB

Vector Load Half Word into Half Word Odd Signed and Splat evlhhossplat rD,d(rA)

Vector Load Half Word into Half Word Odd Signed and Splat Indexed evlhhossplatx rD,rA,rB

Vector Load Half Word into Half Word Odd Unsigned and Splat evlhhousplat rD,d(rA)

Vector Load Half Word into Half Word Odd Unsigned and Splat Indexed evlhhousplatx rD,rA,rB

Vector Load Half Word into Half Words Even and Splat evlhhesplat rD,d(rA)

Vector Load Half Word into Half Words Even and Splat Indexed evlhhesplatx rD,rA,rB

Vector Load Word into Half Words and Splat evlwhsplat rD,d(rA)

Vector Load Word into Half Words and Splat Indexed evlwhsplatx rD,rA,rB

Vector Load Word into Half Words Odd Signed (with sign extension) evlwhos rD,d(rA)

Vector Load Word into Half Words Odd Signed Indexed (with sign extension) evlwhosx rD,rA,rB

Vector Load Word into Two Half Words Even evlwhe rD,d(rA)

Vector Load Word into Two Half Words Even Indexed evlwhex rD,rA,rB

Vector Load Word into Two Half Words Odd Unsigned (zero-extended) evlwhou rD,d(rA)

Vector Load Word into Two Half Words Odd Unsigned Indexed (zero-extended) evlwhoux rD,rA,rB

Vector Load Word into Word and Splat evlwwsplat rD,d(rA)

Vector Load Word into Word and Splat Indexed evlwwsplatx rD,rA,rB

Vector Merge High evmergehi rD,rA,rB

Vector Merge High/Low evmergehilo rD,rA,rB

Table 106. SPE APU vector instructions (continued)

Instruction Mnemonic Syntax

UM0434 Instruction model

 117/391

Vector Merge Low evmergelo rD,rA,rB

Vector Merge Low/High evmergelohi rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional evmhesmf rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate into
Words

evmhesmfaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate
Negative into Words

evmhesmfanw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional, Accumulate evmhesmfa rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer evmhesmi rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate into
Words

evmhesmiaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate
Negative into Words

evmhesmianw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer, Accumulate evmhesmia rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional evmhessf rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate into
Words

evmhessfaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate
Negative into Words

evmhessfanw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional, Accumulate evmhessfa rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate into
Words

evmhessiaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate
Negative into Words

evmhessianw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer evmheumi rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate into
Words

evmheumiaaw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate
Negative into Words

evmheumianw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer, Accumulate evmheumia rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate into
Words

evmheusiaaw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate
Negative into Words

evmheusianw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional evmhosmf rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate into
Words

evmhosmfaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate
Negative into Words

evmhosmfanw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional, Accumulate evmhosmfa rD,rA,rB

Table 106. SPE APU vector instructions (continued)

Instruction Mnemonic Syntax

Instruction model UM0434

118/391

Vector Multiply Half Words, Odd, Signed, Modulo, Integer evmhosmi rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate into
Words

evmhosmiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate Negative
into Words

evmhosmianw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer, Accumulate evmhosmia rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional evmhossf rD,rA,rB

VectoR Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate into
Words

evmhossfaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate
Negative into Words

evmhossfanw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional, Accumulate evmhossfa rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate into
Words

evmhossiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate
Negative into Words

evmhossianw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer evmhoumi rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate into
Words

evmhoumiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate
Negative into Words

evmhoumianw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer, Accumulate evmhoumia rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate into
Words

evmhousiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate
Negative into Words

evmhousianw rD,rA,rB

Vector Multiply Word High Signed, Modulo, Fractional evmwhsmf rD,rA,rB

Vector Multiply Word High Signed, Modulo, Fractional and Accumulate evmwhsmfa rD,rA,rB

Vector Multiply Word High Signed, Modulo, Integer evmwhsmi rD,rA,rB

Vector Multiply Word High Signed, Modulo, Integer and Accumulate evmwhsmia rD,rA,rB

Vector Multiply Word High Signed, Saturate, Fractional evmwhssf rD,rA,rB

Vector Multiply Word High Signed, Saturate, Fractional and Accumulate evmwhssfa rD,rA,rB

Vector Multiply Word High Unsigned, Modulo, Integer evmwhumi rD,rA,rB

Vector Multiply Word High Unsigned, Modulo, Integer and Accumulate evmwhumia rD,rA,rB

Vector Multiply Word Low Signed, Modulo, Integer and Accumulate in Words evmwlsmiaaw rD,rA,rB

Vector Multiply Word Low Signed, Modulo, Integer and Accumulate Negative in
Words

evmwlsmianw rD,rA,rB

Vector Multiply Word Low Signed, Saturate, Integer and Accumulate in Words evmwlssiaaw rD,rA,rB

Table 106. SPE APU vector instructions (continued)

Instruction Mnemonic Syntax

UM0434 Instruction model

 119/391

Vector Multiply Word Low Signed, Saturate, Integer and Accumulate Negative in
Words

evmwlssianw rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer evmwlsmi rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate evmwlumia rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate in Words evmwlumiaaw rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate Negative in
Words

evmwlumianw rD,rA,rB

Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate in Words evmwlusiaaw rD,rA,rB

Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate Negative in
Words

evmwlusianw rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional evmwsmf rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate evmwsmfa rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate evmwsmfaa rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate Negative evmwsmfan rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer evmwsmi rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate evmwsmia rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate evmwsmiaa rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate Negative evmwsmian rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional evmwssf rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate evmwssfa rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate evmwssfaa rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate Negative evmwssfan rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer evmwumi rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate evmwumia rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate evmwumiaa rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate Negative evmwumian rD,rA,rB

Vector NAND evnand rD,rA,rB

Vector Negate evneg rD,rA

Vector NOR evnor rD,rA,rB

Vector OR evor rD,rA,rB

Vector OR with Complement evorc rD,rA,rB

Vector Rotate Left Word evrlw rD,rA,rB

Vector Rotate Left Word Immediate evrlwi rD,rA,UIMM

Vector Round Word evrndw rD,rA

Vector Select evsel rD,rA,rB,crS

Vector Shift Left Word evslw rD,rA,rB

Table 106. SPE APU vector instructions (continued)

Instruction Mnemonic Syntax

Instruction model UM0434

120/391

5.10.4 Embedded vector and scalar single precision floating point APU
instructions

The vector and scalar SPFP APUs perform floating-point operations on single-precision
operands. These operations are IEEE-compliant with software interrupt handlers and offer a
simpler interrupt model than the floating-point instructions defined by the PowerPC ISA.
Instead of FPRs, these instructions use GPRs and offer improved performance for

Vector Shift Left Word Immediate evslwi rD,rA,UIMM

Vector Shift Right Word Immediate Signed evsrwis rD,rA,UIMM

Vector Shift Right Word Immediate Unsigned evsrwiu rD,rA,UIMM

Vector Shift Right Word Signed evsrws rD,rA,rB

Vector Shift Right Word Unsigned evsrwu rD,rA,rB

Vector Splat Fractional Immediate evsplatfi rD,SIMM

Vector Splat Immediate evsplati rD,SIMM

Vector Store Double of Double evstdd rS,d(rA)

Vector Store Double of Double Indexed evstddx rS,rA,rB

Vector Store Double of Four Half Words evstdh rS,d(rA)

Vector Store Double of Four Half Words Indexed evstdhx rS,rA,rB

Vector Store Double of Two Words evstdw rS,d(rA)

Vector Store Double of Two Words Indexed evstdwx rS,rA,rB

Vector Store Word of Two Half Words from Even evstwhe rS,d(rA)

Vector Store Word of Two Half Words from Even Indexed evstwhex rS,rA,rB

Vector Store Word of Two Half Words from Odd evstwho rS,d(rA)

Vector Store Word of Two Half Words from Odd Indexed evstwhox rS,rA,rB

Vector Store Word of Word from Even evstwwe rS,d(rA)

Vector Store Word of Word from Even Indexed evstwwex rS,rA,rB

Vector Store Word of Word from Odd evstwwo rS,d(rA)

Vector Store Word of Word from Odd Indexed evstwwox rS,rA,rB

Vector Subtract from Word evsubfw rD,rA,rB

Vector Subtract Immediate from Word evsubifw rD,UIMM,rB

Vector Subtract Signed, Modulo, Integer to Accumulator Word evsubfsmiaaw rD,rA

Vector Subtract Signed, Saturate, Integer to Accumulator Word evsubfssiaaw rD,rA

Vector Subtract Unsigned, Modulo, Integer to Accumulator Word evsubfumiaaw rD,rA

Vector Subtract Unsigned, Saturate, Integer to Accumulator Word evsubfusiaaw rD,rA

Vector XOR evxor rD,rA,rB

1. An implementation can restrict the number of bits specified in a mask. The e200z3 limits it to 16 bits, which allows the user
to perform bit-reversed address computations for 65536-byte samples.

Table 106. SPE APU vector instructions (continued)

Instruction Mnemonic Syntax

UM0434 Instruction model

 121/391

converting between floating-point, integer, and fractional values. Sharing GPRs allows
vector floating-point instructions to use SPE load and store instructions.

The two SPFP APUs are described as follows:

● Vector SPFP instructions operate on a vector of two 32-bit, single-precision floating-
point numbers that reside in the upper and lower halves of the 64-bit GPRs. These
instructions are listed in Table 107 alongside their scalar equivalents.

● Scalar SPFP instructions operate on single 32-bit operands that reside in the lower 32
bits of the GPRs. These instructions are listed in Table 107.

Note: Both the vector and scalar versions of the instructions have the same syntax.

Table 107. Vector and scalar SPFP APU floating-point instructions

Instruction
Mnemonic

Syntax
Scalar Vector

Convert Floating-Point from Signed Fraction efscfsf evfscfsf rD,rB

Convert Floating-Point from Signed Integer efscfsi evfscfsi rD,rB

Convert Floating-Point from Unsigned Fraction efscfuf evfscfuf rD,rB

Convert Floating-Point from Unsigned Integer efscfui evfscfui rD,rB

Convert Floating-Point to Signed Fraction efsctsf evfsctsf rD,rB

Convert Floating-Point to Signed Integer efsctsi evfsctsi rD,rB

Convert Floating-Point to Signed Integer with Round toward Zero efsctsiz evfsctsiz rD,rB

Convert Floating-Point to Unsigned Fraction efsctuf evfsctuf rD,rB

Convert Floating-Point to Unsigned Integer efsctui evfsctui rD,rB

Convert Floating-Point to Unsigned Integer with Round toward Zero efsctuiz evfsctuiz rD,rB

Floating-Point Absolute Value efsabs evfsabs rD,rA

Floating-Point Add efsadd evfsadd rD,rA,rB

Floating-Point Compare Equal efscmpeq evfscmpeq crD,rA,rB

Floating-Point Compare Greater Than efscmpgt evfscmpgt crD,rA,rB

Floating-Point Compare Less Than efscmplt evfscmplt crD,rA,rB

Floating-Point Divide efsdiv evfsdiv rD,rA,rB

Floating-Point Multiply efsmul evfsmul rD,rA,rB

Floating-Point Negate efsneg evfsneg rD,rA

Floating-Point Negative Absolute Value efsnabs evfsnabs rD,rA

Floating-Point Subtract efssub evfssub rD,rA,rB

Floating-Point Test Equal efststeq evfststeq crD,rA,rB

Floating-Point Test Greater Than efststgt evfststgt crD,rA,rB

Floating-Point Test Less Than efststlt evfststlt crD,rA,rB

Instruction model UM0434

122/391

Options for embedded floating-point APU implementations

Table 108 lists implementation options allowed by the embedded floating-point architecture
and describes how the e200z3 handles those options.

5.11 Unimplemented SPRs and read only SPRs
The e200z3 fully decodes the SPR field of mfspr and mtspr instructions. If the SPR
specified is undefined and not privileged, an illegal instruction exception is generated. If the
SPR specified is undefined and privileged and the CPU is in user mode (MSR[PR] = 1), a
privileged instruction exception is generated. If the SPR specified is undefined and
privileged and the CPU is in supervisor mode (MSR[PR] = 0), an illegal instruction exception
is generated.

For mtspr, if the SPR specified is read-only and not privileged, an illegal instruction
exception is generated. If the SPR specified is read-only and privileged and the CPU is in
user mode (MSR[PR] = 1, a privileged instruction exception is generated. If the SPR
specified is read-only and privileged and the CPU is in supervisor mode (MSR[PR] = 0), an
illegal instruction exception is generated.

5.12 Invalid instruction forms
Table 109 describes invalid instruction forms.

Table 108. Embedded floating-point APU options

Option
e200z3

Implementation

Overflow and underflow conditions may be signaled by doing exponent evaluation of the
operation. If an examining of the exponents determines that an overflow or underflow
could occur, the implementation may choose to signal an overflow or underflow.

Follows the
recommendation; does
not use the estimation.

If an operand for a calculation or conversion is denormalized, the implementation may
choose to use a same-signed zero value in place of the denormalized operand.

Uses a same-signed
zero value in place of
the denormalized
operand.

+Infinity and -Infinity rounding modes are not required to be handled by an
implementation. If an implementation does not support ±Infinity rounding modes and the
rounding mode is set to be +Infinity or -Infinity, an embedded floating-point round
interrupt occurs after every floating-point instruction for which rounding may occur,
regardless of the value of FINXE, unless an embedded floating-point data interrupt also
occurs and is taken.

Supports rounding to ±
Infinity.

For absolute value, negate, and negative absolute value operations, an implementation
may choose either to simply perform the sign bit operation recognizing interrupts or to
compute the operation and handle exceptions and saturation where appropriate.

A sign bit operation is
performed; interrupts
are taken.

SPEFSCR FGH and FXH bits are undefined upon the completion of a scalar floating-
point operation. An implementation may choose to clear them or leave them unchanged.

Always clears these bits
for such operations.

An implementation may choose to only implement sticky bit setting by hardware for
FDBZS and FINXS, allowing software to manage the other sticky bits. It is recommended
that all future implementations implement all sticky bit settings in hardware.

Implements all sticky bit
settings in hardware.

UM0434 Instruction model

 123/391

5.13 Instruction summary
In addition to the SPE instructions listed in Table 106 and the floating-point instructions
listed in Table 107, the e200z3 implements the instructions defined in Table 110 and
Table 111. Instructions not listed in these tables are not supported by the e200z3 core and
signal an illegal, unimplemented, or floating-point unavailable exception. Implementation-
dependent instructions are identified with a footnote.

Note: Specific APUs are not included in the table below:
● SPE APU

● VLE extension

5.13.1 Instruction index sorted by mnemonic

Table 110 lists instructions by mnemonic.

Table 109. Invalid instruction forms

Instructions Descriptions

Load and
store with
update

Book E defines as an invalid form the case when a load with update instruction specifies the same
register in the rD and rA field of the instruction. For this invalid case, the e200z3 core performs the
instruction and updates the register with the load data. In addition, if rA = 0 for any load or store with
update instruction, the e200z3 core updates rA (GPR0).

Load Multiple
Word (lmw)

Book E defines as invalid any form of lmw instruction in which rA is in the range of registers to be
loaded, including the case in which rA = 0. On the e200z3, invalid forms of lmw execute as follows:

– Case 1: rA is in the range of rD, rA ≠ 0. In this case address generation for individual loads to
register targets is done using the architectural value of rA which existed when beginning execution
of this lmw instruction. rA is overwritten with a value fetched from memory as if it had not been the
base register. Note that if the instruction is interrupted and restarted, the base address may be
different if rA has been overwritten.

– Case 2: rA = 0 and rD = 0. In this case address generation for all loads to register targets rD = 0 to
rD = 31 is done substituting the value of 0 for rA.

Branch
Conditional
to Count
Register [and
Link]

Book E defines as invalid any bcctr or bcctrl instruction that specifies the decrement and test CTR
(BO[2] = 0) option. The e200z3 executes instructions with these invalid forms by decrementing the
CTR and branching to the location specified by the pre-decremented CTR value if all CR and CTR
conditions are met as specified by the other BO field settings.

Instructions
with non-
zero
reserved
fields

Book E defines certain bit fields in various instructions as reserved and specifies that these fields be
set to zero. Following the Book E recommendation, the e200z3 ignores the value of the reserved
field (bit 31) in X-form integer load and store instructions. The e200z3 ignores the value of the
reserved ‘z’ bits in the BO field of branch instructions. For all other instructions, the e200z3
generates an illegal instruction exception if a reserved field is non-zero.

Table 110. Instructions sorted by mnemonic

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

X 011111 01000 01010 0 add Add

X 011111 01000 01010 1 add. Add & record CR

Instruction model UM0434

124/391

X 011111 00000 01010 0 addc Add Carrying

X 011111 00000 01010 1 addc. Add Carrying & record CR

X 011111 10000 01010 0 addco Add Carrying & record OV

X 011111 10000 01010 1 addco. Add Carrying & record OV & CR

X 011111 00100 01010 0 adde Add Extended with CA

X 011111 00100 01010 1 adde. Add Extended with CA & record CR

X 011111 10100 01010 0 addeo Add Extended with CA & record OV

X 011111 10100 01010 1 addeo. Add Extended with CA & record OV & CR

D 001110 ––––– ––––– – addi Add Immediate

D 001100 ––––– ––––– – addic Add Immediate Carrying

D 001101 ––––– ––––– – addic. Add Immediate Carrying & record CR

D 001111 ––––– ––––– – addis Add Immediate Shifted

X 011111 00111 01010 0 addme Add to Minus One Extended with CA

X 011111 00111 01010 1 addme. Add to Minus One Extended with CA & record CR

X 011111 10111 01010 0 addmeo Add to Minus One Extended with CA & record OV

X 011111 10111 01010 1 addmeo. Add to Minus One Extended with CA & record OV & CR

X 011111 11000 01010 0 addo Add & record OV

X 011111 11000 01010 1 addo. Add & record OV & CR

X 011111 00110 01010 0 addze Add to Zero Extended with CA

X 011111 00110 01010 1 addze. Add to Zero Extended with CA & record CR

X 011111 10110 01010 0 addzeo Add to Zero Extended with CA & record OV

X 011111 10110 01010 1 addzeo. Add to Zero Extended with CA & record OV & CR

X 011111 00000 11100 0 and AND

X 011111 00000 11100 1 and. AND & record CR

X 011111 00001 11100 0 andc AND with Complement

X 011111 00001 11100 1 andc. AND with Complement & record CR

D 011100 ––––– ––––– – andi. AND Immediate and record CR

D 011101 ––––– ––––– – andis. AND Immediate Shifted and record CR

I 010010 ––––– ––––0 0 b Branch

I 010010 ––––– ––––1 0 ba Branch Absolute

B 010000 ––––– ––––0 0 bc Branch Conditional

B 010000 ––––– ––––1 0 bca Branch Conditional Absolute

XL 010011 10000 10000 0 bcctr Branch Conditional to Count Register

Table 110. Instructions sorted by mnemonic (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

UM0434 Instruction model

 125/391

XL 010011 10000 10000 1 bcctrl Branch Conditional to Count Register and Link

B 010000 ––––– ––––0 1 bcl Branch Conditional and Link

B 010000 ––––– ––––1 1 bcla Branch Conditional and Link Absolute

XL 010011 00000 10000 0 bclr Branch Conditional to Link Register

XL 010011 00000 10000 1 bclrl Branch Conditional to Link Register and Link

I 010010 ––––– ––––0 1 bl Branch and Link

I 010010 ––––– ––––1 1 bla Branch and Link Absolute

X 011111 00000 00000 / cmp Compare

D 001011 ––––– ––––– – cmpi Compare Immediate

X 011111 00001 00000 / cmpl Compare Logical

D 001010 ––––– ––––– – cmpli Compare Logical Immediate

X 011111 00000 11010 0 cntlzw Count Leading Zeros Word

X 011111 00000 11010 1 cntlzw. Count Leading Zeros Word and record CR

XL 010011 01000 00001 / crand Condition Register AND

XL 010011 00100 00001 / crandc Condition Register AND with Complement

XL 010011 01001 00001 / creqv Condition Register Equivalent

XL 010011 00111 00001 / crnand Condition Register NAND

XL 010011 00001 00001 / crnor Condition Register NOR

XL 010011 01110 00001 / cror Condition Register OR

XL 010011 01101 00001 / crorc Condition Register OR with Complement

XL 010011 00110 00001 / crxor Condition Register XOR

X 011111 10111 10110 / dcba Data Cache Block Allocate

X 011111 00010 10110 / dcbf Data Cache Block Flush

X 011111 01110 10110 / dcbi Data Cache Block Invalidate

X 011111 00001 10110 / dcbst Data Cache Block Store

X 011111 01000 10110 / dcbt Data Cache Block Touch

X 011111 00111 10110 / dcbtst Data Cache Block Touch for Store

X 011111 11111 10110 / dcbz Data Cache Block set to Zero

X 011111 01111 01011 0 divw Divide Word

X 011111 01111 01011 1 divw. Divide Word and record CR

X 011111 11111 01011 0 divwo Divide Word and record OV

X 011111 11111 01011 1 divwo. Divide Word and record OV and CR

X 011111 01110 01011 0 divwu Divide Word Unsigned

Table 110. Instructions sorted by mnemonic (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

Instruction model UM0434

126/391

X 011111 01110 01011 1 divwu. Divide Word Unsigned and record CR

X 011111 11110 01011 0 divwuo Divide Word Unsigned and record OV

X 011111 11110 01011 1 divwuo. Divide Word Unsigned and record OV and CR

X 011111 01000 11100 0 eqv Equivalent

X 011111 01000 11100 1 eqv. Equivalent and record CR

X 011111 11101 11010 0 extsb Extend Sign Byte

X 011111 11101 11010 1 extsb. Extend Sign Byte and record CR

X 011111 11100 11010 0 extsh Extend Sign Half Word

X 011111 11100 11010 1 extsh. Extend Sign Half Word and record CR

X 111111 01000 01000 0 fabs(1) Floating Absolute Value

X 111111 01000 01000 1 fabs.(1) Floating Absolute Value and record CR

A 111111 ––––– 10101 0 fadd1(1) Floating Add

A 111111 ––––– 10101 1 fadd.(1) Floating Add and record CR

A 111011 ––––– 10101 0 fadds(1) Floating Add Single

A 111011 ––––– 10101 1 fadds.(1) Floating Add Single and record CR

X 111111 11010 01110 / fcfid(1) Floating Convert From Int Doubleword

X 111111 00001 00000 / fcmpo(1) Floating Compare Ordered

X 111111 00000 00000 / fcmpu(1) Floating Compare Unordered

X 111111 11001 01110 / fctid(1) Floating Convert To Int Doubleword

X 111111 11001 01111 / fctidz(1) Floating Convert To Int Doubleword with round to Zero

X 111111 00000 01110 0 fctiw(1) Floating Convert To Int Word

X 111111 00000 01110 1 fctiw.(1) Floating Convert To Int Word and record CR

X 111111 00000 01111 0 fctiwz(1) Floating Convert To Int Word with round to Zero

X 111111 00000 01111 1 fctiwz.(1) Floating convert to Int word with round to zero & record CR

A 111111 ––––– 10010 0 fdiv(1) Floating Divide

A 111111 ––––– 10010 1 fdiv.(1) Floating Divide and record CR

A 111011 ––––– 10010 0 fdivs(1) Floating Divide Single

A 111011 ––––– 10010 1 fdivs.(1) Floating Divide Single and record CR

A 111111 ––––– 11101 0 fmadd(1) Floating Multiply-Add

A 111111 ––––– 11101 1 fmadd.(1) Floating Multiply-Add and record CR

A 111011 ––––– 11101 0 fmadds(1) Floating Multiply-Add Single

A 111011 ––––– 11101 1 fmadds.(1) Floating Multiply-Add Single and record CR

X 111111 00010 01000 0 fmr(1) Floating Move Register

Table 110. Instructions sorted by mnemonic (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

UM0434 Instruction model

 127/391

X 111111 00010 01000 1 fmr.(1) Floating Move Register and record CR

A 111111 ––––– 11100 0 fmsub(1) Floating Multiply-Subtract

A 111111 ––––– 11100 1 fmsub.(1) Floating Multiply-Subtract and record CR

A 111011 ––––– 11100 0 fmsubs(1) Floating Multiply-Subtract Single

A 111011 ––––– 11100 1 fmsubs.(1) Floating Multiply-Subtract Single and record CR

A 111111 ––––– 11001 0 fmul(1) Floating Multiply

A 111111 ––––– 11001 1 fmul.(1) Floating Multiply and record CR

A 111011 ––––– 11001 0 fmuls(1) Floating Multiply Single

A 111011 ––––– 11001 1 fmuls.(1) Floating Multiply Single and record CR

X 111111 00100 01000 0 fnabs(1) Floating Negative Absolute Value

X 111111 00100 01000 1 fnabs.(1) Floating Negative Absolute Value and record CR

X 111111 00001 01000 0 fneg(1) Floating Negate

X 111111 00001 01000 1 fneg.(1) Floating Negate and record CR

A 111111 ––––– 11111 0 fnmadd(1) Floating Negative Multiply-Add

A 111111 ––––– 11111 1 fnmadd.(1) Floating Negative Multiply-Add and record CR

A 111011 ––––– 11111 0 fnmadds(1) Floating Negative Multiply-Add Single

A 111011 ––––– 11111 1 fnmadds(1) Floating Negative Multiply-Add Single and record CR

A 111111 ––––– 11110 0 fnmsub(1) Floating Negative Multiply-Subtract

A 111111 ––––– 11110 1 fnmsub.(1) Floating Negative Multiply-Subtract and record CR

A 111011 ––––– 11110 0 fnmsubs(1) Floating Negative Multiply-Subtract Single

A 111011 ––––– 11110 1 fnmsubs(1) Floating Negative Multiply-Subtract Single and record CR

A 111011 ––––– 11000 0 fres(1) Floating Reciprocal Estimate Single

A 111011 ––––– 11000 1 fres.(1) Floating Reciprocal Estimate Single and record CR

X 111111 00000 01100 0 frsp(1) Floating Round to Single-Precision

X 111111 00000 01100 1 frsp.(1) Floating Round to Single-Precision and record CR

A 111111 ––––– 11010 0 frsqrte(1) Floating Reciprocal Square Root Estimate

A 111111 ––––– 11010 1 frsqrte.(1) Floating Reciprocal Square Root Estimate and record CR

A 111111 ––––– 10111 0 fsel(1) Floating Select

A 111111 ––––– 10111 1 fsel.(1) Floating Select and record CR

A 111111 ––––– 10110 0 fsqrt(1) Floating Square Root

A 111111 ––––– 10110 1 fsqrt.(1) Floating Square Root and record CR

A 111011 ––––– 10110 0 fsqrts(1) Floating Square Root Single

A 111011 ––––– 10110 1 fsqrts.(1) Floating Square Root Single and record CR

Table 110. Instructions sorted by mnemonic (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

Instruction model UM0434

128/391

A 111111 ––––– 10100 0 fsub(1) Floating Subtract

A 111111 ––––– 10100 1 fsub.(1) Floating Subtract and record CR

A 111011 ––––– 10100 0 fsubs(1) Floating Subtract Single

A 111011 ––––– 10100 1 fsubs.(1) Floating Subtract Single and record CR

X 011111 11110 10110 / icbi Instruction Cache Block Invalidate

X 011111 00000 10110 / icbt Instruction Cache Block Touch

X 011111 ––––– 01111 / isel (2) Integer Select

XL 010011 00100 10110 / isync Instruction Synchronize

D 100010 ––––– ––––– – lbz Load Byte and Zero

D 100011 ––––– ––––– – lbzu Load Byte and Zero with Update

X 011111 00011 10111 / lbzux Load Byte and Zero with Update Indexed

X 011111 00010 10111 / lbzx Load Byte and Zero Indexed

D 110010 ––––– ––––– – lfd (1) Load Floating-Point Double

D 110011 ––––– ––––– – lfdu (1) Load Floating-Point Double with Update

X 011111 10011 10111 / lfdux (1) Load Floating-Point Double with Update Indexed

X 011111 10010 10111 / lfdx (1) Load Floating-Point Double Indexed

D 110000 ––––– ––––– – lfs (1) Load Floating-Point Single

D 110001 ––––– ––––– – lfsu (1) Load Floating-Point Single with Update

X 011111 10001 10111 / lfsux (1) Load Floating-Point Single with Update Indexed

X 011111 10000 10111 / lfsx (1) Load Floating-Point Single Indexed

D 101010 ––––– ––––– – lha Load Half Word Algebraic

D 101011 ––––– ––––– – lhau Load Half Word Algebraic with Update

X 011111 01011 10111 / lhaux Load Half Word Algebraic with Update Indexed

X 011111 01010 10111 / lhax Load Half Word Algebraic Indexed

X 011111 11000 10110 / lhbrx Load Half Word Byte-Reverse Indexed

D 101000 ––––– ––––– – lhz Load Half Word and Zero

D 101001 ––––– ––––– – lhzu Load Half Word and Zero with Update

X 011111 01001 10111 / lhzux Load Half Word and Zero with Update Indexed

X 011111 01000 10111 / lhzx Load Half Word and Zero Indexed

D 101110 ––––– ––––– – lmw Load Multiple Word

X 011111 10010 10101 / lswi(3) Load String Word Immediate

X 011111 10000 10101 / lswx(3) Load String Word Indexed

X 011111 00000 10100 / lwarx(4) Load Word and Reserve Indexed

Table 110. Instructions sorted by mnemonic (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

UM0434 Instruction model

 129/391

X 011111 10000 10110 / lwbrx Load Word Byte-Reverse Indexed

D 100000 ––––– ––––– – lwz Load Word and Zero

D 100001 ––––– ––––– – lwzu Load Word and Zero with Update

X 011111 00001 10111 / lwzux Load Word and Zero with Update Indexed

X 011111 00000 10111 / lwzx Load Word and Zero Indexed

X 011111 11010 10110 / mbar(4) Memory Barrier

XL 010011 00000 00000 / mcrf Move Condition Register Field

X 111111 00010 00000 / mcrfs(1) Move to Condition Register from FPSCR

X 011111 10000 00000 / mcrxr Move to Condition Register from XER

X 011111 01000 10011 / mfapidi3 Move From APID Indirect

X 011111 00000 10011 / mfcr Move From Condition Register

XFX 011111 01010 00011 / mfdcr(3) Move From Device Control Register

X 011111 01000 00011 / mfdcrx(3) Move From Device Control Register Indexed

X 111111 10010 00111 0 mffs(1) Move From FPSCR

X 111111 10010 00111 1 mffs.(1) Move From FPSCR and record CR

X 011111 00010 10011 / mfmsr Move From Machine State Register

XFX 011111 01010 10011 / mfspr Move From Special Purpose Register

X 011111 10010 10110 / msync(4) Memory Synchronize

XFX 011111 00100 10000 / mtcrf Move To Condition Register Fields

XFX 011111 01110 00011 / mtdcr(3) Move To Device Control Register

X 011111 01100 00011 / mtdcrx(3) Move To Device Control Register Indexed

X 111111 00010 00110 0 mtfsb0(1) Move To FPSCR Bit 0

X 111111 00010 00110 1 mtfsb0.(1) Move To FPSCR Bit 0 and record CR

X 111111 00001 00110 0 mtfsb1(1) Move To FPSCR Bit 1

X 111111 00001 00110 1 mtfsb1.(1) Move To FPSCR Bit 1 and record CR

XFL 111111 10110 00111 0 mtfsf(1) Move To FPSCR Fields

XFL 111111 10110 00111 1 mtfsf.(1) Move To FPSCR Fields and record CR

X 111111 00100 00110 0 mtfsfi(1) Move To FPSCR Field Immediate

X 111111 00100 00110 1 mtfsfi.(1) Move To FPSCR Field Immediate and record CR

X 011111 00100 10010 / mtmsr Move To Machine State Register

XFX 011111 01110 10011 / mtspr Move To Special Purpose Register

X 011111 /0010 01011 0 mulhw Multiply High Word

X 011111 /0010 01011 1 mulhw. Multiply High Word and record CR

Table 110. Instructions sorted by mnemonic (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

Instruction model UM0434

130/391

X 011111 /0000 01011 0 mulhwu Multiply High Word Unsigned

X 011111 /0000 01011 1 mulhwu. Multiply High Word Unsigned and record CR

D 000111 ––––– ––––– – mulli Multiply Low Immediate

X 011111 00111 01011 0 mullw Multiply Low Word

X 011111 00111 01011 1 mullw. Multiply Low Word and record CR

X 011111 10111 01011 0 mullwo Multiply Low Word and record OV

X 011111 10111 01011 1 mullwo. Multiply Low Word and record OV and CR

X 011111 01110 11100 0 nand NAND

X 011111 01110 11100 1 nand. NAND and record CR

X 011111 00011 01000 0 neg Negate

X 011111 00011 01000 1 neg. Negate and record CR

X 011111 10011 01000 0 nego Negate and record OV

X 011111 10011 01000 1 nego. Negate and record OV and record CR

X 011111 00011 11100 0 nor NOR

X 011111 00011 11100 1 nor. NOR and record CR

X 011111 01101 11100 0 or OR

X 011111 01101 11100 1 or. OR and record CR

X 011111 01100 11100 0 orc OR with Complement

X 011111 01100 11100 1 orc. OR with Complement and record CR

D 011000 ––––– ––––– – ori OR Immediate

D 011001 ––––– ––––– – oris OR Immediate Shifted

XL 010011 00001 10011 / rfci Return From Critical Interrupt

XL 010011 00001 00111 / rfdi(5) Return From Debug Interrupt

XL 010011 00001 10010 / rfi Return From Interrupt

M 010100 ––––– ––––– 0 rlwimi Rotate Left Word Immed then Mask Insert

M 010100 ––––– ––––– 1 rlwimi. Rotate Left Word Immed then Mask Insert and record CR

M 010101 ––––– ––––– 0 rlwinm Rotate Left Word Immed then AND with Mask

M 010101 ––––– ––––– 1 rlwinm. Rotate left word Immed then AND with Mask & record CR

M 010111 ––––– ––––– 0 rlwnm Rotate Left Word then AND with Mask

M 010111 ––––– ––––– 1 rlwnm. Rotate Left Word then AND with Mask and record CR

SC 010001 / / / / / / / / /1 / sc System Call

X 011111 00000 11000 0 slw Shift Left Word

X 011111 00000 11000 1 slw. Shift Left Word and record CR

Table 110. Instructions sorted by mnemonic (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

UM0434 Instruction model

 131/391

X 011111 11000 11000 0 sraw Shift Right Algebraic Word

X 011111 11000 11000 1 sraw. Shift Right Algebraic Word and record CR

X 011111 11001 11000 0 srawi Shift Right Algebraic Word Immediate

X 011111 11001 11000 1 srawi. Shift Right Algebraic Word Immediate and record CR

X 011111 10000 11000 0 srw Shift Right Word

X 011111 10000 11000 1 srw. Shift Right Word and record CR

D 100110 ––––– ––––– – stb Store Byte

D 100111 ––––– ––––– – stbu Store Byte with Update

X 011111 00111 10111 / stbux Store Byte with Update Indexed

X 011111 00110 10111 / stbx Store Byte Indexed

D 110110 ––––– ––––– – stfd(1) Store Floating-Point Double

D 110111 ––––– ––––– – stfdu(1) Store Floating-Point Double with Update

X 011111 10111 10111 / stfdux(1) Store Floating-Point Double with Update Indexed

X 011111 10110 10111 / stfdx(1) Store Floating-Point Double Indexed

X 011111 11110 10111 / stfiwx(1) Store Floating-Point as Int Word Indexed

D 110100 ––––– ––––– – stfs(1) Store Floating-Point Single

D 110101 ––––– ––––– – stfsu(1) Store Floating-Point Single with Update

X 011111 10101 10111 / stfsux(1) Store Floating-Point Single with Update Indexed

X 011111 10100 10111 / stfsx(1) Store Floating-Point Single Indexed

D 101100 ––––– ––––– – sth Store Half Word

X 011111 11100 10110 / sthbrx Store Half Word Byte-Reverse Indexed

D 101101 ––––– ––––– – sthu Store Half Word with Update

X 011111 01101 10111 / sthux Store Half Word with Update Indexed

X 011111 01100 10111 / sthx Store Half Word Indexed

D 101111 ––––– ––––– – stmw Store Multiple Word

X 011111 10110 10101 / stswi(3) Store String Word Immediate

X 011111 10100 10101 / stswx(3) Store String Word Indexed

D 100100 ––––– ––––– – stw Store Word

X 011111 10100 10110 / stwbrx Store Word Byte-Reverse Indexed

X 011111 00100 10110 1 stwcx.(4) Store Word Conditional Indexed and record CR

D 100101 ––––– ––––– – stwu Store Word with Update

X 011111 00101 10111 / stwux Store Word with Update Indexed

X 011111 00100 10111 / stwx Store Word Indexed

Table 110. Instructions sorted by mnemonic (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

Instruction model UM0434

132/391

X 011111 00001 01000 0 subf Subtract From

X 011111 00001 01000 1 subf. Subtract From and record CR

X 011111 00000 01000 0 subfc Subtract From Carrying

X 011111 00000 01000 1 subfc. Subtract From Carrying and record CR

X 011111 10000 01000 0 subfco Subtract From Carrying and record OV

X 011111 10000 01000 1 subfco. Subtract From Carrying and record OV and CR

X 011111 00100 01000 0 subfe Subtract From Extended with CA

X 011111 00100 01000 1 subfe. Subtract From Extended with CA and record CR

X 011111 10100 01000 0 subfeo Subtract From Extended with CA and record OV

X 011111 10100 01000 1 subfeo. Subtract From Extended with CA and record OV and CR

D 001000 ––––– ––––– – subfic Subtract From Immediate Carrying

X 011111 00111 01000 0 subfme Subtract From Minus One Extended with CA

X 011111 00111 01000 1 subfme. Subtract from minus one extended with CA & record CR

X 011111 10111 01000 0 subfmeo Subtract from minus one extended with CA and record OV

X 011111 10111 01000 1 subfmeo. Subtract from minus one extended with CA & record OV & CR

X 011111 10001 01000 0 subfo Subtract From and record OV

X 011111 10001 01000 1 subfo. Subtract From and record OV and CR

X 011111 00110 01000 0 subfze Subtract From Zero Extended with CA

X 011111 00110 01000 1 subfze. Subtract From Zero Extended with CA and record CR

X 011111 10110 01000 0 subfzeo Subtract From Zero Extended with CA and record OV

X 011111 10110 01000 1 subfzeo. Subtract from zero extended with CA & record OV and CR

X 011111 11000 10010 / tlbivax TLB Invalidate Virtual Address Indexed

X 011111 11101 10010 / tlbre TLB Read Entry

X 011111 11100 10010 / tlbsx TLB Search Indexed

X 011111 10001 10110 / tlbsync TLB Synchronize

X 011111 11110 10010 / tlbwe TLB Write Entry

X 011111 00000 00100 / tw Trap Word

D 000011 ––––– ––––– – twi Trap Word Immediate

X 011111 00100 00011 / wrtee Write External Enable

X 011111 00101 00011 / wrteei Write External Enable Immediate

X 011111 01001 11100 0 xor XOR

X 011111 01001 11100 1 xor. XOR and record CR

Table 110. Instructions sorted by mnemonic (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

UM0434 Instruction model

 133/391

5.13.2 Instruction index sorted by opcode

Table 111 lists instructions by opcode.

D 011010 ––––– ––––– – xori XOR Immediate

D 011011 ––––– ––––– – xoris XOR Immediate Shifted

1. Attempted execution causes an unimplemented exception if MSR[FP]=1, or an FP Unavailable exception if MSR[FP]=0.

2. EIS-defined isel instruction, refer to Chapter 5.10.1: Integer select APU on page 112.”

3. The core CPU will take an illegal instruction exception for unsupported DCR values.

4. See Chapter 5.7: Memory synchronization and reservation instructions on page 111.”

5. See Chapter 5.10.2: Debug APU on page 112.”

Table 110. Instructions sorted by mnemonic (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

Legend:

- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1

? Allocated for implementation-dependent use.

Table 111. Instructions sorted by opcode

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

D 000011 ––––– ––––– – twi Trap Word Immediate

D 000111 ––––– ––––– – mulli Multiply Low Immediate

D 001000 ––––– ––––– – subfic Subtract From Immediate Carrying

D 001010 ––––– ––––– – cmpli Compare Logical Immediate

D 001011 ––––– ––––– – cmpi Compare Immediate

D 001100 ––––– ––––– – addic Add Immediate Carrying

D 001101 ––––– ––––– – addic. Add Immediate Carrying and record CR

D 001110 ––––– ––––– – addi Add Immediate

D 001111 ––––– ––––– – addis Add Immediate Shifted

B 010000 ––––– ––––0 0 bc Branch Conditional

B 010000 ––––– ––––0 1 bcl Branch Conditional and Link

B 010000 ––––– ––––1 0 bca Branch Conditional Absolute

B 010000 ––––– ––––1 1 bcla Branch Conditional and Link Absolute

SC 010001 / / / / / / / / / 1 / sc System Call

Instruction model UM0434

134/391

I 010010 ––––– ––––0 0 b Branch

I 010010 ––––– ––––0 1 bl Branch and Link

I 010010 ––––– ––––1 0 ba Branch Absolute

I 010010 ––––– ––––1 1 bla Branch and Link Absolute

XL 010011 00000 00000 / mcrf Move Condition Register Field

XL 010011 00000 10000 0 bclr Branch Conditional to Link Register

XL 010011 00000 10000 1 bclrl Branch Conditional to Link Register and Link

XL 010011 00001 00001 / crnor Condition Register NOR

XL 010011 00001 00111 / rfdi Return From Debug Interrupt

XL 010011 00001 10010 / rfi Return From Interrupt

XL 010011 00001 10011 / rfci Return From Critical Interrupt

XL 010011 00100 00001 / crandc Condition Register AND with Complement

XL 010011 00100 10110 / isync Instruction Synchronize

XL 010011 00110 00001 / crxor Condition Register XOR

XL 010011 00111 00001 / crnand Condition Register NAND

XL 010011 01000 00001 / crand Condition Register AND

XL 010011 01001 00001 / creqv Condition Register Equivalent

XL 010011 01101 00001 / crorc Condition Register OR with Complement

XL 010011 01110 00001 / cror Condition Register OR

XL 010011 10000 10000 0 bcctr Branch Conditional to Count Register

XL 010011 10000 10000 1 bcctrl Branch Conditional to Count Register and Link

M 010100 ––––– ––––– 0 rlwimi Rotate Left Word Immed then Mask Insert

M 010100 ––––– ––––– 1 rlwimi. Rotate Left Word Immed then Mask Insert and record CR

M 010101 ––––– ––––– 0 rlwinm Rotate Left Word Immed then AND with Mask

M 010101 ––––– ––––– 1 rlwinm. Rotate Left Word Immed then AND with Mask and record CR

M 010111 ––––– ––––– 0 rlwnm Rotate Left Word then AND with Mask

M 010111 ––––– ––––– 1 rlwnm. Rotate Left Word then AND with Mask and record CR

D 011000 ––––– ––––– – ori OR Immediate

D 011001 ––––– ––––– – oris OR Immediate Shifted

D 011010 ––––– ––––– – xori XOR Immediate

D 011011 ––––– ––––– – xoris XOR Immediate Shifted

D 011100 ––––– ––––– – andi. AND Immediate and record CR

D 011101 ––––– ––––– – andis. AND Immediate Shifted and record CR

Table 111. Instructions sorted by opcode (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

UM0434 Instruction model

 135/391

?? 011111 ––––– 01111 / isel Integer Select

X 011111 00000 00000 / cmp Compare

X 011111 00000 00100 / tw Trap Word

X 011111 00000 01000 0 subfc Subtract From Carrying

X 011111 00000 01000 1 subfc. Subtract From Carrying and record CR

X 011111 00000 01010 0 addc Add Carrying

X 011111 00000 01010 1 addc. Add Carrying and record CR

X 011111 /0000 01011 0 mulhwu Multiply High Word Unsigned

X 011111 /0000 01011 1 mulhwu. Multiply High Word Unsigned and record CR

X 011111 00000 10011 / mfcr Move From Condition Register

X 011111 00000 10100 / lwarx Load Word and Reserve Indexed

X 011111 00000 10110 / icbt Instruction Cache Block Touch

X 011111 00000 10111 / lwzx Load Word and Zero Indexed

X 011111 00000 11000 0 slw Shift Left Word

X 011111 00000 11000 1 slw. Shift Left Word and record CR

X 011111 00000 11010 0 cntlzw Count Leading Zeros Word

X 011111 00000 11010 1 cntlzw. Count Leading Zeros Word and record CR

X 011111 00000 11100 0 and AND

X 011111 00000 11100 1 and. AND and record CR

X 011111 00001 00000 / cmpl Compare Logical

X 011111 00001 01000 0 subf Subtract From

X 011111 00001 01000 1 subf. Subtract From and record CR

X 011111 00001 10110 / dcbst Data Cache Block Store

X 011111 00001 10111 / lwzux Load Word and Zero with Update Indexed

X 011111 00001 11100 0 andc AND with Complement

X 011111 00001 11100 1 andc. AND with Complement and record CR

X 011111 /0010 01011 0 mulhw Multiply High Word

X 011111 /0010 01011 1 mulhw. Multiply High Word and record CR

X 011111 00010 10011 / mfmsr Move From Machine State Register

X 011111 00010 10110 / dcbf Data Cache Block Flush

X 011111 00010 10111 / lbzx Load Byte and Zero Indexed

X 011111 00011 01000 0 neg Negate

X 011111 00011 01000 1 neg. Negate and record CR

Table 111. Instructions sorted by opcode (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

Instruction model UM0434

136/391

X 011111 00011 10111 / lbzux Load Byte and Zero with Update Indexed

X 011111 00011 11100 0 nor NOR

X 011111 00011 11100 1 nor. NOR and record CR

X 011111 00100 00011 / wrtee Write External Enable

X 011111 00100 01000 0 subfe Subtract From Extended with CA

X 011111 00100 01000 1 subfe. Subtract From Extended with CA and record CR

X 011111 00100 01010 0 adde Add Extended with CA

X 011111 00100 01010 1 adde. Add Extended with CA and record CR

XFX 011111 00100 10000 / mtcrf Move To Condition Register Fields

X 011111 00100 10010 / mtmsr Move To Machine State Register

X 011111 00100 10110 1 stwcx. Store Word Conditional Indexed and record CR

X 011111 00100 10111 / stwx Store Word Indexed

X 011111 00101 00011 / wrteei Write External Enable Immediate

X 011111 00101 10111 / stwux Store Word with Update Indexed

X 011111 00110 01000 0 subfze Subtract From Zero Extended with CA

X 011111 00110 01000 1 subfze. Subtract From Zero Extended with CA and record CR

X 011111 00110 01010 0 addze Add to Zero Extended with CA

X 011111 00110 01010 1 addze. Add to Zero Extended with CA and record CR

X 011111 00110 10111 / stbx Store Byte Indexed

X 011111 00111 01000 0 subfme Subtract From Minus One Extended with CA

X 011111 00111 01000 1 subfme. Subtract From Minus One Extended with CA and record CR

X 011111 00111 01010 0 addme Add to Minus One Extended with CA

X 011111 00111 01010 1 addme. Add to Minus One Extended with CA and record CR

X 011111 00111 01011 0 mullw Multiply Low Word

X 011111 00111 01011 1 mullw. Multiply Low Word and record CR

X 011111 00111 10110 / dcbtst Data Cache Block Touch for Store

X 011111 00111 10111 / stbux Store Byte with Update Indexed

X 011111 01000 00011 / mfdcrx Move From Device Control Register Indexed

X 011111 01000 01010 0 add Add

X 011111 01000 01010 1 add. Add and record CR

X 011111 01000 10011 / mfapidi Move From APID Indirect

X 011111 01000 10110 / dcbt Data Cache Block Touch

X 011111 01000 10111 / lhzx Load Halfword and Zero Indexed

Table 111. Instructions sorted by opcode (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

UM0434 Instruction model

 137/391

X 011111 01000 11100 0 eqv Equivalent

X 011111 01000 11100 1 eqv. Equivalent and record CR

X 011111 01001 10111 / lhzux Load Halfword and Zero with Update Indexed

X 011111 01001 11100 0 xor XOR

X 011111 01001 11100 1 xor. XOR and record CR

XFX 011111 01010 00011 / mfdcr Move From Device Control Register

XFX 011111 01010 10011 / mfspr Move From Special Purpose Register

X 011111 01010 10111 / lhax Load Halfword Algebraic Indexed

X 011111 01011 10111 / lhaux Load Halfword Algebraic with Update Indexed

X 011111 01100 00011 / mtdcrx Move To Device Control Register Indexed

X 011111 01100 10111 / sthx Store Halfword Indexed

X 011111 01100 11100 0 orc OR with Complement

X 011111 01100 11100 1 orc. OR with Complement and record CR

X 011111 01101 10111 / sthux Store Halfword with Update Indexed

X 011111 01101 11100 0 or OR

X 011111 01101 11100 1 or. OR and record CR

XFX 011111 01110 00011 / mtdcr Move To Device Control Register

X 011111 01110 01011 0 divwu Divide Word Unsigned

X 011111 01110 01011 1 divwu. Divide Word Unsigned and record CR

XFX 011111 01110 10011 / mtspr Move To Special Purpose Register

X 011111 01110 10110 / dcbi Data Cache Block Invalidate

X 011111 01110 11100 0 nand NAND

X 011111 01110 11100 1 nand. NAND and record CR

X 011111 01111 01011 0 divw Divide Word

X 011111 01111 01011 1 divw. Divide Word and record CR

X 011111 10000 00000 / mcrxr Move to Condition Register from XER

X 011111 10000 01000 0 subfco Subtract From Carrying and record OV

X 011111 10000 01000 1 subfco. Subtract From Carrying and record OV and CR

X 011111 10000 01010 0 addco Add Carrying and record OV

X 011111 10000 01010 1 addco. Add Carrying and record OV and CR

X 011111 10000 10101 / lswx Load String Word Indexed

X 011111 10000 10110 / lwbrx Load Word Byte-Reverse Indexed

X 011111 10000 10111 / lfsx Load Floating-Point Single Indexed

Table 111. Instructions sorted by opcode (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

Instruction model UM0434

138/391

X 011111 10000 11000 0 srw Shift Right Word

X 011111 10000 11000 1 srw. Shift Right Word and record CR

X 011111 10001 01000 0 subfo Subtract From and record OV

X 011111 10001 01000 1 subfo. Subtract From and record OV and CR

X 011111 10001 10110 / tlbsync TLB Synchronize

X 011111 10001 10111 / lfsux Load Floating-Point Single with Update Indexed

X 011111 10010 10101 / lswi Load String Word Immediate

X 011111 10010 10110 / msync Memory Synchronize

X 011111 10010 10111 / lfdx Load Floating-Point Double Indexed

X 011111 10011 01000 0 nego Negate and record OV

X 011111 10011 01000 1 nego. Negate and record OV and record CR

X 011111 10011 10111 / lfdux Load Floating-Point Double with Update Indexed

X 011111 10100 01000 0 subfeo Subtract From Extended with CA and record OV

X 011111 10100 01000 1 subfeo. Subtract From Extended with CA and record OV and CR

X 011111 10100 01010 0 addeo Add Extended with CA and record OV

X 011111 10100 01010 1 addeo. Add Extended with CA and record OV and CR

X 011111 10100 10101 / stswx Store String Word Indexed

X 011111 10100 10110 / stwbrx Store Word Byte-Reverse Indexed

X 011111 10100 10111 / stfsx Store Floating-Point Single Indexed

X 011111 10101 10111 / stfsux Store Floating-Point Single with Update Indexed

X 011111 10110 01000 0 subfzeo Subtract From Zero Extended with CA and record OV

X 011111 10110 01000 1 subfzeo. Subtract From Zero Extended with CA and record OV and CR

X 011111 10110 01010 0 addzeo Add to Zero Extended with CA and record OV

X 011111 10110 01010 1 addzeo. Add to Zero Extended with CA and record OV and CR

X 011111 10110 10101 / stswi Store String Word Immediate

X 011111 10110 10111 / stfdx Store Floating-Point Double Indexed

X 011111 10111 01000 0 subfmeo Subtract From Minus One Extended with CA and record OV

X 011111 10111 01000 1 subfmeo.
Subtract from minus one extended with CA & record OV &

CR

X 011111 10111 01010 0 addmeo Add to Minus One Extended with CA and record OV

X 011111 10111 01010 1 addmeo. Add to Minus One Extended with CA and record OV and CR

X 011111 10111 01011 0 mullwo Multiply Low Word and record OV

X 011111 10111 01011 1 mullwo. Multiply Low Word and record OV and CR

Table 111. Instructions sorted by opcode (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

UM0434 Instruction model

 139/391

X 011111 10111 10110 / dcba Data Cache Block Allocate

X 011111 10111 10111 / stfdux Store Floating-Point Double with Update Indexed

X 011111 11000 01010 0 addo Add and record OV

X 011111 11000 01010 1 addo. Add and record OV and CR

X 011111 11000 10010 / tlbivax TLB Invalidate Virtual Address Indexed

X 011111 11000 10110 / lhbrx Load Halfword Byte-Reverse Indexed

X 011111 11000 11000 0 sraw Shift Right Algebraic Word

X 011111 11000 11000 1 sraw. Shift Right Algebraic Word and record CR

X 011111 11001 11000 0 srawi Shift Right Algebraic Word Immediate

X 011111 11001 11000 1 srawi. Shift Right Algebraic Word Immediate and record CR

X 011111 11010 10110 / mbar Memory Barrier

X 011111 11100 10010 ? tlbsx TLB Search Indexed

X 011111 11100 10110 / sthbrx Store Halfword Byte-Reverse Indexed

X 011111 11100 11010 0 extsh Extend Sign Halfword

X 011111 11100 11010 1 extsh. Extend Sign Halfword and record CR

X 011111 11101 10010 / tlbre TLB Read Entry

X 011111 11101 11010 0 extsb Extend Sign Byte

X 011111 11101 11010 1 extsb. Extend Sign Byte and record CR

X 011111 11110 01011 0 divwuo Divide Word Unsigned and record OV

X 011111 11110 01011 1 divwuo. Divide Word Unsigned and record OV and CR

X 011111 11110 10010 / tlbwe TLB Write Entry

X 011111 11110 10110 / icbi Instruction Cache Block Invalidate

X 011111 11110 10111 / stfiwx Store Floating-Point as Int Word Indexed

X 011111 11111 01011 0 divwo Divide Word and record OV

X 011111 11111 01011 1 divwo. Divide Word and record OV and CR

X 011111 11111 10110 / dcbz Data Cache Block set to Zero

D 100000 ––––– ––––– – lwz Load Word and Zero

D 100001 ––––– ––––– – lwzu Load Word and Zero with Update

D 100010 ––––– ––––– – lbz Load Byte and Zero

D 100011 ––––– ––––– – lbzu Load Byte and Zero with Update

D 100100 ––––– ––––– – stw Store Word

D 100101 ––––– ––––– – stwu Store Word with Update

D 100110 ––––– ––––– – stb Store Byte

Table 111. Instructions sorted by opcode (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

Instruction model UM0434

140/391

D 100111 ––––– ––––– – stbu Store Byte with Update

D 101000 ––––– ––––– – lhz Load Halfword and Zero

D 101001 ––––– ––––– – lhzu Load Halfword and Zero with Update

D 101010 ––––– ––––– – lha Load Halfword Algebraic

D 101011 ––––– ––––– – lhau Load Halfword Algebraic with Update

D 101100 ––––– ––––– – sth Store Halfword

D 101101 ––––– ––––– – sthu Store Halfword with Update

D 101110 ––––– ––––– – lmw Load Multiple Word

D 101111 ––––– ––––– – stmw Store Multiple Word

D 110000 ––––– ––––– – lfs Load Floating-Point Single

D 110001 ––––– ––––– – lfsu Load Floating-Point Single with Update

D 110010 ––––– ––––– – lfd Load Floating-Point Double

D 110011 ––––– ––––– – lfdu Load Floating-Point Double with Update

D 110100 ––––– ––––– – stfs Store Floating-Point Single

D 110101 ––––– ––––– – stfsu Store Floating-Point Single with Update

D 110110 ––––– ––––– – stfd Store Floating-Point Double

D 110111 ––––– ––––– – stfdu Store Floating-Point Double with Update

A 111011 ––––– 10010 0 fdivs Floating Divide Single

A 111011 ––––– 10010 1 fdivs. Floating Divide Single and record CR

A 111011 ––––– 10100 0 fsubs Floating Subtract Single

A 111011 ––––– 10100 1 fsubs. Floating Subtract Single and record CR

A 111011 ––––– 10101 0 fadds Floating Add Single

A 111011 ––––– 10101 1 fadds. Floating Add Single and record CR

A 111011 ––––– 10110 0 fsqrts Floating Square Root Single

A 111011 ––––– 10110 1 fsqrts. Floating Square Root Single and record CR

A 111011 ––––– 11000 0 fres Floating Reciprocal Estimate Single

A 111011 ––––– 11000 1 fres. Floating Reciprocal Estimate Single and record CR

A 111011 ––––– 11001 0 fmuls Floating Multiply Single

A 111011 ––––– 11001 1 fmuls. Floating Multiply Single and record CR

A 111011 ––––– 11100 0 fmsubs Floating Multiply-Subtract Single

A 111011 ––––– 11100 1 fmsubs. Floating Multiply-Subtract Single and record CR

A 111011 ––––– 11101 0 fmadds Floating Multiply-Add Single

A 111011 ––––– 11101 1 fmadds. Floating Multiply-Add Single and record CR

Table 111. Instructions sorted by opcode (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

UM0434 Instruction model

 141/391

A 111011 ––––– 11110 0 fnmsubs Floating Negative Multiply-Subtract Single

A 111011 ––––– 11110 1 fnmsubs. Floating Negative Multiply-Subtract Single and record CR

A 111011 ––––– 11111 0 fnmadds Floating Negative Multiply-Add Single

A 111011 ––––– 11111 1 fnmadds. Floating Negative Multiply-Add Single and record CR

A 111111 ––––– 10010 0 fdiv Floating Divide

A 111111 ––––– 10010 1 fdiv. Floating Divide and record CR

A 111111 ––––– 10100 0 fsub Floating Subtract

A 111111 ––––– 10100 1 fsub. Floating Subtract and record CR

A 111111 ––––– 10101 0 fadd Floating Add

A 111111 ––––– 10101 1 fadd. Floating Add and record CR

A 111111 ––––– 10110 0 fsqrt Floating Square Root

A 111111 ––––– 10110 1 fsqrt. Floating Square Root and record CR

A 111111 ––––– 10111 0 fsel Floating Select

A 111111 ––––– 10111 1 fsel. Floating Select and record CR

A 111111 ––––– 11001 0 fmul Floating Multiply

A 111111 ––––– 11001 1 fmul. Floating Multiply and record CR

A 111111 ––––– 11010 0 frsqrte Floating Reciprocal Square Root Estimate

A 111111 ––––– 11010 1 frsqrte. Floating Reciprocal Square Root Estimate and record CR

A 111111 ––––– 11100 0 fmsub Floating Multiply-Subtract

A 111111 ––––– 11100 1 fmsub. Floating Multiply-Subtract and record CR

A 111111 ––––– 11101 0 fmadd Floating Multiply-Add

A 111111 ––––– 11101 1 fmadd. Floating Multiply-Add and record CR

A 111111 ––––– 11110 0 fnmsub Floating Negative Multiply-Subtract

A 111111 ––––– 11110 1 fnmsub. Floating Negative Multiply-Subtract and record CR

A 111111 ––––– 11111 0 fnmadd Floating Negative Multiply-Add

A 111111 ––––– 11111 1 fnmadd. Floating Negative Multiply-Add and record CR

X 111111 00000 00000 / fcmpu Floating Compare Unordered

X 111111 00000 01100 0 frsp Floating Round to Single-Precision

X 111111 00000 01100 1 frsp. Floating Round to Single-Precision and record CR

X 111111 00000 01110 0 fctiw Floating Convert To Int Word

X 111111 00000 01110 1 fctiw. Floating Convert To Int Word and record CR

X 111111 00000 01111 0 fctiwz Floating Convert To Int Word with round to Zero

Table 111. Instructions sorted by opcode (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

Instruction model UM0434

142/391

Table 112 lists all supported instructions, including VLE instructions.

X 111111 00000 01111 1 fctiwz.
Floating Convert To Int Word with round to Zero and record

CR

X 111111 00001 00000 / fcmpo Floating Compare Ordered

X 111111 00001 00110 0 mtfsb1 Move To FPSCR Bit 1

X 111111 00001 00110 1 mtfsb1. Move To FPSCR Bit 1 and record CR

X 111111 00001 01000 0 fneg Floating Negate

X 111111 00001 01000 1 fneg. Floating Negate and record CR

X 111111 00010 00000 / mcrfs Move to Condition Register from FPSCR

X 111111 00010 00110 0 mtfsb0 Move To FPSCR Bit 0

X 111111 00010 00110 1 mtfsb0. Move To FPSCR Bit 0 and record CR

X 111111 00010 01000 0 fmr Floating Move Register

X 111111 00010 01000 1 fmr. Floating Move Register and record CR

X 111111 00100 00110 0 mtfsfi Move To FPSCR Field Immediate

X 111111 00100 00110 1 mtfsfi. Move To FPSCR Field Immediate and record CR

X 111111 00100 01000 0 fnabs Floating Negative Absolute Value

X 111111 00100 01000 1 fnabs. Floating Negative Absolute Value and record CR

X 111111 01000 01000 0 fabs Floating Absolute Value

X 111111 01000 01000 1 fabs. Floating Absolute Value and record CR

X 111111 10010 00111 0 mffs Move From FPSCR

X 111111 10010 00111 1 mffs. Move From FPSCR and record CR

XFL 111111 10110 00111 0 mtfsf Move To FPSCR Fields

XFL 111111 10110 00111 1 mtfsf. Move To FPSCR Fields and record CR

X 111111 11001 01110 / fctid Floating Convert To Int Doubleword

X 111111 11001 01111 / fctidz Floating Convert To Int Doubleword with round to Zero

X 111111 11010 01110 / fcfid Floating Convert From Int Doubleword

Table 111. Instructions sorted by opcode (continued)

Format

Opcode

Mnemonic InstructionPrimary

(Inst0:5)

Extended

(Inst21:31)

Table 112. Full instruction listing

Mnemonic Instruction name Source

add Add Book E

add. Add & record CR Book E

addc Add Carrying Book E

addc. Add Carrying & record CR Book E

UM0434 Instruction model

 143/391

addco Add Carrying & record OV Book E

addco. Add Carrying & record OV & CR Book E

adde Add Extended with CA Book E

adde. Add Extended with CA & record CR Book E

addeo Add Extended with CA & record OV Book E

addeo. Add Extended with CA & record OV & CR Book E

addi Add Immediate Book E

addic Add Immediate Carrying Book E

addic. Add Immediate Carrying & record CR Book E

addis Add Immediate Shifted Book E

addme Add to Minus One Extended with CA Book E

addme. Add to Minus One Extended with CA & record CR Book E

addmeo Add to Minus One Extended with CA & record OV Book E

addmeo. Add to Minus One Extended with CA & record OV & CR Book E

addo Add & record OV Book E

addo. Add & record OV & CR Book E

addze Add to Zero Extended with CA Book E

addze. Add to Zero Extended with CA & record CR Book E

addzeo Add to Zero Extended with CA & record OV Book E

addzeo. Add to Zero Extended with CA & record OV & CR Book E

and AND Book E

and. AND & record CR Book E

andc AND with Complement Book E

andc. AND with Complement & record CR Book E

andi. AND Immediate and record CR Book E

andis. AND Immediate Shifted and record CR Book E

b Branch Book E

ba Branch Absolute Book E

bc Branch Conditional Book E

bca Branch Conditional Absolute Book E

bcctr Branch Conditional to Count Register Book E

bcctrl Branch Conditional to Count Register and Link Book E

bcl Branch Conditional and Link Book E

bcla Branch Conditional and Link Absolute Book E

bclr Branch Conditional to Link Register Book E

bclrl Branch Conditional to Link Register and Link Book E

bl Branch and Link Book E

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

Instruction model UM0434

144/391

bla Branch and Link Absolute Book E

brinc Bit Reversed Increment(1) SPE

cmp Compare Book E

cmpi Compare Immediate Book E

cmpl Compare Logical Book E

cmpli Compare Logical Immediate Book E

cntlzw Count Leading Zeros Word Book E

cntlzw. Count Leading Zeros Word and record CR Book E

crand Condition Register AND Book E

crandc Condition Register AND with Complement Book E

creqv Condition Register Equivalent Book E

crnand Condition Register NAND Book E

crnor Condition Register NOR Book E

cror Condition Register OR Book E

crorc Condition Register OR with Complement Book E

crxor Condition Register XOR Book E

dcba (2) Data Cache Block Allocate Book E

dcbf 2 Data Cache Block Flush Book E

dcbi 2 Data Cache Block Invalidate Book E

dcblc2 Data Cache Block Lock Clear Cache locking

dcbst 2 Data Cache Block Store Book E

dcbt 2 Data Cache Block Touch Book E

dcbtls 2 Data Cache Block Touch and Lock Set Cache locking

dcbtst 2 Data Cache Block Touch for Store Book E

dcbtstls 2 Data Cache Block Touch for Store and Lock Set Cache locking

dcbz 2 Data Cache Block set to Zero Book E

divw Divide Word Book E

divw. Divide Word and record CR Book E

divwo Divide Word and record OV Book E

divwo. Divide Word and record OV and CR Book E

divwu Divide Word Unsigned Book E

divwu. Divide Word Unsigned and record CR Book E

divwuo Divide Word Unsigned and record OV Book E

divwuo. Divide Word Unsigned and record OV and CR Book E

efsabs Floating-Point Absolute Value Scalar SPFP

efsadd Floating-Point Add Scalar SPFP

efscfsf Convert Floating-Point from Signed Fraction Scalar SPFP

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

UM0434 Instruction model

 145/391

efscfsi Convert Floating-Point from Signed Integer Scalar SPFP

efscfuf Convert Floating-Point from Unsigned Fraction Scalar SPFP

efscfui Convert Floating-Point from Unsigned Integer Scalar SPFP

efscmpeq Floating-Point Compare Equal Scalar SPFP

efscmpgt Floating-Point Compare Greater Than Scalar SPFP

efscmplt Floating-Point Compare Less Than Scalar SPFP

efsctsf Convert Floating-Point to Signed Fraction Scalar SPFP

efsctsi Convert Floating-Point to Signed Integer Scalar SPFP

efsctsiz Convert floating-point to signed integer with round toward zero Scalar SPFP

efsctuf Convert Floating-Point to Unsigned Fraction Scalar SPFP

efsctui Convert Floating-Point to Unsigned Integer Scalar SPFP

efsctuiz Convert floating-point to unsigned integer with round toward zero Scalar SPFP

efsdiv Floating-Point Divide Scalar SPFP

efsmul Floating-Point Multiply Scalar SPFP

efsnabs Floating-Point Negative Absolute Value Scalar SPFP

efsneg Floating-Point Negate Scalar SPFP

efssub Floating-Point Subtract Scalar SPFP

efststeq Floating-Point Test Equal Scalar SPFP

efststgt Floating-Point Test Greater Than Scalar SPFP

efststlt Floating-Point Test Less Than Scalar SPFP

eqv Equivalent Book E

eqv. Equivalent and record CR Book E

evabs Vector Absolute Value SPE

evaddiw Vector Add Immediate Word SPE

evaddsmiaaw Vector Add Signed, Modulo, Integer to Accumulator Word SPE

evaddssiaaw Vector Add Signed, Saturate, Integer to Accumulator Word SPE

evaddumiaaw Vector Add Unsigned, Modulo, Integer to Accumulator Word SPE

evaddusiaaw Vector Add Unsigned, Saturate, Integer to Accumulator Word SPE

evaddw Vector Add Word SPE

evand Vector AND SPE

evandc Vector AND with Complement SPE

evcmpeq Vector Compare Equal SPE

evcmpgts Vector Compare Greater Than Signed SPE

evcmpgtu Vector Compare Greater Than Unsigned SPE

evcmplts Vector Compare Less Than Signed SPE

evcmpltu Vector Compare Less Than Unsigned SPE

evcntlsw Vector Count Leading Sign Bits Word SPE

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

Instruction model UM0434

146/391

evcntlzw Vector Count Leading Zeros Word SPE

evdivws Vector Divide Word Signed SPE

evdivwu Vector Divide Word Unsigned SPE

eveqv Vector Equivalent SPE

evextsb Vector Extend Sign Byte SPE

evextsh Vector Extend Sign Half Word SPE

evfsabs Vector Floating-Point Absolute Value SPE

evfsabs Floating-Point Absolute Value Vector SPFP

evfsadd Vector Floating-Point Add SPE

evfsadd Floating-Point Add Vector SPFP

evfscfsf Vector Convert Floating-Point from Signed Fraction SPE

evfscfsf Convert Floating-Point from Signed Fraction Vector SPFP

evfscfsi Vector Convert Floating-Point from Signed Integer SPE

evfscfsi Convert Floating-Point from Signed Integer Vector SPFP

evfscfuf Vector Convert Floating-Point from Unsigned Fraction SPE

evfscfuf Convert Floating-Point from Unsigned Fraction Vector SPFP

evfscfui Vector Convert Floating-Point from Unsigned Integer SPE

evfscfui Convert Floating-Point from Unsigned Integer Vector SPFP

evfscmpeq Vector Floating-Point Compare Equal SPE

evfscmpeq Floating-Point Compare Equal Vector SPFP

evfscmpgt Vector Floating-Point Compare Greater Than SPE

evfscmpgt Floating-Point Compare Greater Than Vector SPFP

evfscmplt Vector Floating-Point Compare Less Than SPE

evfscmplt Floating-Point Compare Less Than Vector SPFP

evfsctsf Vector Convert Floating-Point to Signed Fraction SPE

evfsctsf Convert Floating-Point to Signed Fraction Vector SPFP

evfsctsi Vector Convert Floating-Point to Signed Integer SPE

evfsctsi Convert Floating-Point to Signed Integer Vector SPFP

evfsctsiz Vector convert floating-point to signed integer with round toward zero SPE

evfsctsiz Convert Floating-Point to Signed Integer with Round toward Zero Vector SPFP

evfsctuf Vector Convert Floating-Point to Unsigned Fraction SPE

evfsctuf Convert Floating-Point to Unsigned Fraction Vector SPFP

evfsctui Vector Convert Floating-Point to Unsigned Integer SPE

evfsctui Convert Floating-Point to Unsigned Integer Vector SPFP

evfsctuiz
Vector Convert Floating-Point to Unsigned Integer with Round toward
Zero

SPE

evfsctuiz Convert Floating-Point to Unsigned Integer with Round toward Zero Vector SPFP

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

UM0434 Instruction model

 147/391

evfsdiv Vector Floating-Point Divide SPE

evfsdiv Floating-Point Divide Vector SPFP

evfsmul Vector Floating-Point Multiply SPE

evfsmul Floating-Point Multiply Vector SPFP

evfsnabs Vector Floating-Point Negative Absolute Value SPE

evfsnabs Floating-Point Negative Absolute Value Vector SPFP

evfsneg Vector Floating-Point Negate SPE

evfsneg Floating-Point Negate Vector SPFP

evfssub Vector Floating-Point Subtract SPE

evfssub Floating-Point Subtract Vector SPFP

evfststeq Vector Floating-Point Test Equal SPE

evfststeq Floating-Point Test Equal Vector SPFP

evfststgt Vector Floating-Point Test Greater Than SPE

evfststgt Floating-Point Test Greater Than Vector SPFP

evfststlt Vector Floating-Point Test Less Than SPE

evfststlt Floating-Point Test Less Than Vector SPFP

evldd Vector Load Double Word into Double Word SPE

evlddx Vector Load Double Word into Double Word Indexed SPE

evldh Vector Load Double into Half Words SPE

evldhx Vector Load Double into Half Words Indexed SPE

evldw Vector Load Double into Two Words SPE

evldwx Vector Load Double into Two Words Indexed SPE

evlhhesplat Vector Load Half Word into Half Words Even and Splat SPE

evlhhesplatx Vector Load Half Word into Half Words Even and Splat Indexed SPE

evlhhossplat Vector Load Half Word into Half Word Odd Signed and Splat SPE

evlhhossplatx Vector Load Half Word into Half Word Odd Signed and Splat Indexed SPE

evlhhousplat Vector Load Half Word into Half Word Odd Unsigned and Splat SPE

evlhhousplatx
Vector Load Half Word into Half Word Odd Unsigned and Splat
Indexed

SPE

evlwhe Vector Load Word into Two Half Words Even SPE

evlwhex Vector Load Word into Two Half Words Even Indexed SPE

evlwhos Vector Load Word into Half Words Odd Signed (with sign extension) SPE

evlwhosx
Vector Load Word into Half Words Odd Signed Indexed (with sign
extension)

SPE

evlwhou Vector Load Word into Two Half Words Odd Unsigned (zero-extended) SPE

evlwhoux
Vector load word into two half words odd unsigned indexed (zero-
extended)

SPE

evlwhsplat Vector Load Word into Half Words and Splat SPE

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

Instruction model UM0434

148/391

evlwhsplatx Vector Load Word into Half Words and Splat Indexed SPE

evlwwsplat Vector Load Word into Word and Splat SPE

evlwwsplatx Vector Load Word into Word and Splat Indexed SPE

evmergehi Vector Merge High SPE

evmergehilo Vector Merge High/Low SPE

evmergelo Vector Merge Low SPE

evmergelohi Vector Merge Low/High SPE

evmhegsmfaa
Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and
Accumulate

SPE

evmhegsmfan
Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and
Accumulate Negative

SPE

evmhegsmiaa
Multiply half words, even, guarded, signed, modulo, integer and
accumulate

SPE

evmhegsmian
Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and
Accumulate Negative

SPE

evmhegumiaa
Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and
Accumulate

SPE

evmhegumian
Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and
Accumulate Negative

SPE

evmhesmf Vector Multiply Half Words, Even, Signed, Modulo, Fractional SPE

evmhesmfa
Vector Multiply Half Words, Even, Signed, Modulo, Fractional,
Accumulate

SPE

evmhesmfaaw
Vector Multiply Half Words, Even, Signed, Modulo, Fractional and
Accumulate into Words

SPE

evmhesmfanw
Vector Multiply Half Words, Even, Signed, Modulo, Fractional and
Accumulate Negative into Words

SPE

evmhesmi Vector Multiply Half Words, Even, Signed, Modulo, Integer SPE

evmhesmia
Vector Multiply Half Words, Even, Signed, Modulo, Integer,
Accumulate

SPE

evmhesmiaaw
Vector Multiply Half Words, Even, Signed, Modulo, Integer and
Accumulate into Words

SPE

evmhesmianw
Vector Multiply Half Words, Even, Signed, Modulo, Integer and
Accumulate Negative into Words

SPE

evmhessf Vector Multiply Half Words, Even, Signed, Saturate, Fractional SPE

evmhessfa
Vector Multiply Half Words, Even, Signed, Saturate, Fractional,
Accumulate

SPE

evmhessfaaw
Vector Multiply Half Words, Even, Signed, Saturate, Fractional and
Accumulate into Words

SPE

evmhessfanw
Vector Multiply Half Words, Even, Signed, Saturate, Fractional and
Accumulate Negative into Words

SPE

evmhessiaaw
Vector Multiply Half Words, Even, Signed, Saturate, Integer and
Accumulate into Words

SPE

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

UM0434 Instruction model

 149/391

evmhessianw
Vector Multiply Half Words, Even, Signed, Saturate, Integer and
Accumulate Negative into Words

SPE

evmheumi Vector Multiply Half Words, Even, Unsigned, Modulo, Integer SPE

evmheumia
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer,
Accumulate

SPE

evmheumiaaw
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and
Accumulate into Words

SPE

evmheumianw
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and
Accumulate Negative into Words

SPE

evmheusiaaw
Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and
Accumulate into Words

SPE

evmheusianw
Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and
Accumulate Negative into Words

SPE

evmhogsmfaa
Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and
Accumulate

SPE

evmhogsmfan
Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and
Accumulate Negative

SPE

evmhogsmiaa
Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and
Accumulate

SPE

evmhogsmian
Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and
Accumulate Negative

SPE

evmhogumiaa
Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and
Accumulate

SPE

evmhogumian
Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and
Accumulate Negative

SPE

evmhosmf Vector Multiply Half Words, Odd, Signed, Modulo, Fractional SPE

evmhosmfa
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional,
Accumulate

SPE

evmhosmfaaw
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and
Accumulate into Words

SPE

evmhosmfanw
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and
Accumulate Negative into Words

SPE

evmhosmi Vector Multiply Half Words, Odd, Signed, Modulo, Integer SPE

evmhosmia Vector Multiply Half Words, Odd, Signed, Modulo, Integer, Accumulate SPE

evmhosmiaaw
Vector Multiply Half Words, Odd, Signed, Modulo, Integer and
Accumulate into Words

SPE

evmhosmianw
Vector Multiply Half Words, Odd, Signed, Modulo, Integer and
Accumulate Negative into Words

SPE

evmhossf Vector Multiply Half Words, Odd, Signed, Saturate, Fractional SPE

evmhossfa
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional,
Accumulate

SPE

evmhossfaaw
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and
Accumulate into Words

SPE

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

Instruction model UM0434

150/391

evmhossfanw
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and
Accumulate Negative into Words

SPE

evmhossiaaw
Vector Multiply Half Words, Odd, Signed, Saturate, Integer and
Accumulate into Words

SPE

evmhossianw
Vector Multiply Half Words, Odd, Signed, Saturate, Integer and
Accumulate Negative into Words

SPE

evmhoumi Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer SPE

evmhoumia
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer,
Accumulate

SPE

evmhoumiaaw
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and
Accumulate into Words

SPE

evmhoumianw
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and
Accumulate Negative into Words

SPE

evmhousiaaw
Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and
Accumulate into Words

SPE

evmhousianw
Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and
Accumulate Negative into Words

SPE

evmra Initialize Accumulator SPE

evmwhsmf Vector Multiply Word High Signed, Modulo, Fractional SPE

evmwhsmfa Vector Multiply Word High Signed, Modulo, Fractional and Accumulate SPE

evmwhsmi Vector Multiply Word High Signed, Modulo, Integer SPE

evmwhsmia Vector Multiply Word High Signed, Modulo, Integer and Accumulate SPE

evmwhssf Vector Multiply Word High Signed, Saturate, Fractional SPE

evmwhssfa
Vector Multiply Word High Signed, Saturate, Fractional and
Accumulate

SPE

evmwhumi Vector Multiply Word High Unsigned, Modulo, Integer SPE

evmwhumia Vector Multiply Word High Unsigned, Modulo, Integer and Accumulate SPE

evmwlsmi Vector Multiply Word Low Unsigned, Modulo, Integer SPE

evmwlsmiaaw
Vector Multiply Word Low Signed, Modulo, Integer and Accumulate in
Words

SPE

evmwlsmianw
Vector Multiply Word Low Signed, Modulo, Integer and Accumulate
Negative in Words

SPE

evmwlssiaaw
Vector multiply word low signed, saturate, integer and accumulate in
words

SPE

evmwlssianw
Vector Multiply Word Low Signed, Saturate, Integer and Accumulate
Negative in Words

SPE

evmwlumia Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate SPE

evmwlumiaaw
Vector multiply word low unsigned, modulo, integer and accumulate in
words

SPE

evmwlumianw
Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate
Negative in Words

SPE

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

UM0434 Instruction model

 151/391

evmwlusiaaw
Vector Multiply Word Low Unsigned, Saturate, Integer and
Accumulate in Words

SPE

evmwlusianw
Vector Multiply Word Low Unsigned, Saturate, Integer and
Accumulate Negative in Words

SPE

evmwsmf Vector Multiply Word Signed, Modulo, Fractional SPE

evmwsmfa Vector Multiply Word Signed, Modulo, Fractional and Accumulate SPE

evmwsmfaa Vector Multiply Word Signed, Modulo, Fractional and Accumulate SPE

evmwsmfan
Vector Multiply Word Signed, Modulo, Fractional and Accumulate
Negative

SPE

evmwsmi Vector Multiply Word Signed, Modulo, Integer SPE

evmwsmia Vector Multiply Word Signed, Modulo, Integer and Accumulate SPE

evmwsmiaa Vector Multiply Word Signed, Modulo, Integer and Accumulate SPE

evmwsmian
Vector Multiply Word Signed, Modulo, Integer and Accumulate
Negative

SPE

evmwssf Vector Multiply Word Signed, Saturate, Fractional SPE

evmwssfa Vector Multiply Word Signed, Saturate, Fractional and Accumulate SPE

evmwssfaa Vector Multiply Word Signed, Saturate, Fractional and Accumulate SPE

evmwssfan
Vector Multiply Word Signed, Saturate, Fractional and Accumulate
Negative

SPE

evmwumi Vector Multiply Word Unsigned, Modulo, Integer SPE

evmwumia Vector Multiply Word Unsigned, Modulo, Integer and Accumulate SPE

evmwumiaa Vector Multiply Word Unsigned, Modulo, Integer and Accumulate SPE

evmwumian
Vector Multiply Word Unsigned, Modulo, Integer and Accumulate
Negative

SPE

evnand Vector NAND SPE

evneg Vector Negate SPE

evnor Vector NOR SPE

evor Vector OR SPE

evorc Vector OR with Complement SPE

evrlw Vector Rotate Left Word SPE

evrlwi Vector Rotate Left Word Immediate SPE

evrndw Vector Round Word SPE

evsel Vector Select SPE

evslw Vector Shift Left Word SPE

evslwi Vector Shift Left Word Immediate SPE

evsplatfi Vector Splat Fractional Immediate SPE

evsplati Vector Splat Immediate SPE

evsrwis Vector Shift Right Word Immediate Signed SPE

evsrwiu Vector Shift Right Word Immediate Unsigned SPE

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

Instruction model UM0434

152/391

evsrws Vector Shift Right Word Signed SPE

evsrwu Vector Shift Right Word Unsigned SPE

evstdd Vector Store Double of Double SPE

evstddx Vector Store Double of Double Indexed SPE

evstdh Vector Store Double of Four Half Words SPE

evstdhx Vector Store Double of Four Half Words Indexed SPE

evstdw Vector Store Double of Two Words SPE

evstdwx Vector Store Double of Two Words Indexed SPE

evstwhe Vector Store Word of Two Half Words from Even SPE

evstwhex Vector Store Word of Two Half Words from Even Indexed SPE

evstwho Vector Store Word of Two Half Words from Odd SPE

evstwhox Vector Store Word of Two Half Words from Odd Indexed SPE

evstwwe Vector Store Word of Word from Even SPE

evstwwex Vector Store Word of Word from Even Indexed SPE

evstwwo Vector Store Word of Word from Odd SPE

evstwwox Vector Store Word of Word from Odd Indexed SPE

evsubfsmiaaw Vector Subtract Signed, Modulo, Integer to Accumulator Word SPE

evsubfssiaaw Vector Subtract Signed, Saturate, Integer to Accumulator Word SPE

evsubfumiaaw Vector Subtract Unsigned, Modulo, Integer to Accumulator Word SPE

evsubfusiaaw Vector Subtract Unsigned, Saturate, Integer to Accumulator Word SPE

evsubfw Vector Subtract from Word SPE

evsubifw Vector Subtract Immediate from Word SPE

evxor Vector XOR SPE

extsb Extend Sign Byte Book E

extsb. Extend Sign Byte and record CR Book E

extsh Extend Sign Half Word Book E

extsh. Extend Sign Half Word and record CR Book E

e_add16i Add Immediate VLE (16-bit opcodes)

e_add2i. Add (2 operand) Immediate and Record CR VLE (16-bit opcodes)

e_add2is Add (2 operand) Immediate Shifted VLE (16-bit opcodes)

e_addi Add Immediate VLE (16-bit opcodes)

e_addi. Add Immediate and Record VLE (16-bit opcodes)

e_addic Add Immediate Carrying VLE (16-bit opcodes)

e_addic. Add Immediate Carrying and Record VLE (16-bit opcodes)

e_and2i. AND (2 operand) Immediate & record CR VLE (16-bit opcodes)

e_and2is. AND (2 operand) Immediate Shifted & record CR VLE (16-bit opcodes)

e_andi AND Immediate VLE (16-bit opcodes)

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

UM0434 Instruction model

 153/391

e_andi. AND Immediate and Record VLE (16-bit opcodes)

e_b Branch VLE (16-bit opcodes)

e_bc Branch Conditional VLE (16-bit opcodes)

e_bcl Branch Conditional & Link VLE (16-bit opcodes)

e_bl Branch & Link VLE (16-bit opcodes)

e_cmp16i Compare Immediate VLE (16-bit opcodes)

e_cmph Compare Halfword VLE (16-bit opcodes)

e_cmph16i Compare Halfword Immediate VLE (16-bit opcodes)

e_cmphl Compare Halfword Logical VLE (16-bit opcodes)

e_cmphl16i Compare Halfword Logical Immediate VLE (16-bit opcodes)

e_cmpi Compare Immediate VLE (16-bit opcodes)

e_cmpl16i Compare Logical Immediate VLE (16-bit opcodes)

e_cmpli Compare Logical Immediate VLE (16-bit opcodes)

e_crand Condition Register AND VLE (16-bit opcodes)

e_crandc Condition Register AND with Complement VLE (16-bit opcodes)

e_creqv Condition Register Equivalent VLE (16-bit opcodes)

e_crnand Condition Register NAND VLE (16-bit opcodes)

e_crnor Condition Register NOR VLE (16-bit opcodes)

e_cror Condition Register OR VLE (16-bit opcodes)

e_crorc Condition Register OR with Complement VLE (16-bit opcodes)

e_crxor Condition Register XOR VLE (16-bit opcodes)

e_lbz Load Byte & Zero VLE (16-bit opcodes)

e_lbzu Load Byte & Zero with Update VLE (16-bit opcodes)

e_lha Load Halfword Algebraic VLE (16-bit opcodes)

e_lhau Load Halfword Algebraic With Update VLE (16-bit opcodes)

e_lhz Load Halfword & Zero VLE (16-bit opcodes)

e_lhzu Load Halfword & Zero with Update VLE (16-bit opcodes)

e_li Load Immediate VLE (16-bit opcodes)

e_lis Load Immediate Shifted VLE (16-bit opcodes)

e_lmw Load Multiple Word VLE (16-bit opcodes)

e_lwz Load Word & Zero VLE (16-bit opcodes)

e_lwzu Load Word & Zero with Update VLE (16-bit opcodes)

e_mcrf Move Condition Register Field VLE (16-bit opcodes)

e_mull2i Multiply Low Word (2 operand) Immediate VLE (16-bit opcodes)

e_mulli Multiply Low Immediate VLE (16-bit opcodes)

e_or2i OR (2 operand) Immediate VLE (16-bit opcodes)

e_or2is OR (2 operand) Immediate Shifted VLE (16-bit opcodes)

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

Instruction model UM0434

154/391

e_ori OR Immediate VLE (16-bit opcodes)

e_ori. OR Immediate and Record VLE (16-bit opcodes)

e_rlw Rotate Left Word VLE (16-bit opcodes)

e_rlw. Rotate Left Word & record CR VLE (16-bit opcodes)

e_rlwi Rotate Left Word Immediate VLE (16-bit opcodes)

e_rlwi. Rotate Left Word Immediate & record CR VLE (16-bit opcodes)

e_rlwimi Rotate Left Word Immed then Mask Insert VLE (16-bit opcodes)

e_rlwinm Rotate Left Word Immed then AND with Mask VLE (16-bit opcodes)

e_slwi Shift Left Word Immediate VLE (16-bit opcodes)

e_slwi. Shift Left Word Immediate & record CR VLE (16-bit opcodes)

e_srwi Shift Right Word Immediate VLE (16-bit opcodes)

e_srwi. Shift Right Word Immediate & record CR VLE (16-bit opcodes)

e_stb Store Byte VLE (16-bit opcodes)

e_stbu Store Byte with Update VLE (16-bit opcodes)

e_sth Store Halfword VLE (16-bit opcodes)

e_sthu Store Halfword with Update VLE (16-bit opcodes)

e_stmw Store Multiple Word VLE (16-bit opcodes)

e_stw Store Word VLE (16-bit opcodes)

e_stwu Store Word with Update VLE (16-bit opcodes)

e_subfic Subtract from Immediate Carrying VLE (16-bit opcodes)

e_subfic. Subtract from Immediate and Record VLE (16-bit opcodes)

e_xori XOR Immediate VLE (16-bit opcodes)

e_xori. XOR Immediate and Record VLE (16-bit opcodes)

icbi 2 Instruction Cache Block Invalidate Book E

icblc 2 Instruction Cache Block Lock Clear Cache locking

icbt 2 Instruction Cache Block Touch Book E

icbtls 2 Instruction Cache Block Touch and Lock Set Cache locking

isel Integer Select EIS

isync Instruction Synchronize Book E

lbz Load Byte and Zero Book E

lbzu Load Byte and Zero with Update Book E

lbzux Load Byte and Zero with Update Indexed Book E

lbzx Load Byte and Zero Indexed Book E

lha Load Half Word Algebraic Book E

lhau Load Half Word Algebraic with Update Book E

lhaux Load Half Word Algebraic with Update Indexed Book E

lhax Load Half Word Algebraic Indexed Book E

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

UM0434 Instruction model

 155/391

lhbrx Load Half Word Byte-Reverse Indexed Book E

lhz Load Half Word and Zero Book E

lhzu Load Half Word and Zero with Update Book E

lhzux Load Half Word and Zero with Update Indexed Book E

lhzx Load Half Word and Zero Indexed Book E

lmw Load Multiple Word Book E

lwarx Load Word and Reserve Indexed Book E

lwbrx Load Word Byte-Reverse Indexed Book E

lwz Load Word and Zero Book E

lwzu Load Word and Zero with Update Book E

lwzux Load Word and Zero with Update Indexed Book E

lwzx Load Word and Zero Indexed Book E

mbar(3) Memory Barrier Book E

mcrf Move Condition Register Field Book E

mcrxr Move to Condition Register from XER Book E

mfcr Move From Condition Register Book E

mfdcr(4) Move From Device Control Register Book E

mfdcrx4 Move From Device Control Register Indexed Book E

mfmsr Move From Machine State Register Book E

mfspr Move From Special Purpose Register Book E

msync3 Memory Synchronize Book E

mtcrf Move To Condition Register Fields Book E

mtdcr4 Move To Device Control Register Book E

mtdcrx4 Move To Device Control Register Indexed Book E

mtmsr Move To Machine State Register Book E

mtspr Move To Special Purpose Register Book E

mulhw Multiply High Word Book E

mulhw. Multiply High Word and record CR Book E

mulhwu Multiply High Word Unsigned Book E

mulhwu. Multiply High Word Unsigned and record CR Book E

mulli Multiply Low Immediate Book E

mullw Multiply Low Word Book E

mullw. Multiply Low Word and record CR Book E

mullwo Multiply Low Word and record OV Book E

mullwo. Multiply Low Word and record OV and CR Book E

nand NAND Book E

nand. NAND and record CR Book E

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

Instruction model UM0434

156/391

neg Negate Book E

neg. Negate and record CR Book E

nego Negate and record OV Book E

nego. Negate and record OV and record CR Book E

nor NOR Book E

nor. NOR and record CR Book E

or OR Book E

or. OR and record CR Book E

orc OR with Complement Book E

orc. OR with Complement and record CR Book E

ori OR Immediate Book E

oris OR Immediate Shifted Book E

rfci Return From Critical Interrupt Book E

rfdi Return From Debug Interrupt Debug

rfi Return From Interrupt Book E

rlwimi Rotate Left Word Immed then Mask Insert Book E

rlwimi. Rotate Left Word Immed then Mask Insert and record CR Book E

rlwinm Rotate Left Word Immed then AND with Mask Book E

rlwinm. Rotate Left Word Immed then AND with Mask and record CR Book E

rlwnm Rotate Left Word then AND with Mask Book E

rlwnm. Rotate Left Word then AND with Mask and record CR Book E

sc System Call Book E

se_add Add VLE (32-bit opcodes)

se_addi Add Immediate VLE (32-bit opcodes)

se_and AND VLE (32-bit opcodes)

se_and. AND and Record VLE (32-bit opcodes)

se_andc AND with Complement VLE (32-bit opcodes)

se_andi And Immediate VLE (32-bit opcodes)

se_b Branch VLE (32-bit opcodes)

se_bc Branch Conditional VLE (32-bit opcodes)

se_bclri Bit Clear Immediate VLE (32-bit opcodes)

se_bctr Branch to Count Register VLE (32-bit opcodes)

se_bctrl Branch to Count Register & Link VLE (32-bit opcodes)

se_bgeni Bit Generate Immediate VLE (32-bit opcodes)

se_bl Branch and Link VLE (32-bit opcodes)

se_blr Branch to Link Register VLE (32-bit opcodes)

se_blrl Branch to Link Register & Link VLE (32-bit opcodes)

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

UM0434 Instruction model

 157/391

se_bmaski Bit Mask Generate Immediate VLE (32-bit opcodes)

se_bseti Bit Set Immediate VLE (32-bit opcodes)

se_btsti Bit Test Immediate VLE (32-bit opcodes)

se_cmp Compare VLE (32-bit opcodes)

se_cmph Compare Halfword VLE (32-bit opcodes)

se_cmphl Compare Halfword Logical VLE (32-bit opcodes)

se_cmpi Compare Immediate VLE (32-bit opcodes)

se_cmpl Compare Logical VLE (32-bit opcodes)

se_cmpli Compare Logical Immediate VLE (32-bit opcodes)

se_extsb Extend Sign Byte VLE (32-bit opcodes)

se_extsh Extend Sign Halfword VLE (32-bit opcodes)

se_extzb Extend with Zeros Byte VLE (32-bit opcodes)

se_extzh Extend with Zeros Halfword VLE (32-bit opcodes)

se_illegal Illegal VLE (32-bit opcodes)

se_isync Instruction Synchronize VLE (32-bit opcodes)

se_lbz Load Byte and Zero VLE (32-bit opcodes)

se_lhz Load Halfword and Zero VLE (32-bit opcodes)

se_li Load Immediate VLE (32-bit opcodes)

se_lwz Load Word and Zero VLE (32-bit opcodes)

se_mfar Move from Alternate Register VLE (32-bit opcodes)

se_mfctr Move From Count Register VLE (32-bit opcodes)

se_mflr Move From Link Register VLE (32-bit opcodes)

se_mr Move Register VLE (32-bit opcodes)

se_mtar Move to Alternate Register VLE (32-bit opcodes)

se_mtctr Move To Count Register VLE (32-bit opcodes)

se_mtlr Move To Link Register VLE (32-bit opcodes)

se_mullw Multiply Low Word VLE (32-bit opcodes)

se_neg Negate VLE (32-bit opcodes)

se_not NOT VLE (32-bit opcodes)

se_or OR VLE (32-bit opcodes)

se_rfci Return From Critical Interrupt VLE (32-bit opcodes)

se_rfdi Return From Debug Interrupt VLE (32-bit opcodes)

se_rfi Return From Interrupt VLE (32-bit opcodes)

se_sc System Call VLE (32-bit opcodes)

se_slw Shift Left Word VLE (32-bit opcodes)

se_slwi Shift Left Word Immediate VLE (32-bit opcodes)

se_sraw Shift Right Algebraic Word VLE (32-bit opcodes)

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

Instruction model UM0434

158/391

se_srawi Shift Right Algebraic Word Immediate VLE (32-bit opcodes)

se_srw Shift Right Word VLE (32-bit opcodes)

se_srwi Shift Right Word Immediate VLE (32-bit opcodes)

se_stb Store Byte VLE (32-bit opcodes)

se_sth Store Halfword VLE (32-bit opcodes)

se_stw Store Word VLE (32-bit opcodes)

se_sub Subtract VLE (32-bit opcodes)

se_subf Subtract From VLE (32-bit opcodes)

se_subi Subtract Immediate VLE (32-bit opcodes)

se_subi. Subtract Immediate and Record VLE (32-bit opcodes)

slw Shift Left Word Book E

slw. Shift Left Word and record CR Book E

sraw Shift Right Algebraic Word Book E

sraw. Shift Right Algebraic Word and record CR Book E

srawi Shift Right Algebraic Word Immediate Book E

srawi. Shift Right Algebraic Word Immediate and record CR Book E

srw Shift Right Word Book E

srw. Shift Right Word and record CR Book E

stb Store Byte Book E

stbu Store Byte with Update Book E

stbux Store Byte with Update Indexed Book E

stbx Store Byte Indexed Book E

sth Store Half Word Book E

sthbrx Store Half Word Byte-Reverse Indexed Book E

sthu Store Half Word with Update Book E

sthux Store Half Word with Update Indexed Book E

sthx Store Half Word Indexed Book E

stmw Store Multiple Word Book E

stw Store Word Book E

stwbrx Store Word Byte-Reverse Indexed Book E

stwcx. Store Word Conditional Indexed and record CR Book E

stwu Store Word with Update Book E

stwux Store Word with Update Indexed Book E

stwx Store Word Indexed Book E

subf Subtract From Book E

subf. Subtract From and record CR Book E

subfc Subtract From Carrying Book E

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

UM0434 Instruction model

 159/391

subfc. Subtract From Carrying and record CR Book E

subfco Subtract From Carrying and record OV Book E

subfco. Subtract From Carrying and record OV and CR Book E

subfe Subtract From Extended with CA Book E

subfe. Subtract From Extended with CA and record CR Book E

subfeo Subtract From Extended with CA and record OV Book E

subfeo. Subtract From Extended with CA and record OV and CR Book E

subfic Subtract From Immediate Carrying Book E

subfme Subtract From Minus One Extended with CA Book E

subfme. Subtract From Minus One Extended with CA and record CR Book E

subfmeo Subtract From Minus One Extended with CA and record OV Book E

subfmeo. Subtract From Minus One Extended with CA and record OV & CR Book E

subfo Subtract From and record OV Book E

subfo. Subtract From and record OV and CR Book E

subfze Subtract From Zero Extended with CA Book E

subfze. Subtract From Zero Extended with CA and record CR Book E

subfzeo Subtract From Zero Extended with CA and record OV Book E

subfzeo. Subtract From Zero Extended with CA and record OV and CR Book E

tlbivax TLB Invalidate Virtual Address Indexed Book E

tlbre TLB Read Entry Book E

tlbsx TLB Search Indexed Book E

tlbsync TLB Synchronize Book E

tlbwe TLB Write Entry Book E

tw Trap Word Book E

twi Trap Word Immediate Book E

wrtee Write External Enable Book E

wrteei Write External Enable Immediate Book E

xor XOR Book E

xor. XOR and record CR Book E

xori XOR Immediate Book E

xoris XOR Immediate Shifted Book E

1. An implementation can restrict the No. of bits shown in a mask. Devices using 16-bit instructions are limited to 16 bits,
which allows the user to perform bit-reversed address computations for 65536 byte samples.

2. Not supported by e200z3 unless the integrated device includes a cache; treated as no-ops, with the exception of dcbz,
which results in an alignment interrupt, and dcbi, which is treated as a privileged no-op.

3. See Chapter 5.7: Memory synchronization and reservation instructions

4. The core CPU will take an illegal instruction exception for unsupported DCR values.

Table 112. Full instruction listing (continued)

Mnemonic Instruction name Source

Interrupts and exceptions UM0434

160/391

6 Interrupts and exceptions

This chapter provides a general description of the PowerPC Book E interrupt and exception
model and gives details of the additions and changes to that model that are implemented in
the e200z3 core. This chapter identifies features defined by Book E, the Freescale Book E
implementation standards (EIS), and the e200z3 implementation.

6.1 Overview
Book E defines the mechanisms by which the e200z3 core implements interrupts and
exceptions. Note the following definitions:

Interrupt Action in which the processor saves its old context and begins
execution at a predetermined interrupt handler address

Exceptions Events that, if enabled, cause the processor to take an interrupt

The PowerPC exception mechanism allows the processor to change to supervisor state for
the following reasons:

● As a result of unusual conditions (exceptions) arising in the execution of instructions

● As a response to the assertion of external signals, bus errors, or various internal
conditions

When an interrupt occurs, information about the processor state held in the MSR and the
address at which execution should resume after the interrupt is handled are saved to a pair
of save/restore registers (SRR0/SRR1 for non-critical interrupts, CSRR0/CSRR1 for critical
interrupts, or DSRR0/DSRR1 for debug interrupts when the debug APU is enabled), and the
processor begins executing at an address (interrupt vector) determined by the interrupt
vector prefix register (IVPR) and an interrupt-specific interrupt vector offset register
(IVORn). Processing of instructions within the interrupt handler begins in supervisor mode.

Multiple exception conditions can map to a single interrupt vector and may be distinguished
by examining registers associated with the interrupt. The exception syndrome register
(ESR) is updated with information specific to the exception type when an interrupt occurs.

To prevent loss of state information, interrupt handlers must save the information stored in
the save/restore registers soon after the interrupt is taken. Hardware supports nesting of
critical interrupts within non-critical interrupts, and debug interrupts within both critical and
non-critical interrupts. The interrupt handler must save necessary state information if
interrupts of a given class are re-enabled within the handler.

The following terms are used to describe the stages of exception processing:

Recognition Exception recognition occurs when the condition that can
cause an exception is identified by the processor.

Recognition is also referred to as an ‘exception event.’

Taken An interrupt is said to be taken when control of instruction
execution is passed to the interrupt handler; that is, the context
is saved, the instruction at the appropriate vector offset is fetched,

and the interrupt handler routine begins.

Handling Interrupt handling is performed by the software linked to the appropriate
vector offset. Interrupt handling is begun in supervisor mode.

UM0434 Interrupts and exceptions

 161/391

Returning from an interrupt is performed by executing the appropriate return from interrupt
instruction (rfi, rfci, or rfdi), which restores state information from their respective
save/restore registers and returns instruction fetching to the interrupted flow.

6.2 e200z3 interrupts
The Book E architecture specifies that interrupts can be precise or imprecise, synchronous
or asynchronous, and critical or non-critical. These characteristics are described as follows:

● Asynchronous exceptions are caused by events external to the processor’s instruction
execution.

● Synchronous exceptions are directly caused by instructions or by an event somehow
synchronous to the program flow, such as a context switch.

● A precise interrupt architecturally guarantees that no instruction beyond the instruction
causing the exception has (visibly) executed. An imprecise interrupt does not have this
guarantee.

● Book E defines critical and non-critical interrupt types, and the e200z3 defines an
implementation-specific debug APU that includes the debug interrupt type. Each
interrupt type provides separate resources (save/restore registers and return from
interrupt instructions) that allow interrupts of one type to not interfere with the state
handling of an interrupt of another type.

Table 113 describes how these apply to the interrupts implemented by the e200z3 core.

The classifications in Table 113 are discussed in greater detail in Chapter 6.6: Interrupt
definitions on page 168.” Interrupts implemented in the e200z3 and the exception conditions
that cause them, are listed in Table 114. Note that although this table lists system reset,
Book E does not define system reset as an interrupt and assigns no interrupt vector to it.

Table 113. Interrupt classifications

Interrupt types
Synchronous /
asynchronous

Precise /
imprecise

Critical / non-critical
/ debug

System reset
Asynchronous,
non-maskable

Imprecise —

Machine check — — Critical

Critical input

Watchdog timer
Asynchronous,

maskable
Imprecise Critical

External input

Fixed-interval timer

Decrementer

Asynchronous,
maskable

Imprecise Non-critical

Instruction based debug Synchronous Precise Critical/debug

Debug (UDE)

Debug imprecise
Asynchronous Imprecise Critical/debug

Data storage

/ alignment / TLB

Instruction storage / TLB

Synchronous Precise Non-critical

Interrupts and exceptions UM0434

162/391

Table 114. Exceptions and conditions

Interrupt type
IVOR

n Cause Section/page

System reset
(not an interrupt)

None
(1)

Reset by assertion of p_reset_b
Watchdog timer reset control
Debug reset control

—

Critical input 0(2) p_critint_b is asserted and MSR[CE]=1 Chapter 6.6.1

Machine check 1

p_mcp_b is asserted and MSR[ME] =1

ISI, ITLB error on first instruction fetch for an exception handler and
current MSR[ME] = 1

Write bus error on buffered store or cache line push and current
MSR[ME]=1

Bus error (XTE) with MSR[EE]=0 and current MSR[ME]=1

Chapter 6.6.2

Data storage 2

Access control

Byte ordering due to misaligned access across page boundary to
pages with mismatched E bits

Precise external termination error (p_d_tea_b assertion and precise
recognition) and MSR[EE]=1

Chapter 6.6.3

Instruction
storage

3

Access control
Precise external termination error (p_i_tea_b assertion and precise
recognition) and MSR[EE]=1
Byte ordering due to misaligned instruction across page boundary to
pages with mismatched VLE bits, or access to page with VLE set, and
E indicating little-endian.

Misaligned Instruction fetch due to a change of flow to an odd halfword
instruction boundary on a Book E (non-VLE) instruction page, due to
value in LR, CTR, or xSRR0

Chapter 6.6.4

External input 42. p_extint_b is asserted and MSR[EE]=1 Chapter 6.6.5

Alignment 5

lmw, stmw not word aligned

lwarx or stwcx. not word aligned
dcbz with disabled cache, or no cache present, or to W or I storage

Chapter 6.6.6

Program 6
Illegal, privileged, trap, floating-point enabled, APU enabled,
unimplemented operation

Chapter 6.6.7

Floating-point
unavailable

7 MSR[FP] = 0 and attempt to execute a Book E floating-point operation Chapter 6.6.8

System call 8 Execution of the system call (sc) instruction Chapter 6.6.9

APU unavailable 9 Unused by the e200z3 Chapter 6.6.10

Decrementer 10 As specified in Book E Chapter 6.6.11

Fixed-interval
timer

11 As specified in Book E Chapter 6.6.12

Watchdog timer 12 As specified in Book E Chapter 6.6.13

Data TLB error 13 Data translation lookup did not match a valid TLB entry. Chapter 6.6.14

Instruction TLB
error

14 Instruction translation lookup did not match a valid TLB entry. Chapter 6.6.15

UM0434 Interrupts and exceptions

 163/391

6.3 Exception syndrome register (ESR)
ESR, shown in Table 115, provides a syndrome to distinguish exceptions that can generate
the same interrupt type. The e200z3 adds some implementation-specific bits to this register.

The ESR fields are described in Table 116.

Debug 15
Trap, instruction address compare, data address compare, instruction
complete, branch taken, return from interrupt, interrupt taken, debug
counter, external debug event, unconditional debug event

Chapter 6.6.16

Reserved 6–31 — —

SPE unavailable 32 See Chapter 6.6.18: SPE APU unavailable interrupt (IVOR32).” Chapter 6.6.18

SPE data 33 See Chapter 6.6.19: SPE Floating-Point data interrupt (IVOR33).” Chapter 6.6.19

SPE round 34 See Chapter 6.6.20: SPE Floating-Point round interrupt (IVOR34).” Chapter 6.6.20

1. Vector to [p_rstbase[0:19]] || 0xFFC.

2. Autovectored external & critical input interrupts, use this IVOR. Vectored interrupts supply an interrupt vector offset directly.

Table 114. Exceptions and conditions (continued)

Interrupt type
IVOR

n Cause Section/page

Table 115. Exception syndrome register (ESR)

32 35 36 37 38 39 40 41 42 43 44 45 46 47 48 55 56 57 58 59 61 62 63

Field — PIL PPR PTR FP ST — DLK ILK AP PUO BO PIE — SPE — VLEMI — MIF XTE

Reset All zeros

R/W R/W

SPR SPR 62

Table 116. ESR field descriptions

Bit(s) Name Description Associated interrupt type

32–35 — Reserved, should be cleared. —

36 PIL Illegal instruction exception Program

37 PPR Privileged instruction exception Program

38 PTR Trap exception Program

39 FP Floating-point operation Alignment, data storage, data TLB, program

40 ST Store operation Alignment, data storage, data TLB

41 — Reserved, should be cleared. —

42 DLK Data cache locking(1) Data storage

43 ILK Instruction cache locking Data storage`

44 AP
Auxiliary processor operation. (unused in the
e200z3)

Alignment, data storage, data TLB, program

45 PUO Unimplemented operation exception Program

Interrupts and exceptions UM0434

164/391

6.4 Machine state register (MSR)
The MSR, shown in Figure 117, defines the state of the processor.

The MSR bits are described in Table 118.

46 BO Byte ordering exception Data storage

47 PIE
Program imprecise exception—Unused in the
e200z3 (Reserved, should be cleared.)

—

48–55 — Reserved, should be cleared. —

56 SPE SPE APU operation
SPE unavailable, SPE floating-point data
exception, SPE floating-point round exception,
alignment, data storage, data TLB

57 — Reserved, should be cleared. —

58 VLEMI VLE mode instruction

SPE unavailable, SPE floating-point data
exception, SPE floating-point round exception,
data storage, data TLB, instruction storage,
alignment, program, and system call

59–61 — Reserved, should be cleared. —

62 MIF Misaligned instruction fetch Instruction storage, instruction TLB

63 XTE External termination error (precise) Data storage, instruction storage

1. When optional cache is present. Unused on e200z3.

Table 116. ESR field descriptions (continued)

Bit(s) Name Description Associated interrupt type

Table 117. Processor state definition of MSR

32 3637 38 39 4445 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 63

Field — UCLE SPE — WE CE — EE PR FP ME FE0 UBLE DE FE1 — IS DS —

Reset All zeros

R/W R/W

Table 118. MSR field descriptions

Bits Name Description

32–36 — Reserved, should be cleared.

37 UCLE

User cache lock enable. (Implemented, but ignored by e200z3)
0 Execution of the cache locking instructions in user mode (MSR[PR] = 1) disabled; data storage
interrupt taken instead, and ILK or DLK is set in the ESR.
1 Execution of the cache lock instructions in user mode enabled

38 SPE

SPE available
0 Execution of SPE APU vector instructions is disabled; SPE Unavailable exception taken instead,
and ESR[SPE] is set.
1 Execution of SPE APU vector instructions is enabled.

39–44 — Reserved, should be cleared.

UM0434 Interrupts and exceptions

 165/391

45 WE

Wait state (power management) enable. Defined as optional by Book E and implemented in the
e200z3.
0 Power management is disabled.

1 Power management is enabled. The processor can enter a power-saving mode when additional
conditions are present. The mode chosen is determined by HID0[DOZE,NAP,SLEEP], described in
<Cross Refs>Section 4.13.1, “Hardware implementation dependent register 0 (HID0).”

46 CE

Critical interrupt enable

0 Critical input and watchdog timer interrupts are disabled.
1 Critical input and watchdog timer interrupts are enabled.

47 — Preserved

48 EE

External interrupt enable

0 External Input, decrementer, and fixed-interval timer interrupts are disabled.
1 External input, decrementer, and fixed-interval timer interrupts are enabled.

49 PR

Problem state

0 The processor is in supervisor mode, can execute any instruction, and can access any resource
(for example, GPRs, SPRs, MSR, etc.).

1 The processor is in user mode, cannot execute any privileged instruction, and cannot access any
privileged resource.

50 FP

Floating-point available

0 Floating-point unit is unavailable. The processor cannot execute floating-point instructions,
including floating-point loads, stores, and moves. (An FP unavailable interrupt is generated on
attempted execution of floating-point instructions).
1 Floating-point unit is available. The processor can execute floating-point instructions. (Note that
for the e200z3, the floating-point unit is not supported; an unimplemented operation exception is
generated for attempted execution of floating-point instructions when FP is set).

51 ME

Machine check enable

0 Machine check interrupts are disabled. Checkstop mode is entered when p_mcp_b is recognized
asserted or an ISI or ITLB exception occurs on a fetch of the first instruction of an exception
handler.
1 Machine check interrupts are enabled.

52 FE0 Floating-point exception mode 0 (not used by the e200z3)

53 — Reserved, should be cleared.

54 DE

Debug interrupt enable

0 Debug interrupts are disabled.

1 Debug interrupts are enabled if DBCR0[IDM] is set.

55 FE1 Floating-point exception mode 1 (not used by the e200z3)

56 — Reserved, should be cleared.

57 — Preserved, should be cleared.

58 IS

Instruction address space

0 The processor directs all instruction fetches to address space 0 (TS=0 in the relevant TLB entry).
1 The processor directs all instruction fetches to address space 1 (TS=1 in the relevant TLB entry).

Table 118. MSR field descriptions

Bits Name Description

Interrupts and exceptions UM0434

166/391

6.4.1 Machine check syndrome register (MCSR)

When the core complex takes a machine check interrupt, it updates MCSR, shown in
Table 119, to identify machine check conditions. The MCSR also indicates whether the
source of a machine check condition is recoverable. When an MCSR bit is set, the core
complex asserts p_mcp_out for system information.

Table 120 describes MCSR fields.

Interrupt vector prefix register (IVPR)

The IVPR, shown in Table 121, is used during interrupt processing for determining the
starting address for the software interrupt handler. The value contained in the vector offset
field of the IVOR selected for a particular interrupt type is concatenated with the value in the
IVPR to form an instruction address from which execution is to begin.

59 DS

Data address space

0 The core directs all data storage accesses to address space 0 (TS=0 in the relevant TLB entry).

1 The core directs all data storage accesses to address space 1 (TS=1 in the relevant TLB entry).

60–61 — Reserved, should be cleared.

62–63 — Reserved, should be cleared.

Table 118. MSR field descriptions

Bits Name Description

Table 119. Machine check syndrome register (MCSR)

32 33 34 35 36 37 58 59 60 61 6263

Field MCP — CP_PERRCPERR EXCP_ERR — BUS_IRERRBUS_DRERRBUS_WRERR —

Reset All zeros

R/W R/W

Table 120. MCSR field Descriptions

Bits Name Description Recoverable

32 MCP Machine check input pin Maybe

33 — Reserved, should be cleared. —

34 CP_PERR Cache push parity error(1) Unlikely

35 CPERR Cache parity error1 Precise

36 EXCP_ERR ISI, ITLB, or bus error on first instruction fetch for an interrupt handler Precise

37–58 — Reserved, should be cleared. —

59 BUS_IRERR Read bus error on instruction fetch Unlikely

60 BUS_DRERR Read bus error on data load Unlikely

61 BUS_WRERR Write bus error on buffered store or cache line push Unlikely

62–63 — Reserved, should be cleared. —

1. This bit is implemented but must never be set by hardware.

UM0434 Interrupts and exceptions

 167/391

IVPR fields are defined in Table 122.

6.5 Interrupt vector offset registers (IVORn)
IVORs are used during interrupt processing for determining the starting address of a
software interrupt handler. The value in the vector offset field of the IVOR assigned to the
interrupt type is concatenated with the value in IVPR to form an instruction address at which
execution is to begin. The e200z3 also defines the low-order bits of the IVORs (defined as
zeros in Book E) as a context selector field to be used as the current context number once
interrupt handling begins when multiple hardware contexts are supported
(CTXCR[NUMCTX] ≠ 0). For forward compatibility, this field should be written to zero when
only a single context is supported because it will not be implemented and is read as zero.

The IVOR fields are defined in Table 123.

Table 121. IVPR register

32 47 48 63

Field Vector Base —

Reset Undefined on m_por assertion, unchanged on p_reset_b assertion

R/W R/W

SPR SPR 63

Table 122. IVPR field descriptions

Bits Name Description

32–47
Vector
Base

Defines the base location of the vector table, aligned to a 64-Kbyte boundary. This field provides
the high-order 16 bits of the location of all interrupt handlers. The contents of the IVORn
appropriate for the type of exception being processed are concatenated with the IVPR vector base
to form the address of the handler in memory.

48–63 — Reserved, should be cleared.

32 47 48 59 60 63

Field — Vector Offset — CS

Reset Unaffected

R/W R/W

SPR See Table 124.

Table 123. IVOR register fields

Bits Name Description

32–47 — Reserved, should be cleared.

48–59
Vector
Offset

Vector offset. Provides a quadword index from the base address provided by the IVPR to locate an
interrupt handler.

Interrupts and exceptions UM0434

168/391

IVOR SPR assignments are shown in Table 124.

6.6 Interrupt definitions
The following sections describe interrupts as they are implemented on the e200z3.

60 — Reserved, should be cleared.

61–63 CS

Context selector. When multiple hardware contexts are supported, this selects an operating context
for the interrupt handler. This value is loaded into the CURCTX field of the context control register
as part of the interrupt vectoring process. This field is not defined by PowerPC Book E. When
multiple hardware contexts are not supported, this field is not implemented and is read as zero.

Table 123. IVOR register fields (continued)

Bits Name Description

Table 124. IVOR assignments

IVOR Number SPR Interrupt type

IVOR0 400 Critical input

IVOR1 401 Machine check

IVOR2 402 Data storage

IVOR3 403 Instruction storage

IVOR4 404 External input

IVOR5 405 Alignment

IVOR6 406 Program

IVOR7 407 Floating-point unavailable

IVOR8 408 System call

IVOR9 409 Auxiliary processor unavailable. Not used by the e200z3.

IVOR10 410 Decrementer

IVOR11 411 Fixed-interval timer interrupt

IVOR12 412 Watchdog timer interrupt

IVOR13 413 Data TLB error

IVOR14 414 Instruction TLB error

IVOR15 415 Debug

IVOR16–IVOR31 — Reserved for future architectural use

-Specific IVORs (Defined by the EIS)

IVOR32 528 SPE APU unavailable

IVOR33 529 SPE floating-point data exception

IVOR34 530 SPE floating-point round exception

UM0434 Interrupts and exceptions

 169/391

6.6.1 Critical input interrupt (IVOR0)

A critical input exception is signaled to the processor by the assertion of the critical interrupt
pin (p_critint_b). When the e200z3 detects the exception, if critical interrupts are enabled
(MSR[CE] = 1), the e200z3 takes the critical input interrupt. The p_critint_b input is a level-
sensitive signal expected to remain asserted until the e200z3 acknowledges the interrupt. If
p_critint_b is negated early, recognition of the interrupt request is not guaranteed. After the
e200z3 begins execution of the critical interrupt handler, the system can safely negate
p_critint_b.

A critical input interrupt may be delayed by other higher priority exceptions or if MSR[CE] is
cleared when the exception occurs.

Table 125 lists register settings when a critical input interrupt is taken.

When the debug APU is enabled, MSR[DE] is not automatically cleared by a critical input
interrupt but can be configured to be cleared through HID0 (HID0[CICLRDE]). Refer to
Chapter 4.13.1: Hardware implementation dependent register 0 (HID0) on page 84.”

IVOR0 is the vector offset register used by autovectored critical input interrupts to determine
the interrupt handler location. The e200z3 also provides the capability to directly vector
critical input interrupts to multiple handlers by allowing a critical input interrupt request to be
accompanied by a vector offset. The p_voffset[0:11] inputs are used in place of the value in
IVOR0 to form the interrupt vector when a critical input interrupt request is not autovectored
(p_avec_b negated when p_critint_b asserted).

6.6.2 Machine check interrupt (IVOR1)

The e200z3 implements the machine check exception as defined in Book E except for
automatic clearing of MSR[DE]. The e200z3 initiates a machine check interrupt if
MSR[ME]=1 and any of the machine check sources listed in Table 114 is detected. As
defined in Book E, the interrupt is not taken if MSR[ME] is cleared, in which case the

Table 125. Critical input interrupt register settings

Registe
r

Setting description

CSRR0
Set to the effective address of the instruction that the processor would have attempted to
execute next if no exception conditions were present.

CSRR1 Set to the contents of the MSR at the time of the interrupt.

MSR

UCLE 0

SPE 0
WE 0

CE 0

EE 0

PR 0

FP 0

ME —
FE0 0

DE —/0(1)

FE1 0

IS 0
DS 0

1. DE is cleared when the debug APU is disabled. Clearing of DE is optionally supported by control in HID0
when the debug APU is enabled.

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector
IVPR[32–47] || IVOR0[48–59] || 0b0000 (autovectored)

IVPR[32–47] || p_voffset[0:11] || 0b0000 (non-autovectored)

Interrupts and exceptions UM0434

170/391

processor generates an internal checkstop condition and enters checkstop state. When a
processor is in checkstop state, instruction processing is suspended and generally cannot
continue without restarting the processor. Note that other conditions may lead to the
checkstop condition; the disabled machine check exception is only one of these.

The e200z3 implements MCSR to record the sources of machine checks. See
Chapter 6.4.1: Machine check syndrome register (MCSR) on page 166,” for more
information.

MSR[DE] is not automatically cleared by a machine check exception but can be configured
to be cleared or left unchanged through HID0[MCCLRDE]. See Chapter 4.13.1: Hardware
implementation dependent register 0 (HID0) on page 84.”

Machine check interrupt enabled (MSR[ME]=1)

Machine check interrupts are enabled when MSR[ME]=1. When a machine check interrupt
is taken, registers are updated as shown in Table 126.

The machine check input, p_mcp_b, can be masked by HID0[EMCP].

Most machine check exceptions are unrecoverable in the sense that execution cannot
resume in the context that existed before the interrupt. However, system software can use
the machine check interrupt handler to try to identify and recover from the machine check
condition. In particular, the MCSR is provided to identify the sources of a machine check
and may be used to identify recoverable events.

The interrupt handler should set MSR[ME] as early as possible to avoid entering checkstop
state if another machine check condition occurs.

Table 126. Machine check interrupt register settings

Register Setting description

CSRR0
On a best-effort basis, the e200z3 sets this to the address of some instruction that was
executing or about to be executing when the machine check condition occurred.

CSRR1 Set to the contents of the MSR at the time of the interrupt

MSR

UCLE 0
SPE 0

WE 0

CE 0

EE 0
PR 0

FP 0

ME 0

DE 0(1)

FE1 0

IS 0

DS 0

1. Cleared when the debug APU is disabled. Clearing of DE is optionally supported by control in HID0 when
the debug APU is enabled.

ESR Unchanged

MCSR Updated to reflect the sources of a machine check

DEAR
Unchanged unless machine check is due to a data access causing a cache parity error to
be signaled; updated with data access effective address in that case

Vector IVPR[32–47] || IVOR1[48–59] || 0b0000

UM0434 Interrupts and exceptions

 171/391

Checkstop state

The following exception conditions can cause a checkstop if MSR[ME]=0:

● A machine check occurs.

● First instruction in an interrupt handler cannot be executed due to a translation miss
(ITLB), a page marked no execute (ISI), or a bus error termination.

● Bus error termination for a buffered store .

● Precise external termination error occurs and MSR[EE]=0.

Non-exception–related checkstop conditions are as follows:

● TCR[WRC] - Watchdog reset control bits set to checkstop on second watchdog timer
overflow event

When a processor is in checkstop state, instruction processing is suspended and generally
cannot resume without the processor being reset. To indicate that a checkstop condition
exists, the p_chkstop output is asserted whenever the CPU is in checkstop state.

When a debug request is presented to the e200z3 core while it is in checkstop state,
p_wakeup is asserted, and when m_clk is provided to the core, it temporarily exits
checkstop state and enters debug mode. The p_chkstop output is negated while the core
remains in a debug session (p_debug_b asserted). When the debug session is exited, the
core re-enters checkstop state. Note that the external system logic may be in an undefined
state following a checkstop condition, such as having an outstanding bus transaction or
other inconsistency; thus, no guarantee can be made in general about activities performed
in debug mode while a checkstop is outstanding. Debug logic can generate assertion of
p_resetout_b through DBCR0.

6.6.3 Data storage interrupt (IVOR2)

A data storage interrupt may occur if no higher priority exception exists and one of the
following exists:

● Read or write access control exception condition

● Byte-ordering exception condition

● External termination error (precise) and MSR[EE]=1

Access control is defined as in Book E. A byte-ordering exception condition occurs for any
misaligned access across a page boundary to pages with mismatched E bits. Precise
external termination errors occur when a load or guarded store is terminated by assertion of
a p_d_tea_b=ERROR termination response.

Table 127 lists register settings when a DSI is taken.

Table 127. Data storage interrupt register settings

Register Setting description

SRR0 Set to the effective address of the excepting load/store instruction

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR

UCLE 0

SPE 0
WE 0

CE —

EE 0

PR 0

FP 0

ME —
FE0 0

DE —

FE1 0

IS 0
DS 0

Interrupts and exceptions UM0434

172/391

6.6.4 Instruction storage interrupt (IVOR3)

An instruction storage interrupt (ISI) occurs when no higher priority exception exists and an
execute access control exception occurs. This interrupt is implemented as defined by
Book E, except for the following:

● The byte-ordering condition does not occur in the e200z3

● The addition of precise external termination errors that occur when an instruction fetch
is terminated by assertion of a p_i_tea_b=ERROR termination response and
MSR[EE]=1

● Misaligned instruction fetch exceptions

● The extension of the byte ordering exception cases.

Exception extensions implemented in e200z3 for VLE involve extending the definition of the
instruction storage interrupt to include the following:

● Byte-ordering exceptions for instruction accesses

● Misaligned instruction fetch exceptions

● Corresponding updates to the ESR as shown in Table 128 and Table 129

 .

Table 129 lists register settings when an ISI is taken.

ESR

Access:

Byte ordering:

External termination error
(precise):

[ST], [VLEMI]. All other bits cleared.

[ST], [VLEMI], BO. All other bits cleared.
[ST], [VLEMI], XTE. All other bits cleared.

MCSR Unchanged

DEAR
For access and byte-ordering exceptions, set to the effective address of a byte within the page whose
access caused the violation.

Vector IVPR[32–47] || IVOR2[48–59] || 0b0000

Table 127. Data storage interrupt register settings (continued)

Register Setting description

Table 128. ISI exceptions and conditions

Interrupt
type

IVOR Causing conditions

Instruction
storage

IVOR
3

– Access control.

– Precise external termination error (p_tea_b assertion and precise recognition) and
MSR[EE]=1.

– Byte ordering due to misaligned instruction across page boundary to pages with
mismatched VLE bits, or access to page with VLE set, and E indicating little-endian.

– Misaligned Instruction fetch due to a change of flow to an odd halfword instruction
boundary on a Book E (non-VLE) instruction page, due to value in LR, CTR, or xSRR0

Table 129. Instruction storage interrupt register settings

Register Setting description

SRR0 Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

UM0434 Interrupts and exceptions

 173/391

6.6.5 External input interrupt (IVOR4)

An external input exception is signaled to the processor by the assertion of the external
interrupt input (p_extint_b), a level-sensitive signal expected to remain asserted until the
e200z3 acknowledges the external interrupt. If p_extint_b is negated early, recognition of
the interrupt request is not guaranteed. When the e200z3 detects the exception, if the
exception is enabled by MSR[EE], the e200z3 takes an external input interrupt.

An external input interrupt may be delayed by other higher priority exceptions or if MSR[EE]
is cleared when the exception occurs.

Table 130 lists register settings when an external input interrupt is taken.

IVOR4 is the vector offset register used by autovectored external input interrupts to
determine the interrupt handler location. The e200z3 also provides the capability to directly
vector external input interrupts to multiple handlers by allowing an external input interrupt
request to be accompanied by a vector offset. The p_voffset[0:11] input signals are used in

MSR

UCLE 0

SPE 0

WE 0
CE —

EE 0

PR 0
FP 0

ME —

FE0 0

DE —
FE1 0

IS 0

DS 0

ESR [XTE, BO, MIF, VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR3[48–59] || 0b0000

Table 129. Instruction storage interrupt register settings (continued)

Register Setting description

Table 130. External input interrupt register settings

Register Setting description

SRR0
Set to the effective address of the instruction the processor would attempt to execute next
if no exception were present.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR

UCLE 0

SPE 0
WE 0

CE —

EE 0

PR 0

FP 0

ME —
FE0 0

DE —

FE1 0

IS 0
DS 0

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector
IVPR[32–47] || IVOR4[48–59] || 0b0000

IVPR[32–47] || p_voffset[0:11] || 0b0000 (non-autovectored)

Interrupts and exceptions UM0434

174/391

place of the value in IVOR4 when an external input interrupt request is not autovectored
(p_avec_b negated when p_extint_b asserted).

6.6.6 Alignment interrupt (IVOR5)

The e200z3 implements the alignment interrupt as defined by Book E. An alignment
exception is generated when any of the following occurs:

● The operand of lmw or stmw is not word-aligned.

● The operand of lwarx or stwcx. is not word-aligned.

● Execution of dcbz is attempted

● Execution is attempted of an SPE APU load or store instruction that is not properly
aligned.

Table 131 lists register settings when an alignment interrupt is taken.

6.6.7 Program interrupt (IVOR6)

The e200z3 implements the program interrupt as defined by Book E. A program interrupt
occurs when no higher priority exception exists and one or more of the following exception
conditions defined in Book E occur:

● Illegal instruction exception

● Privileged instruction exception

● Trap exception

● Unimplemented operation exception

The e200z3 invokes an illegal instruction program exception on attempted execution of the
following instructions:

● Instruction from the illegal instruction class

● mtspr and mfspr instructions that specify an undefined SPR

● mtdcr and mfdcr instructions that specify an undefined DCR

Table 131. Alignment interrupt register settings

Register Setting description

SRR0 Set to the effective address of the excepting load/store instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR

UCLE 0
SPE 0

WE 0

CE —
EE 0

PR 0

FP 0
ME —

FE0 0

DE —

FE1 0
IS 0

DS 0

ESR [ST], [VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR
Set to the effective address of a byte of the load or store whose access caused the
violation.

Vector IVPR[32–47] || IVOR5[48–59] || 0b0000

UM0434 Interrupts and exceptions

 175/391

The e200z3 invokes a privileged instruction program exception on attempted execution of
the following instructions when MSR[PR]=1 (user mode):

● A privileged instruction

● mtspr and mfspr instructions that specify an SPRN value with SPRN[5] = 1 (even if the
SPR is undefined).

The e200z3 invokes a trap exception on execution of tw and twi if the trap conditions are
met and the exception is not also enabled as a debug interrupt.

The e200z3 invokes an unimplemented operation program exception on attempted
execution of the instructions lswi, lswx, stswi, stswx, mfapidi, mfdcrx, mtdcrx, or any
Book E floating-point instruction when MSR[FP]=1. All other defined or allocated
instructions that are not implemented by the e200z3 cause an illegal instruction program
exception.

Table 132 lists register settings when a program interrupt is taken.

6.6.8 Floating-Point unavailable interrupt (IVOR7)

The floating-point unavailable interrupt is implemented as defined in Book E. A floating-point
unavailable interrupt occurs when no higher priority exception exists, an attempt is made to
execute a Book E-defined floating-point instruction (including floating-point load, store, or
move instructions), and the floating-point available bit in the MSR is cleared (MSR[FP]=0).

Table 133 lists register settings when a floating-point unavailable interrupt is taken.

Table 132. Program interrupt register settings

Register Setting description

SRR0 Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt.

MSR

UCLE 0

SPE 0

WE 0
CE —

EE 0

PR 0
FP 0

ME —

FE0 0

DE —
FE1 0

IS 0

DS 0

ESR

Illegal:

Privileged:

Trap:
Unimplemented:

PIL, [VLEMI]. All other bits cleared.

PPR, [VLEMI]. All other bits cleared.

PTR, [VLEMI]. All other bits cleared.
PUO, [FP], [VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR6[48–59] || 0b0000

Table 133. Floating-Point unavailable interrupt register Settings

Register Setting Description

SRR0 Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

Interrupts and exceptions UM0434

176/391

6.6.9 System call interrupt (IVOR8)

A system call interrupt occurs when a system call (sc, se_sc) is executed and no higher
priority exception exists. Exception extensions implemented in e200z3 for VLE include
modification of the system call interrupt definition to include updating the ESR.

Table 134 lists register settings when a system call interrupt is taken.

6.6.10 Auxiliary processor unavailable interrupt (IVOR9)

An APU exception is defined by Book E to occur when an attempt is made to execute an
APU instruction which is implemented but configured as unavailable, and no higher priority
exception condition exists.

The e200z3 does not use this interrupt.

MSR

UCLE 0

SPE 0

WE 0
CE —

PR 0

FP 0
ME —

FE0 0

DE —

FE1 0

IS 0
DS 0

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR7[48–59] || 0b0000

Table 133. Floating-Point unavailable interrupt register Settings

Register Setting Description

Table 134. System call interrupt register settings

Register Setting Description

SRR0 Set to the effective address of the instruction following the sc instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR

UCLE 0
SPE 0

WE 0

CE —
EE 0

PR 0

FP 0
ME —

FE0 0

DE —

FE1 0
IS 0

DS 0

ESR [VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR8[48–59] || 0b0000

UM0434 Interrupts and exceptions

 177/391

6.6.11 Decrementer interrupt (IVOR10)

The e200z3 implements the decrementer exception as described in Book E. A decrementer
interrupt occurs when no higher priority exception exists, a decrementer exception condition
exists (TSR[DIS]=1), and the interrupt is enabled (both TCR[DIE] and MSR[EE]=1).

The timer status register (TSR) holds the decrementer interrupt bit set by the timer facility
when an exception is detected. The interrupt handler must clear this bit to avoid repeated
decrementer interrupts.

Table 135 lists register settings when a decrementer interrupt is taken.

6.6.12 Fixed-Interval timer interrupt (IVOR11)

The e200z3 implements the fixed-interval timer exception as defined in Book E. The
triggering of the exception is caused by selected bits in the time base register changing from
0 to 1.

A fixed-interval timer interrupt occurs when no higher priority exception exists, a fixed-
interval timer exception exists (TSR[FIS]=1), and the interrupt is enabled (both TCR[FIE]
and MSR[EE]=1).

The timer status register (TSR) holds the fixed-interval timer interrupt bit set by the timer
facility when an exception is detected. Software must clear this bit in the interrupt handler to
avoid repeated fixed-interval timer interrupts.

Table 136 lists register settings when a fixed-interval timer interrupt is taken.

Table 135. Decrementer interrupt register settings

Register Setting description

SRR0
Set to the effective address of the instruction that the processor would have attempted to
execute next if no exception conditions were present.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR

UCLE 0

SPE 0

WE 0

CE —
EE 0

PR 0

FP 0
ME —

FE0 0

DE —

FE1 0
IS 0

DS 0

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR10[48–59] || 0b0000

Table 136. Fixed-Interval timer interrupt register settings

Register Setting description

SRR0
Set to the effective address of the instruction that the processor would have attempted to
execute next if no exception conditions were present.

SRR1 Set to the contents of the MSR at the time of the interrupt.

Interrupts and exceptions UM0434

178/391

6.6.13 Watchdog timer interrupt (IVOR12)

The e200z3 implements the watchdog timer interrupt as defined in Book E. The exception is
triggered by the first enabled watchdog timeout.

A watchdog timer interrupt occurs when no higher priority exception exists, a watchdog
timer exception exists (TSR[WIS]=1), and the interrupt is enabled (both TCR[WIE] and
MSR[CE] = 1).

The TSR holds the watchdog interrupt bit set by the timer facility when an exception is
detected. Software must clear this bit in the interrupt handler to avoid repeated watchdog
interrupts.

Table 137 lists register settings when a watchdog timer interrupt is taken.

MSR[DE] is not automatically cleared by a watchdog timer interrupt, but can be configured
to be cleared through HID0[CICLRDE]. See Chapter 4.13.1: Hardware implementation
dependent register 0 (HID0) on page 84.”

MSR

UCLE 0

SPE 0

WE 0
CE —

EE 0

PR 0
FP 0

ME —

FE0 0

DE —
FE1 0

IS 0

DS 0

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR11[48–59] || 0b0000

Table 136. Fixed-Interval timer interrupt register settings (continued)

Register Setting description

Table 137. Watchdog timer interrupt register settings

Register Setting description

CSRR0
Set to the effective address of the instruction that the processor would have attempted to
execute next if no exception conditions were present.

CSRR1 Set to the contents of the MSR at the time of the interrupt

MSR

UCLE 0

SPE 0
WE 0

CE 0

EE 0

PR 0

FP 0
ME —

FE0 0

DE 0/—(1)

FE1 0

IS 0
DS 0

1. DE is cleared when the debug APU is disabled. Clearing of DE is optionally supported by control in HID0
when the debug APU is enabled.

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR12[48–59] || 0b0000

UM0434 Interrupts and exceptions

 179/391

6.6.14 Data TLB error interrupt (IVOR13)

A data TLB error interrupt occurs when no higher priority exception exists and a data TLB
error exception occurs due to a data TLB miss. Table 138 lists register settings for DTLB
interrupts.

6.6.15 Instruction TLB error interrupt (IVOR14)

An instruction TLB error interrupt occurs when no higher priority exception exists and an
instruction TLB error exception exists due to an instruction translation lookup miss in the
TLB. Table 139 lists register settings when an ITLB interrupt is taken.

Table 138. Data TLB error interrupt register settings

Register Setting description

SRR0 Set to the effective address of the excepting load/store instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR

UCLE 0

SPE 0
WE 0

CE —

EE 0

PR 0

FP 0

ME —
FE0 0

DE —

FE1 0

IS 0
DS 0

ESR [ST], [SPE], [VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR
Set to the effective address of a byte of the load or store whose access caused the
violation.

Vector IVPR[32–47] || IVOR13[48–59] || 0b0000

Table 139. Instruction TLB error interrupt register settings

Register Setting description

SRR0 Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR

UCLE 0
SPE 0

WE 0

CE —
EE 0

PR 0

FP 0
ME —

FE0 0

DE —

FE1 0
IS 0

DS 0

ESR [MIF] All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR14[48–59] || 0b0000

Interrupts and exceptions UM0434

180/391

6.6.16 Debug interrupt (IVOR15)

The e200z3 implements the debug interrupt as defined in Book E with changes as follows:

● When the debug APU is enabled (HID0[DAPUEN] = 1), debug is no longer a critical
interrupt but uses DSRR0 and DSRR1 for saving machine state on context switch.

● The Return from Debug Interrupt Instruction (rfdi) supports the debug APU
save/restore registers (DSRR0 and DSRR1).

● The critical interrupt taken debug event allows critical interrupts to generate a debug
event.

● The critical return debug event allows debug events to be generated for rfci
instructions.

Multiple sources can signal a debug exception. A debug interrupt occurs when no higher
priority exception exists, a debug exception is indicated in the debug status register (DBSR),
and debug interrupts are enabled (DBCR0[IDM] = 1 (internal debug mode) and
MSR[DE] = 1). Enabling debug events and other debug modes is discussed in Chapter 11:
Debug support.”

With the debug APU enabled (see Chapter 4.13.1: Hardware implementation dependent
register 0 (HID0) on page 84”), the debug interrupt uses its own set of save/restore registers
(DSRR0, DSRR1) to allow debugging of both critical and non-critical interrupt handlers. This
capability also allows interrupts to be handled while in a debug software handler. External
and critical interrupts are not automatically disabled when a debug interrupt occurs but can
be configured to be cleared through HID0[DCLREE,DCLRCE]. See Chapter 4.13.1:
Hardware implementation dependent register 0 (HID0) on page 84.” When the debug APU
is disabled, debug interrupts use CSRR0 and CSRR1 to save machine state.

Note: For details regarding the following descriptions of debug exception types, see Chapter 11.4:
Software debug events and exceptions on page 299.”

Table 140. Debug exceptions

Exception Cause

Instruction
address
compare

(IAC)

Instruction address compare events are enabled and an instruction address match occurs as
defined by the debug control registers. This could either be a direct instruction address match or a
selected set of instruction addresses. IAC has the highest priority of all instruction-based interrupts,
even if the instruction itself encountered an ITLB error or instruction storage exception.

Branch taken
(BRT)

A branch instruction is considered taken by the branch unit ,and branch taken events are enabled.
The debug interrupt is taken when no higher priority exception is pending.

Data address
compare

(DAC)

Data address compare events are enabled, and a data access address match occurs as defined by
the debug control registers. This could either be a direct data address match or a selected set of
data addresses. The debug interrupt is taken when no higher priority exception is pending. The
e200z3 does not implement the data value compare debug mode, specified in Book E. The e200z3
implementation provides IAC linked with DAC exceptions. This results in a DAC exception only if one
or more IAC conditions are also met.

Trap (TRAP)
debug

Program trap exception is generated while trap events are enabled. If MSR[DE] is set, the debug
exception has higher priority than the program exception and is taken instead of a trap type program
interrupt. The debug interrupt is taken when no higher priority exception is pending. If MSR[DE] is
cleared when a trap debug exception occurs, a trap exception type program interrupt is taken
instead.

UM0434 Interrupts and exceptions

 181/391

The DBSR provides a syndrome to differentiate among debug exceptions that can generate
the same interrupt. Table 141 lists register settings when a debug interrupt is taken.

Return
(RET)

Return exceptions are enabled and rfi is executed. Return debug exceptions are not generated for
rfci or rfdi. If MSR[DE] = 1 when rfi executes, a debug interrupt occurs if no higher priority, enabled
exception exists. CSRR0 (debug APU disabled) or DSRR0 (debug APU enabled) is to set the
address of the rfi. If MSR[DE] = 0 when rfi executes, a debug interrupt does not occur immediately;
the event is recorded by setting DBSR[RET] and DBSR[IDE].

Critical return
(CRET)

Critical return debug events are enabled and rfci is executed. Critical return debug exceptions are
only generated for rfci. If MSR[DE]=1 when rfci executes, a debug interrupt occurs if no higher
priority exception exists that is enabled to cause an interrupt. CSRR0 (debug APU disabled) or
DSRR0 (debug APU enabled) is set to the address of the rfci. If MSR[DE] = 0 when rfci executes, a
debug interrupt does not occur immediately, but the event is recorded by setting DBSR[CRET] and
DBSR[IDE]. Note that critical return debug events should not normally be enabled unless the debug
APU is enabled to avoid corrupting CSRR0 and CSRR1.

Instruction
complete
(ICMP)

An instruction completed while this event is enabled. A mtmsr or mtdbcr0 that causes both
MSR[DE] and DBCR0[IDM] to end up set, enabling precise debug mode, may cause an imprecise
(delayed) debug exception to be generated due to an earlier recorded event in the DBSR.

Interrupt
taken
(IRPT)

A non-critical interrupt context switch is detected. This exception is imprecise and unordered with
respect to the program flow. Note that an IRPT debug interrupt occurs only when detecting a non-
critical interrupt on the e200z3. The value saved in CSRR0/DSRR0 is the address of the non-critical
interrupt handler.

Critical
interrupt

taken
(CIRPT)

A critical interrupt context switch is detected. This exception is imprecise and unordered with
respect to program flow. Note that a CIRPT debug interrupt occurs only when detecting a critical
interrupt on the e200z3. The address of the critical interrupt handler is saved in CSRR0/DSRR0. To
avoid corrupting CSRR0 and CSRR1, critical interrupt taken debug events should not normally be
enabled unless the debug APU is enabled.

Unconditional
debug event

(UDE)
The unconditional debug event signal (p_ude) transitions to asserted state.

Debug
counter

A debug counter exception is enabled and a debug counter decrements to zero.

External
debug

An external debug exception is enabled and an external debug event (p_devt1, p_devt2) transitions
to the asserted state.

Table 140. Debug exceptions (continued)

Exception Cause

Table 141. Debug interrupt register settings

Register Setting description

CSRR0
(MSR[DE]=0)

DSRR0(1)
(MSR[DE]=1)

Set to the effective address of the excepting instruction for IAC, BRT, RET, CRET, and TRAP.

Set to the effective address of the next instruction to be executed following the excepting
instruction for DAC and ICMP.

For UDE, IRPT, CIRPT, DCNT, or DEVT type exceptions, set to the effective address of the
instruction that would have attempted to execute next if no exception conditions were present.

CSRR1/ DSRR1 Set to the contents of the MSR at the time of the interrupt

Interrupts and exceptions UM0434

182/391

6.6.17 System reset

The core implements the system reset, which is not an interrupt defined in Book E. The
system reset exception is a non-maskable, asynchronous exception signaled to the
processor through the assertion of system-defined signals.

A system reset may be initiated as follows:

● By asserting the p_reset_b input. p_reset_b must remain asserted for a period
(specified in the hardware specifications) that allows internal logic to be reset.
Assertion for less than the required interval causes unpredictable results.

● By asserting m_por during power-on reset. m_por must be asserted during power up
and must remain asserted for a period (specified in the hardware specifications) that
allows internal logic to be reset. Assertion for less than the required interval causes
unpredictable results.

● By watchdog timer reset control

● By debug reset control

MSR

UCLE 0

SPE 0

WE 0
CE —/0(2)

EE —/02

PR 0
FP 0

ME —

FE0 0

DE 0
FE1 0

IS 0

DS 0

DBSR(3)

Unconditional debug event:

Instruction complete debug event:

Branch taken debug event:
Interrupt taken debug event:

Critical interrupt taken debug
event:

Trap instruction debug event:

Instruction address compare:
Data address compare:

Return debug event:

Critical return debug event:

Debug counter event:
External debug event:

(optional)
Imprecise debug event flag

UDE

ICMP

BRT
IRPT

CIRPT

TRAP
{IAC1, IAC2, IAC3, IAC4}

{DAC1R, DAC1W, DAC2R, DAC2W}

RET

CRET
{DCNT1, DCNT2}

{DEVT1, DEVT2}

{IDE}

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR15[48–59] || 0b0000

1. Assumes that the debug interrupt is precise

2. Conditional based on HID0 control bits.

3. Note that multiple DBSR bits may be set.

Table 141. Debug interrupt register settings (continued)

Register Setting description

UM0434 Interrupts and exceptions

 183/391

When a reset request occurs, the processor branches to the system reset exception vector
(value on p_rstbase[0:19] concatenated with 0xFFC) without attempting to reach a
recoverable state. If reset occurs during normal operation, all operations stop and machine
state is lost. The internal state of the e200z6e200z3 after a reset is defined in
Chapter 4.18.4: Reset settings.”

For reset initiated by watchdog timer or debug reset control, the e200z6 implements
TSR[WRS] or DBSR[MRR] to help software determine the cause. Watchdog timer and
debug reset control provide the capability to assert p_resetout_b. External logic may factor
this signal into p_reset_b to cause an e200z6e200z3 reset.

Table 142 shows the TSR bits associated with reset status.

Table 143 shows the DBSR bits associated with reset status.

Table 144 lists register settings when a system reset is taken.

6.6.18 SPE APU unavailable interrupt (IVOR32)

The SPE APU unavailable exception is taken if MSR[SPE] is cleared and execution of an
SPE APU instruction other than an embedded scalar floating-point or brinc instruction is
attempted. When the SPE APU unavailable exception occurs, the processor suppresses

Table 142. TSR watchdog timer reset status

Bits Name Description

34–35 WRS

00 No action performed by watchdog timer

01 Watchdog timer second timeout caused checkstop.

10 Watchdog timer second timeout caused p_resetout_b to be asserted.

11 Reserved

Table 143. DBSR most recent reset

Bits Name Function

34–35 MRR
00 No reset occurred since these bits were last cleared by software.
01 A reset occurred since these bits were last cleared by software.

1x Reserved

Table 144. System reset register Settings

Register Setting description

CSRR0 Undefined

CSRR1 Undefined

MSR

UCLE 0

WE 0
CE 0

EE 0
PR 0

FP 0

ME 0

DE 0
FE1 0

IS 0

DS 0

ESR Cleared

DEAR Undefined

Vector [p_rstbase[0:19]] || 0xFFC

Interrupts and exceptions UM0434

184/391

execution of the instruction causing the exception. Table 145 lists register settings when an
SPE unavailable interrupt is taken.

6.6.19 SPE Floating-Point data interrupt (IVOR33)

The SPE floating-point data interrupt is taken if no higher priority exception exists and an
SPE floating-point data exception is generated. When a floating-point data exception
occurs, the processor suppresses execution of the instruction causing the exception.

Table 146 lists register settings when an SPE floating-point data interrupt is taken.

Table 145. SPE unavailable interrupt register settings

Register Setting description

SRR0 Set to the effective address of the excepting SPE instruction

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR

UCLE 0

SPE 0
WE 0

CE —

EE 0

PR 0

FP 0

ME —
FE0 0

DE —

FE1 0

IS 0
DS 0

ESR SPE, [VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR32[48–59] || 0b0000

Table 146. SPE Floating-Point data interrupt register settings

Register Setting description

SRR0 Set to the effective address of the excepting SPE instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR

UCLE 0

SPE 0

WE 0
CE —

EE 0

PR 0
FP 0

ME —

FE0 0

DE —
FE1 0

IS 0

DS 0

ESR SPE, [VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR33[48–59] || 0b0000

UM0434 Interrupts and exceptions

 185/391

6.6.20 SPE Floating-Point round interrupt (IVOR34)

The SPE floating-point round interrupt is taken when an SPE floating-point instruction
generates an inexact result and inexact exceptions are enabled.

Table 147 lists register settings when an SPE floating-point round interrupt is taken.

6.7 Exception recognition and priorities
The following list of exception categories describes how the e200z3 handles exceptions up
to the point of signaling the appropriate interrupt to occur. Also, instruction completion is
defined as updating all architectural registers associated with that instruction as necessary,
and then removing the instruction from the pipeline.

● Interrupts caused by asynchronous events (exceptions). These exceptions are further
distinguished by whether they are maskable and recoverable.

– Asynchronous, non-maskable, non-recoverable: System reset by assertion of
p_reset_b.
Has highest priority and is taken immediately regardless of other pending
exceptions or recoverability. (Includes watchdog timer reset control and debug
reset control)

– Asynchronous, maskable, non-recoverable: Machine check interrupt.

Has priority over any other pending exception except system reset conditions; is
dependent on the source of the exception. Typically non-recoverable.

– Asynchronous, maskable, recoverable: External input, fixed-interval timer,
decrementer, critical input, unconditional debug, external debug event, debug
counter event, and watchdog timer interrupts.

Before handling this type of exception, the processor needs to reach a recoverable
state. A maskable recoverable exception remains pending until taken or cancelled
by software.

Table 147. SPE Floating-Point round interrupt register settings

Register Setting description

SRR0 Set to the effective address of the instruction following the excepting SPE instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR

UCLE 0

SPE 0
WE 0

CE —

EE 0

PR 0

FP 0

ME —
FE0 0

DE —

FE1 0

IS 0
DS 0

ESR SPE, [VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR[32–47] || IVOR34[48–59] || 0b0000

Interrupts and exceptions UM0434

186/391

● Synchronous, non-instruction-based interrupts. The only exception in this category is
the interrupt taken debug exception, recognized by an interrupt taken event. It is not
considered instruction-based but is synchronous with respect to program flow.

– Synchronous, maskable, recoverable: Interrupt taken debug event. The machine is
in a recoverable state due to the state of the machine at the context switch
triggering this event.

● Instruction-based interrupts. These interrupts are further organized by the point in
instruction processing in which they generate an exception.

– Instruction fetch: Instruction storage, instruction TLB, and instruction address
compare debug exceptions.

Once these types of exceptions are detected, the excepting instruction is tagged.
When the excepting instruction is next to begin execution and a recoverable state
has been reached, the interrupt is taken. If an event prior to the excepting
instruction causes a redirection of execution, the instruction fetch exception is
discarded (but may be encountered again).

– Instruction dispatch/execution: Program, system call, data storage, alignment,
floating-point unavailable, SPE unavailable, data TLB, SPE floating-point data,
SPE floating-point round, debug (trap, branch taken, return) interrupts.

Determined during decode or execution of an instruction. The exception remains
pending until all instructions before the exception-causing instruction complete.
The interrupt is then taken without completing the exception-causing instruction. If
completing previous instructions causes an exception, that exception takes priority
over the pending instruction dispatch/execution exception, which is discarded (but
may be encountered again when instruction processing resumes).

– Post-instruction execution: Debug (data address compare, instruction complete)
interrupt

Generated following execution and completion of an instruction while the event is
enabled. If executing the instruction produces conditions for another type of
exception with higher priority, that exception is taken and the post-instruction
exception is discarded for the instruction (but may be encountered again when
instruction processing resumes).

6.7.1 Interrupt priorities

Interrupts are prioritized as described in Table 148. Some exceptions may be masked or
imprecise, which affects their priority. Non-maskable exceptions such as reset and machine
check may occur at any time and are not delayed even if an interrupt is being serviced; thus,
state information for any interrupt may be lost. Reset and most machine checks are non-
recoverable.

Table 148. e200z3 exception priorities

Priority Exception Cause IVOR

Asynchronous exceptions

System reset
Assertion of p_reset_b, watchdog timer reset control, or
debug reset control

none

Machine check
Assertion of p_mcp_b, exception on fetch of first instruction
of an interrupt handler, bus error on buffered store , bus
error (XTE) with MSR[EE]=0 and current MSR[ME]=1

1

UM0434 Interrupts and exceptions

 187/391

— — —

(1)

Debug: UDE
Debug: DEVT1

Debug: DEVT2

Debug: DCNT1
Debug: DCNT2

Debug: IDE

Assertion of p_ude (unconditional debug event)
Assertion of p_devt1 and event enabled (external debug
event 1)
Assertion of p_devt2 and event enabled (external debug
event 2)
Debug counter 1 exception

Debug counter 2 exception

Imprecise debug event (event imprecise due to earlier,
higher priority interrupt

15

1 Critical Input Assertion of p_critint_b 0

1 Watchdog timer Watchdog timer first enabled time-out 12

1 External input Assertion of p_extint_b 4

1 Fixed-interval timer
Posting of a fixed-interval timer exception in TSR due to
programmer-specified bit transition in the time base register

11

1 Decrementer
Posting of a decrementer exception in TSR due to
programmer-specified decrementer condition

10

Instruction fetch exceptions

Debug: IAC
(unlinked)

Instruction address compare match for enabled IAC debug
event and DBCR0[IDM] asserted

15

ITLB error Instruction translation lookup miss in the TLB 14

Instruction storage

Access control

Precise external termination error (p_tea_b assertion and
precise recognition) and MSR[EE] = 1

Byte ordering due to misaligned instruction across page
boundary to pages with mismatched VLE bits, or access to
page with VLE set and E indicating little-endian.

Misaligned Instruction fetch due to a change of flow to an
odd halfword instruction boundary on a BookE (non-VLE)
instruction page, due to value in LR, CTR, or xSRR0

3

Instruction dispatch/execution interrupts

Program: Illegal Attempted execution of an illegal instruction 6

Program: privileged Attempted execution of a privileged instruction in user mode 6

Floating-point
unavailable

Any floating-point unavailable exception condition 7

SPE unavailable Any SPE unavailable exception condition 32

Program:
unimplemented

Attempted execution of an unimplemented instruction 6

Table 148. e200z3 exception priorities (continued)

Priority Exception Cause IVOR

Interrupts and exceptions UM0434

188/391

Debug: BRT

Debug: Trap

Debug: RET
Debug: CRET

Attempted execution of a taken branch instruction

Condition specified in tw or twi instruction met.

Attempted execution of a rfi instruction
Attempted execution of an rfci instruction

Exceptions require corresponding debug event enabled,
MSR[DE]=1, and DBCR0[IDM]=1.

15

Program: trap
Condition specified in tw or twi instruction met and not a
debug trap exception

15

System call Execution of the system call (sc, se_sc) instruction. 8

SPE floating-point
data

NaN, infinity, or denormalized data detected as input or
output, or underflow, overflow, divide by zero, or invalid
operation in the SPE APU.

33

SPE round Inexact result 34

Alignment
lmw, stmw, lwarx, or stwcx. Not word aligned. dcbz with
cache disabled or not present

5

Debug with
concurrent DTLB or
data storage
interrupt:

DAC/IAC linked(2)

DAC unlinked2

Debug with concurrent DTLB or data storage interrupt.
DBSR[IDE] also set.

Data address compare linked with instruction address
compare

Data address compare unlinked

Note: Exceptions require corresponding debug event
enabled, MSR[DE]=1, and DBCR0[IDM]=1. In this case, the
debug exception is considered imprecise and DBSR[IDE] is
set. Saved PC points to the load or store instruction causing
the DAC event.

15

Data TLB error Data translation lookup miss in the TLB. 13

Data storage

Access control.
Byte ordering due to misaligned access across page
boundary to pages with mismatched E bits.
Precise external termination error (p_tea_b assertion and
precise recognition) and MSR[EE]=1

2

Debug: IRPT

Debug: CIRPT

Interrupt taken (non-critical)

Critical interrupt taken (critical only)
Note: Exceptions require corresponding debug event
enabled, MSR[DE]=1 and DBCR0[IDM]=1.

15

Table 148. e200z3 exception priorities (continued)

Priority Exception Cause IVOR

UM0434 Interrupts and exceptions

 189/391

6.8 Interrupt processing
When an interrupt is taken, SRR0/SRR1 for non-critical interrupts, CSRR0/CSRR1 for
critical interrupts, and either CSRR0/CSRR1 or DSRR0/DSRR1 for debug interrupts are
used to save the contents of the MSR and to help identify where instruction execution
should resume after the interrupt is handled.

When an interrupt occurs, one of SRR0/CSRR0/DSRR0 is set to the address of the
instruction that caused the exception or to the following instruction if appropriate.

SRR1 is used to save machine state (selected MSR bits) on non-critical interrupts and to
restore those values when an rfi executes. CSRR1 is used to save machine status (selected
MSR bits) on critical interrupts and to restore those values when an rfci instruction is
executed. DSRR1 is used to save machine status (selected MSR bits) on debug interrupts
when the debug APU is enabled and to restore those values when an rfdi executes.

The ESR is loaded with information specific to the exception type. Some interrupt types can
only be caused by a single exception type and thus do not use an ESR setting to indicate
the interrupt cause.

The MSR is updated to preclude unrecoverable interrupts from occurring during the initial
portion of the interrupt handler. Specific settings are described in Table 149.

For alignment, data storage, or data TLB miss interrupts, or for a machine check due to
cache parity error on data access interrupts, the data exception address register (DEAR) is
loaded with the address that caused the interrupt to occur.

For machine check interrupts, the MCSR is loaded with information specific to the exception
type.

Post-instruction execution exceptions

Debug: DAC/IAC
linked2

Debug: DAC
unlinked2

Data address compare linked with instruction address
compare
Data address compare unlinked

Notes:

Exceptions require corresponding debug event enabled,
MSR[DE] = 1 and DBCR0[IDM] = 1.

Saved PC points to the instruction following the load or store
instruction causing the DAC event.

15

Debug: ICMP
Completion of an instruction.

Note: Exceptions require corresponding debug event
enabled, MSR[DE]=1, and DBCR0[IDM]=1.

15

1. These exceptions are sampled at instruction boundaries, and may actually occur after exceptions that are
due to a currently executing instruction. If one of these exceptions occurs during execution of an instruction
in the pipeline, it is not processed until the pipeline has been flushed, and the exception associated with the
excepting instruction may occur first.

2. When no data storage interrupt or data TLB error occurs, the core implements the data address compare
debug exceptions as post-instruction exceptions, which differs from the Book E definition. When a TEA
(either a DTLB error or data storage interrupt) occurs in conjunction with an enabled DAC or linked
DAC/IAC on a load or store class instruction, the debug interrupt takes priority, and the saved PC value
points to the load or store class instruction, rather than to the next instruction.

Table 148. e200z3 exception priorities (continued)

Priority Exception Cause IVOR

Interrupts and exceptions UM0434

190/391

Instruction fetch and execution resume, using the new MSR value, at a location specific to
the exception type. The location is determined by the IVPR and an IVOR specific for each
type of interrupt (see Table 114). A new operating context is selected using the low-order
three bits of the specific IVOR selected by the type of interrupt.

Table 149 shows the MSR settings for different interrupt categories. Note that reserved and
preserved MSR bits are unimplemented and are read as 0.

6.8.1 Enabling and disabling exceptions

When a condition exists that may cause an exception to be generated, it must be
determined whether the exception is enabled for that condition.

● System reset exceptions cannot be masked.

● A machine check exception can occur only if the machine check enable, MSR[ME], = 1.
If ME = 0, the processor goes directly into checkstop state when a machine check
exception condition occurs. Individual machine check exceptions can be enabled and
disabled through HID0 bits.

● Asynchronous, maskable non-critical exceptions (such as the external input and
decrementer) are enabled by setting MSR[EE]. When EE = 0, recognition of these
exception conditions is delayed. EE is cleared automatically when a non-critical or
critical interrupt is taken to mask further recognition of conditions causing those
exceptions.

● Asynchronous, maskable critical exceptions (such as critical input and watchdog timer)
are enabled by setting MSR[CE]. When CE = 0, recognition of these exception
conditions is delayed. CE is cleared automatically when a critical interrupt is taken to
mask further recognition of conditions causing those exceptions.

● Synchronous and asynchronous debug exceptions are enabled by setting MSR[DE]. If
DE = 0, recognition of these exception conditions is masked. DE is cleared

Table 149. MSR setting due to interrupt

Bits MSR definition Reset setting Non-critical interrupt Critical interrupt Debug interrupt

37 UCLE 0 0 0 0

38 SPE 0 0 0 0

45 WE 0 0 0 0

46 CE 0 — 0 —/0(1)

1. Conditionally cleared based on control bits in HID0

48 EE 0 0 0 —/01

49 PR 0 0 0 0

50 FP 0 0 0 0

51 ME 0 — — —

52 FE0 0 0 0 0

54 DE 0 — —/01 0

55 FE1 0 0 0 0

58 IS 0 0 0 0

59 DS 0 0 0 0

UM0434 Interrupts and exceptions

 191/391

automatically when a debug interrupt is taken to mask further recognition of conditions
causing those exceptions. Chapter 11: Debug support,” gives details on individual
control of debug exceptions.

● The floating-point unavailable exception can be prevented by setting MSR[FP]
(although the e200z3 generates an unimplemented instruction exception instead).

6.8.2 Returning from an interrupt handler

The Return from Interrupt (rfi), Return from Critical Interrupt (rfci) and Return from Debug
Interrupt (rfdi) instructions perform context synchronization by allowing instructions issued
earlier to complete before returning to the interrupted process. In general, execution of rfi,
rfci, or rfdi ensures the following:

● All previous instructions have completed to a point where they can no longer cause an
exception. This includes post-execute type exceptions.

● Previous instructions complete execution in the context (privilege and protection) under
which they were issued.

● The rfi copies SRR1 bits back into the MSR.

● The rfci copies CSRR1 bits back into the MSR.

● The rfdi copies DSRR1 bits back into the MSR.

● Instructions fetched after this execution in the context established by this instruction.

● Program execution resumes at the instruction indicated by SRR0 for rfi, CSRR0 for rfci
or DSRR0 for rfdi.

Note that the rfi may be subject to a return type debug exception and that rfci may be
subject to a critical return type debug exception. For a complete description of context
synchronization, refer to the EREF.

6.9 Process switching
The following instructions are useful for restoring proper context during process switching:

● msync orders the effects of data memory instruction execution. All instructions
previously initiated appear to have completed before the msync instruction completes,
and no subsequent instructions appear to be initiated until the msync instruction
completes.

● isync waits for all previous instructions to complete and then discards any fetched
instructions, causing subsequent instructions to be fetched (or refetched) from memory
and to execute in the context (privilege, translation, and protection) established by the
previous instructions.

● stwcx. clears any outstanding reservations, ensuring that a load and reserve
instruction in an old process is not paired with a store conditional instruction in a new
one.

Memory management unit UM0434

192/391

7 Memory management unit

This chapter describes the implementation details of the e200z3 core complex MMU relative
to the Book E architecture and the Freescale Book E standards.

7.1 Overview
The e200z3 memory management unit is a 32-bit PowerPC Book E–compliant
implementation.

7.1.1 MMU features

The MMU of the e200z3 core has the following feature set:

● Freescale Book E implementation standard (EIS) MMU architecture compliant

● 32-bit effective address translated to 32-bit real address (using a 41-bit interim virtual
address)

● 16-entry, fully associative, translation lookaside buffer (TLB1) that supports the nine
page sizes (4 Kbytes, 16 Kbytes, 64 Kbytes, 256 Kbytes, 1 Mbyte, 4 Mbytes,
16 Mbytes, 64 Mbytes, 256 Mbytes), shown in Table 151

● One 32-bit PID register (PID0) for supporting up to 255 translation IDs at any time in
the TLB

● No page table format defined; software is free to use its own page table format

● Hardware assist for TLB miss exceptions

● TLB1 managed by tlbre, tlbwe, tlbsx, tlbsync, and tlbivax instructions and six MMU
assist (MAS) registers

● IPROT bit implemented in TLB1 prevents invalidations, protecting critical entries (so
designated by having the IPROT bit set) from being invalidated.

7.1.2 TLB entry maintenance features summary

The TLB entries of the e200z3 core complex must be loaded and maintained by the system
software; this includes performing any required table search operations in memory. The
e200z3 provides support for maintaining TLB entries in software with the resources shown
in Table 150. Note that many of these features are defined at the Freescale Book E level.

UM0434 Memory management unit

 193/391

Other hardware assistance features for maintenance of the TLB on the e200z3 are
described in Chapter : MAS register updates on page 205.”

7.2 Effective to real address translation
This section describes the general principles that guide the PowerPC Book E definition for
memory management and further describes the structure for MMUs defined by the
Freescale Book E implementation standard (EIS) and the e200z3 MMU.

Figure 7 shows the high-level translation flow, showing that because the smallest page size
supported by the e200z3 core complex is 4 Kbytes, the 12 lsbs always index within the page
and are untranslated.

Table 150. TLB maintenance programming model

Features Description Section/page

TLB
Instructions

tlbre TLB Read Entry instruction
Chapter 7.4 on

page 200

tlbwe TLB Write Entry instruction
Chapter 7.4 on

page 200

tlbsx rA, rB TLB Search for Entry instruction
Chapter 7.4 on

page 200

tlbivax rA, rB TLB Invalidate Entries instruction
Chapter 7.4 on

page 200

tlbsync
TLB Synchronize Invalidations with other masters’
instruction (privileged no-op on the e200z3)

Chapter 7.4 on
page 200

Registers

PID0 Process ID register
Chapter 4.4.2
on page 45

MMUCSR0 MMU control and status register
Chapter 4.16.1

on page 88

MMUCFG MMU configuration register
Chapter 4.16.2

on page 89

TLB0CFG–TLB1CFG TLB configuration registers
Chapter 4.16.3

on page 90

MAS0–MAS4, MAS6
MMU assist registers. Note: e200z3 does not
implement MAS5.

Chapter 4.16.4
on page 91

DEAR Data exception address register
Chapter on

page 57

Interrupts

Instruction TLB miss
exception

Causes instruction TLB error interrupt
Chapter 6.6.15
on page 179

Data TLB miss exception Causes data TLB error interrupt
Chapter 6.6.14
on page 179

Instruction permission
violation exception

Causes ISI interrupt
Chapter 6.6.4
on page 172

Data permission violation
exception

Causes DSI interrupt
Chapter 6.6.3
on page 171

Memory management unit UM0434

194/391

Figure 7. Effective to real address translation flow

32-Bit Effective Address

32-Bit Real Address

Virtual Address

NOTE: n = 32–log2 (page size)
n> = 20
n = 20 for 4-Kbyte page size

PID Effective Page Address Offset

0 n 31

TLB
Multiple-Entry

MSR[IS] for Instruction Fetch

AS

MSR[DS] for Data Access

RPN field of matching entry

n–1

Real Page Number Offset

0 n 31n–1

Effective Page Number Byte Address

Real Page Number Byte Address

32-bit Effective Address (EA)

32-Bit Real Address

15–20 Bits* >12 Bits*

15–20 Bits* >12 Bits*

MMU (Unified)

Three 41-Bit Virtual Addresses (VAs)

8 Bits

MSR··· IS DS ···

Instruction Access

Data Access

AS PID0

* Number of bits depends on page size
(4 Kbytes–128 Mbytes)

32-Entry Fully–Assoc. VSP Array (TLB1)
MAS Registers

UM0434 Memory management unit

 195/391

7.2.1 Effective addresses

Instruction accesses are generated by sequential instruction fetches or due to a change in
program flow (branches and interrupts). Data accesses are generated by load, store, and
cache management instructions. The e200z3 instruction fetch, branch, and load/store units
generate 32-bit effective addresses. The MMU translates these effective addresses to 32-bit
physical (real) addresses that are then used for memory accesses.

The PowerPC Book E architecture divides the effective (virtual) and real (physical) address
space into pages. The page represents the granularity of effective address translation,
permission control, and memory/cache attributes. The e200z3 MMU supports nine page
sizes (4 Kbytes to 256 Mbytes, as defined in Table 151). In order for an effective-to-real
address translation to exist, a valid entry for the page containing the effective address must
be in a TLB. Accesses to addresses for which no TLB entry exists (a TLB miss) cause
instruction or data TLB errors.

7.2.2 Address spaces

The PowerPC Book E architecture defines two effective address spaces for instruction
accesses and two effective address spaces for data accesses. The current effective address
space for instruction or data accesses is determined by the value of MSR[IS] (instruction
address space bit) and MSR[DS] (data address space bit), respectively. The address space
indicator (the corresponding value of either MSR[IS] or MSR[DS]) is used in addition to the
effective address generated by the processor for translation into a physical address by the
TLB mechanism. Because MSR[IS] and MSR[DS] are both cleared when an interrupt
occurs, an address space value of 0 can be used to denote interrupt-related address spaces
(or possibly all system software address spaces). An address space value of 1 can be used
to denote non–interrupt-related address spaces or possibly all user address spaces.

The address space associated with an instruction or data access is included as part of the
virtual address in the translation process (AS).

7.2.3 Virtual addresses and process ID

The PowerPC Book E architecture requires a process ID (PID) value to be associated with
each effective address (instruction or data) generated by the processor to construct a virtual
address for each access. At the Book E level, a single PID register is defined as a 32-bit
register, and it maintains the value of the PID for the current process. This PID value is
included as part of the virtual address in the translation process (PID0).

For the e200z3 MMU, the PID is 8 bits in length. The most significant 24 bits are
unimplemented and read as 0. The p_pid0[0:7] interface signals indicate the current
process ID.

The core complex implements a single process ID (PID) register, PID0, as an SPR shown in
Chapter 4.16.5 on page 96.” The current value in the PID register is used in the TLB look-up
process and compared with the TID field in all the TLB entries. If the PID value in PID0
matches with a TLB entry in which all the other match criteria are met, that entry is used for
translation.

Note that when a TID value in a TLB entry is all zeros, it always causes a match in the PID
compare (effectively ignoring the values of the PID register). Thus, the operating system can
set the values of all the TIDs to zero, effectively eliminating the PID value from all translation
comparisons.

Memory management unit UM0434

196/391

7.2.4 Translation flow

The effective address, concatenated with the address space value of the corresponding
MSR bit (MSR[IS] or MSR[DS]), is compared to the appropriate number of bits of the EPN
field (depending on the page size) and the TS field of TLB entries. If the contents of the
effective address plus the address space bit matches the EPN field and TS bit of the TLB
entry, that TLB entry is a candidate for a possible translation match. In addition to a match in
the EPN field and TS, a matching TLB entry must match with the current process ID of the
access (in PID0), or have a TID value of 0, indicating that the entry is globally shared among
all processes.

Figure 8 shows the translation match logic for the effective address plus its attributes,
collectively called the virtual address, and how it is compared with the corresponding fields
in the TLB entries.

Figure 8. Virtual address and TLB-Entry compare process

The page size defined for a TLB entry determines how many bits of the effective address
are compared with the corresponding EPN field in the TLB entry as shown in Table 151. On
a TLB hit, the corresponding bits of the real page number (RPN) field are used to form the
real address, and the generation of the physical address occurs as shown in Figure 7.

Table 151. Page size (for e200z3 Core) and EPN field comparison

SIZE Field
Page Size

(4SIZE Kbytes)
EA to EPN Comparison

(Bits 32–53; 2 × SIZE)

0b0001 4 Kbytes EA[32–51] = EPN[32–51]?

0b0010 16 Kbytes EA[32–49] = EPN[0–49]?

0b0011 64 Kbytes EA[32–47] = EPN[32–47]?

0b0100 256 Kbytes EA[32–45] = EPN[32–45]?

0b0101 1 Mbyte EA[32–43] = EPN[32–43]?

0b0110 4 Mbytes EA[32–41] = EPN[32–41]?

0b0111 16 Mbytes EA[32–39] = EPN[32–39]?

0b1000 64 Mbytes EA[32–37] = EPN[32–37]?

0b1001 256 Mbytes EA[32–35] = EPN[32–35]?

TLB Entry Hit

=0?

Private Page

Shared Pagee

=?

=?

TLB_entry[V]

TLB_entry[TS]

TLB_entry[TID]

TLB_entry[EPN]

AS (from MSR[IS] or MSR[DS])

Process ID

EA Page Number Bits

=?

UM0434 Memory management unit

 197/391

7.2.5 Permissions

An operating system may restrict access to virtual pages by selectively granting permissions
for user-mode read, write, and execute, and supervisor-mode read, write, and execute on a
per-page basis. These permissions can be set up for a particular system (for example,
program code may be execute only, and data structures may be mapped as read/write/no-
execute) and be changed by the operating system based on application requests and
operating system policies.

The UX, SX, UW, SW, UR, and SR access control bits are provided to support selective
permissions (access control):

● SR—Supervisor read permission. Allows loads and load-type cache management
instructions to access the page while in supervisor mode (MSR[PR = 0]).

● SW—Supervisor write permission. Allows stores and store-type cache management
instructions to access the page while in supervisor mode (MSR[PR = 0]).

● SX—Supervisor execute permission. Allows instruction fetches to access the page and
instructions to be executed from the page while in supervisor mode (MSR[PR = 0]).

● UR—User read permission. Allows loads and load-type cache management
instructions to access the page while in user mode (MSR[PR = 1]).

● UW—User write permission. Allows stores and store-type cache management
instructions to access the page while in user mode (MSR[PR = 1]).

● UX—User execute permission. Allows instruction fetches to access the page and
instructions to be executed from the page while in user mode (MSR[PR = 1]).

If the translation match was successful, the permission bits are checked as shown in
Figure 9. If the access is not allowed by the access permission mechanism, the processor
generates an instruction or data storage interrupt (ISI or DSI).

Figure 9. Granting of access permission

7.3 Translation lookaside buffer
The EIS architecture defines support for zero or more TLBs in an implementation, each with
its own characteristics, and provides configuration information for software to query the
existence and structure of TLBs through a set of SPRs—MMUCFG, TLB0CFG, TLB1CFG,
and so on. By convention, TLB0 is used for a set-associative TLB with fixed page sizes,

Access Granted

Instruction Fetch
MSR[PR]

TLB_entry[UX]

TLB_entry[SX]

TLB_entry[UR]

TLB_entry[SR]

TLB_entry[UW]

TLB_entry[SW]

Load-Class Data Access

Store-Class Data Access

TLB Match (see Figure 5-2)

Memory management unit UM0434

198/391

TLB1 is used for a fully-associative TLB with variable page sizes, and TLB2 is arbitrarily
defined by an implementation. The e200z3 MMU supports a single TLB that is fully
associative and supports variable page sizes; thus it corresponds to TLB1 in the
programming model. For the rest of this document, TLB, TLBCAM, and TLB1 are used
interchangeably.

The TLB on the e200z3 MMU (TLB1) consists of a 16-entry, fully-associative content-
addressable memory (CAM) array with support for nine page sizes. To perform a lookup, the
TLB is searched in parallel for a matching TLB entry. The contents of a matching TLB entry
are then concatenated with the page offset of the original effective address. The result
constitutes the real (physical) address of the access.

A hit to multiple TLB entries is considered to be a programming error. If this occurs, the TLB
generates an invalid address and TLB entries may be corrupted (an exception will not be
reported).

The structure of TLB1 is shown in Figure 10.

Figure 10. e200z3 TLB1 organization

7.3.1 IPROT invalidation protection in TLB1

The IPROT bit in TLB1 is used to protect TLB entries from invalidation. TLB1 entries with
IPROT set are not invalidated by a tlbivax instruction executed by this processor (even
when the INV_ALL command is indicated), or by a flash invalidate initiated by writing to
MMUCSR0[TLB1_FI]. The IPROT bit can be used to protect critical code and data such as
interrupt vectors/handlers in order to guarantee that the instruction fetch of those vectors
never takes a TLB miss exception. Entries with IPROT set can only be invalidated by writing
a 0 to the valid bit of the entry (by using the MAS registers and executing the tlbwe
instruction).

Invalidation operations generated by execution of the tlbivax instruction are guaranteed to
invalidate the entry that translates the address specified in the operand of the tlbivax
instruction. Additional entries may also be invalidated by this operation if they are not
protected with IPROT. A precise invalidation can be performed by writing a 0 to the valid bit
of a TLB entry.

0

15

TLB1

Compare

Compare

RPN Hit

Real Address
(translated bits, depending on page size)

Virtual Address

UM0434 Memory management unit

 199/391

7.3.2 Replacement algorithm for TLB1

The replacement algorithm for TLB1 must be implemented completely by system software.
Thus, when an entry in TLB1 is to be replaced, the software can select which entry to
replace and write the entry number to the MAS0[ESEL] field before executing a tlbwe
instruction.

Alternately, the software can load the entry number of the next desired victim into
MAS0[NV]. The e200z3 then automatically loads MAS0[ESEL] from MAS0[NV] on a TLB
error condition as shown in Figure 11.

See Table 156 for a complete description of MAS register updates on various exception
conditions.

Figure 11. Victim selection

7.3.3 The G bit (of WIMGE)

The G bit provides protection from bus accesses that could be canceled due to an exception
on a prior uncompleted instruction.

If G = 1 (guarded), these types of accesses must stall until the exception status of any
instructions in progress is known. If G = 0 (unguarded), these accesses may be issued to
the bus regardless of the completion status of other instructions. Because the core does not
make requests for load or store instructions until it is known that prior instructions will
complete without exceptions, the G bit is essentially ignored. Proper operation always
occurs to guarded storage.

7.3.4 TLB entry field summary

Table 152 summarizes the fields of e200z3 TLB entries.

Note: All of these fields are defined at the Freescale Book E level.

MAS0

ESEL

NV

On tlbwe SelectsEntry

TLB Miss (TLB Error Interrupt)

Written by Software

Table 152. TLB entry bit fields for e200z3

Field Description

V Valid bit for entry

TS Translation address space (compared with AS bit of the current access)

TID[0–7] Translation ID (compared with PID0 or TIDZ (all zeros))

EPN[0–19] Effective page number (compared with effective address)

Memory management unit UM0434

200/391

7.4 Software interface and TLB instructions
TLB1 is accessed indirectly through several MMU assist (MAS) registers, which software
can write and read with mtspr and mfspr instructions. MAS registers contain information
related to reading and writing a given entry within TLB1. Data is read from the TLB into the
MAS registers with a tlbre (TLB Read Entry) instruction and is written to the TLB from the
MAS registers with a tlbwe (TLB Write Entry) instruction.

Certain fields of the MAS registers are also written by hardware when an instruction TLB
error, data TLB error, DSI, or ISI interrupt occurs.

On a TLB error interrupt, the MAS registers are written by hardware with the proper EA,
default attributes (TID, WIMGE, permissions, and so on), TLB selection information, and an
entry in the TLB to replace. Software manages this entry selection information by updating a
replacement entry value during TLB miss handling. Software must provide the correct RPN
and permission information in one of the MAS registers before executing a tlbwe instruction.

On taking a DSI or ISI interrupt, hardware updates only the search PID (SPID) and search
address space (SAS) fields in the MAS registers, using the contents of PID0 and the
corresponding MSR[IS] or MSR[DS] value used when the data or instruction storage
interrupt was recognized. During the interrupt handler, software can issue a TLB Search
Instruction (tlbsx), which uses the SPID field along with the SAS field, to determine the
entry related to the data or instruction storage interrupt. Note that it is possible that the entry
that caused the data or instruction storage interrupt no longer exists in the TLB by the time

RPN[0–19] Real page number (translated address)

SIZE[0–3]

Encoded page size
0000 Reserved

0001 4 Kbytes

0010 16 Kbytes
0011 64 Kbytes

0100 256 Kbytes

0101 1 Mbyte
0110 4 Mbytes

0111 16 Mbytes

1000 64 Mbytes
1001 256 Mbytes

All others—reserved

SX, SW, SR Supervisor execute, write, and read permission bits

UX, UW, UR User execute, write, and read permission bits

WIMGE
Memory/cache attributes (write-through, cache-inhibit, memory coherence
required, guarded, endian)

U0–U3 User attribute bits—used only by software

IPROT Invalidation protection

VLE VLE page indicator

Table 152. TLB entry bit fields for e200z3 (continued)

Field Description

UM0434 Memory management unit

 201/391

the search occurs if a TLB invalidate or replacement removes the entry between the time
the exception is recognized and when the tlbsx is executed.

The supervisor instructions tlbre, tlbwe, tlbsx, tlbivax, and tlbsync are fully described in
the EREF.

● TLB Read Entry (tlbre)—Causes contents of the TLB entry specified by
MAS0[TLBSEL,ESEL]) to be placed into MAS1–MAS3. Table 156 describes how MAS
fields are updated.

● TLB Write Entry (tlbwe)—Causes the contents of certain fields within the MAS1,
MAS2, and MAS3 to be written into the TLB entry specified by MAS0[TLBSEL,ESEL].
Table 156 describes how MAS fields are updated.

● TLB Search Indexed (tlbsx)—Updates the MAS registers conditionally based on
success or failure of a TLB lookup. The lookup is controlled by an effective address
provided by rB as specified in the instruction encoding, and by MAS6[SAS,SPID]. The
values placed into MAS0–MAS3 differ depending on the success of the search.
Table 156 describes how MAS fields are updated.

● TLB Invalidate (tlbivax)—Invalidates TLB entries that correspond to the virtual address
calculated by this instruction. The address is detailed in Table 153. No other
information except for that shown in Table 153 is used for the invalidation (AS and TID
values are ignored).

Additional information about the targeted TLB entries is encoded in two of the lower bits
of the effective address calculated by the tlbivax.

EA[0–19] are used to perform the tlbivax invalidation of TLB1.

 t

● TLB Synchronize (tlbsync)—Treated as a privileged no-op by the e200z3.

7.5 TLB operations
This section describes how the software (with some hardware assistance) maintains TLB1.

Table 153. tlbivax EA bit definitions

Bits Field

0–19 EA[0–19]

20–27 Reserved(1)

1. These bits should be zero for future compatibility. They are ignored.

28
TLBSEL (1 = TLB1). Should be set, for future compatibility and to ensure that TLB1 is
targeted by the invalidate.

29
INV_ALL. If set, indicates that the invalidate operation needs to completely invalidate all
TLB1 entries that are not marked as invalidation protected (IPROT = 1)

30–31 Reserved 1

Memory management unit UM0434

202/391

7.5.1 Translation reload

The TLB reload function is performed in software with some hardware assistance. This
hardware assistance consists of the following:

● Five 32-bit MMU assist registers (MAS0–MAS4, MAS6) for support of the tlbre, tlbwe,
and tlbsx TLB management instructions.

● Loading of MAS0–MAS2 based upon defaults in MAS4 for TLB miss exceptions. This
automatically generates most of the TLB entry.

● Loading of the data exception address register (DEAR) with the EA of the load, store,
or cache management instruction that caused an alignment, data TLB miss, or data
storage interrupt.

● The tlbwe instruction. When tlbwe is executed, the new TLB entry contained in MAS0–
MAS2 is written into the TLB.

7.5.2 Reading the TLB

The TLB array can be read by first writing the necessary information into MAS0 using mtspr
and then executing the tlbre instruction. To read an entry from TLB1, MAS0[TLBSEL] must
be set to 01 and MAS0[ESEL] must be set to point to the desired entry. After tlbre executes,
MAS1–MAS3 are updated with the data from the selected TLB entry. See Chapter 7.4:
Software interface and TLB instructions on page 200.”

7.5.3 Writing the TLB

The TLB1 array can be written by first writing the necessary information into MAS0–MAS3
using mtspr and then executing the tlbwe instruction. To write an entry into TLB1, the
TLBSEL field in MAS0 must be set to 01, and the ESEL bits in MAS0 must be set to point to
the desired entry. When the tlbwe instruction is executed, the TLB entry information stored
in MAS1–MAS3 is written into the selected TLB entry. See Chapter 7.4: Software interface
and TLB instructions on page 200.”

7.5.4 Searching the TLB

TLB1 can be searched using a tlbsx by first writing the necessary information into MAS6.
The tlbsx instruction searches using EPN[0–19] from the GPR selected by the instruction,
SAS (search AS bit) in MAS6, and SPID in MAS6. If the search is successful, the given TLB
entry information is loaded into MAS0–MAS3. The valid bit in MAS1 is used as the success
flag. If the search is successful, the valid bit in MAS1 is set; if unsuccessful, it is cleared. The
tlbsx instruction is useful for finding the TLB entry that caused a data or instruction storage
interrupt. See Chapter 7.4: Software interface and TLB instructions on page 200.”

7.5.5 TLB coherency control

The e200z3 core provides the ability to invalidate a TLB entry as described in the Book E
PowerPC architecture. The tlbivax instruction invalidates local TLB entries only. No
broadcast is performed, as no hardware-based coherency support is provided.

The tlbivax instruction invalidates by effective address only. This means that only the TLB
entry’s EPN bits are used to determine if the TLB entry should be invalidated. Therefore, a
single tlbivax can invalidate multiple TLB entries, because the AS and TID fields of the
entries are ignored.

UM0434 Memory management unit

 203/391

7.5.6 TLB miss exception update

When a TLB miss exception occurs, MAS0–MAS3 are updated with the defaults specified in
MAS4 and the AS and EPN[0–19] of the access that caused the exception. In addition, the
ESEL bits are updated with the replacement entry value. This sets up all the TLB entry data
necessary for a TLB write except for the RPN[0–19], the U0–U3 user bits, and the
UX/SX/UW/SW/UR/SR permission bits, all of which are stored in MAS3. Thus, if the defaults
stored in MAS4 are applicable to the TLB entry to be loaded, the TLB miss exception
handler only has to update MAS3 through mtspr before executing tlbwe. If the defaults are
not applicable to the TLB entry being loaded, the TLB miss handler must update MAS0–
MAS2 before performing the TLB write.

See Table 156 for more details on the automatic updates to the MAS registers on
exceptions.

7.5.7 TLB load on reset

During reset, all TLB entries except entry 0 are automatically invalidated by the hardware.
TLB entry 0 is also loaded with the default values in Table 154.

7.6 MMU configuration and control registers
Information about the configuration for a given MMU implementation is available to system
software by reading the contents of the MMU configuration SPRs. These SPRs describe the
architectural version of the MMU, the number of TLB arrays, and the characteristics of each
TLB array. Additionally, there are a number of MMU control and assist registers summarized
in Chapter 4.16.4: MMU assist registers (MAS0–MAS4, MAS6) on page 91.”

Table 154. TLB entry 0 values after Reset

Field Reset Value Comments

VALID 1 Entry is valid.

TS 0 Address space 0

TID[0–7] 0x00 TID value for shared (global) page

EPN[0–19]
p_rstbase[0:19]

value
Page address present on p_rstbase[0:19]. See Chapter 9: External
core complex interfaces.”

RPN[0–19]
p_rstbase[0:19]

value
Page address present on p_rstbase[0:19]. See Chapter 9: External
core complex interfaces.”

SIZE[0–3] 0001 4KB page size

SX/SW/SR 111 Full supervisor mode access allowed

UX/UW/UR 111 Full user mode access allowed

WIMG 0100 Cache-inhibited, non-coherent

E
p_rst_endmode

value
Value present on p_rst_endmode. See Chapter 9: External core
complex interfaces.”

U0–U3 0000 User bits

IPROT 1 Page is protected from invalidation.

VLE
 p_rst_vlemode

value
Value present on p_rst_vlemode signal. See Table 167 for more
information.

Memory management unit UM0434

204/391

7.6.1 MMU configuration register (MMUCFG)

MMUCFG provides configuration information for the MMU supplied with this version of the
e200z3 CPU core. See Chapter 4.16.2: MMU configuration register (MMUCFG).”

7.6.2 TLB0 and TLB1 configuration registers

TLB0CFG and TLB1CFG provide configuration information for the MMU TLBs supplied with
this version of the e200z3 CPU core. See Chapter 4.16.3: TLB configuration registers
(TLBnCFG).”

7.6.3 Data exception address register (DEAR)

DEAR, described in Chapter : Data exception address register (DEAR),” is loaded with the
effective address of the data access that results in an alignment, data TLB miss, or data
storage interrupt.

7.6.4 MMU control and status register 0 (MMUCSR0)

MMUCSR0, shown in Chapter 4.16.1,”controls the state of the MMU.

7.6.5 MMU assist registers (MAS)

The e200z3 uses MAS0–MAS4 and MAS6 SPRs to facilitate reading, writing, and searching
the TLBs. The e200z3 does not implement MAS5, because the tlbsx instruction only
searches based on a single SPID value.

MAS registers are described in Chapter 4.16.4.”

MAS registers summary

The fields of the MAS registers are summarized in Table 155.

Table 155. MMU assist registers summary

32 33 34 35
3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

46
4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

58 59 60 61 62 63

MAS
0

—
TLBSE

L
— ESEL — NV

MAS
1

VALI
D

IPRO
T

— TID —
T
S

TSIZ —

MAS
2

EPN — VLE W I M G E

MAS
3

RPN —
U
0

U
1

U
2

U
3

UX SX
U
W

S
W

U
R

SR

MAS
4

—
TBSEL

D
— TIDSELD — TSIZED —

VLE
D

W
D

ID
M
D

G
D

ED

MAS
6

— SPID —
SA
S

UM0434 Memory management unit

 205/391

MAS register updates

Table 156 details the updates to each MAS register field for each update type.

7.7 Effect of hardware debug on MMU operation
Hardware debug facilities use normal CPU instructions to access register and memory
contents during a debug session. If desired, the debug firmware may disable the translation
process and may substitute default values for the access protection (UX, UR, UW, SX, SR,
SW) bits and values obtained from the OnCE control register for page attribute (W,I,M,G,E)
bits normally provided by a matching TLB entry. In addition, no address translation is
performed; instead, a 1:1 mapping of effective-to-real addresses is performed. When
disabled during the debug, no TLB miss or TLB access protection related DSI conditions
occur. If there is a need for the debugger to use normal translation process, the MMU may
be left enabled in the OnCE OCR, and normal translation (including the possibility of a TLB
miss or DSI) remains in effect. See: Chapter : OnCE control register (OCR),” for details on
controlling MMU operation during debug sessions.

Table 156. MMU assist register field updates

Bit/Field
MAS

Affected
ITLB/DTLB Error tlbsx hit tlbsx miss tlbre tlbwe

ISI/DS
I

TLBSEL 0 TLBSELD ‘01’ TLBSELD NC(1) NC NC

ESEL 0 NV Matched entry NV NC NC NC

NV 0 NC NC NC NC NC NC

VALID 1 1 1 0 V(array) NC NC

IPROT 1 0
Matched
IPROT

0 IPROT(array) NC NC

TID[0–7] 1
TIDSELD

(PID0,TIDZ)
TID(array) SPID TID(array) NC NC

TS 1 MSR(IS/DS) SAS SAS TS(array) NC NC

TSIZE[0–3] 1 TSIZED TSIZE(array) TSIZED TSIZE(array) NC NC

EPN[0–19] 2 I/D EPN EPN(array) tlbsx EPN EPN(array) NC NC

WIMGE 2 Default values WIMGE(array)
Default
values

WIMGE(array) NC NC

RPN[0–19] 3 Zeroed RPN(Array) Zeroed RPN(array) NC NC

ACCESS
(PERMISS
+ U0–U3)

3 Zeroed Access(Array) Zeroed Access(array) NC NC

TLBSELD 4 NC NC NC NC NC NC

TIDSELD[0–1] 4 NC NC NC NC NC NC

TSIZED[0–3] 4 NC NC NC NC NC NC

Default WIMGE 4 NC NC NC NC NC NC

SPID 6 PID0 NC NC NC NC NC

SAS 6 MSR(IS/DS) NC NC NC NC NC

1. NC—no change

Instruction pipeline and execution timing UM0434

206/391

8 Instruction pipeline and execution timing

This chapter describes the instruction pipeline and instruction timing information. The core
is partitioned into the following systems:

● Instruction unit

● Control unit

● Integer unit

● Load/store unit

● Core interface

8.1 Overview of operation
Figure 12 shows a block diagram of the e200z3 core. The instruction fetch unit prefetches
instructions from memory into the instruction buffers. The decode unit decodes each
instruction and generates information needed by the branch and execution units. Branch
target instructions are written into the branch target prefetch buffers; sequentially prefetched
instructions are written into the instruction buffers.

The instruction fetch unit attempts to supply a constant stream of instructions to the
execution pipeline. It does so by decoding and detecting branches early in the instruction
buffer, making branch predictions, and prefetching their branch targets into the instruction
buffer. By prefetching the branch targets early, some or all of the branch pipeline bubbles
can be hidden from the execution pipeline.

The instruction issue unit attempts to issue a single instruction each cycle to one of the
execution units. Source operands for each of the instructions are provided from the GPRs or
from the operand feed-forward muxes. Data or resource hazards may create conditions that
stall instruction issue until the hazard is eliminated.

The execution units write the result of a finished instruction onto the proper result bus and
into the destination registers. The writeback logic retires an instruction when the instruction
has finished execution. Up to two results can be simultaneously written.

UM0434 Instruction pipeline and execution timing

 207/391

Figure 12. e200z3 block diagram

8.1.1 Control unit

The control unit coordinates the instruction fetch unit, branch unit, instruction decode unit,
instruction issue unit, completion unit, and exception handling logic.

8.1.2 Instruction unit

The instruction unit controls the flow of instructions to the instruction buffers and decode
unit. Six prefetch buffers allow the instruction unit to fetch instructions ahead of actual
execution, and serve to decouple memory and the execution pipeline.

CPU

Load/

Data

Memory

Address

Store
Unit

Instruction Unit

Branch
Unit

PC
Unit

Instruction Buffer

GPRCRSPR

Multiply
Unit

Data Bus Interface Unit

Control

32 64 N

OnCE/Nexus

Interface

Control

Data

(mtspr/mfspr)

Integer
Execution

Unit

External
SPR

CTR
XER

LR

Data

Address

Instruction B
us Interface U

nit

Control

32

64

N

Control Logic Control Logic

Management
Unit

Instruction pipeline and execution timing UM0434

208/391

8.1.3 Branch unit

The branch unit contains an eight-entry branch target buffer (BTB) to accelerate execution
of branch instructions.

Untaken conditional branches execute in a single clock. Branches with successful target
prefetching have an effective execution time of one clock cycle. All other taken branches
have an execution time of two clocks.

8.1.4 Instruction decode unit

The decode unit includes the instruction buffers. A single instruction can be decoded each
cycle. The major functions of the decode logic are as follows:

● Opcode decoding to determine the instruction class and resource requirements for
each instruction being decoded.

● Source and destination register dependency checking.

● Execution unit assignment.

● Determine any decode serializations and inhibit subsequent instruction decoding.

The decode unit operates in a single processor clock cycle.

8.1.5 Exception handling

The exception handling unit includes logic to handle exceptions, interrupts, and traps.

8.2 Execution units
The core data execution units consist of the integer unit and the load/store unit. Included in
the execution units section are the general purpose registers (GPRs). Instructions with data
dependencies begin execution when all such dependencies are resolved.

8.2.1 Integer execution unit

The integer execution unit is used to process arithmetic and logical instructions. Adds,
subtracts, compares, count leading zeros, shifts, and rotates execute in a single cycle.

Multiply instructions have a latency and throughput rate of 1 cycle.

Divide instructions have a variable latency (6–16 cycles) depending on the operand data.
The worst case integer divide requires 16 cycles. While the divide is running, the rest of the
pipeline is unavailable for additional instructions (blocking divide).

8.2.2 Load/Store unit

The load/store unit executes instructions that move data between the GPRs and the
memory subsystem. A load followed by a dependent instruction does not incur any pipeline
stall, except when the dependent instruction is a load/store instruction, and the latter
instruction is using the previous load data for its effective address (EA) calculation.

Loads, when free of the above EA calculation dependency, execute with a maximum
throughput of one per cycle and one-cycle latency. Store data can be fed forward from an
immediately preceding load with no stall.

UM0434 Instruction pipeline and execution timing

 209/391

8.3 Instruction pipeline
The four-stage processor pipeline consists of stages for instruction fetch (IFETCH),
instruction decode (DECODE), execution (EXECUTE), and result writeback (WB). For
memory operations, the EA generation occurs in the decode stage, while the memory
access occurs in the execute stage.

The processor also contains an instruction prefetch buffer to allow buffering of instructions
prior to the decode stage. Instructions proceed from this buffer to the instruction decode
stage by entering the instruction decode register IR.

Figure 13. Pipeline diagram

8.3.1 Description of pipeline stages

The fetch pipeline stages retrieve instructions from the memory system and determine
where the next instruction fetch is performed. Up to two instructions every cycle are sent
from memory to the instruction buffers.

The decode stage decodes instructions and performs dependency checking. Simple integer
instructions complete execution in the execute stage of the pipeline.

Execution of load/store instructions is pipelined. The EA calculations for load/store
instructions are performed in the decode stage. This EA is driven out to the data memory in
the same stage. The actual memory access occurs in the execute stage.

Load-to-use dependencies do not incur pipeline bubbles except when the dependent
instruction is a load or store instruction, and the latter instruction is dependent on its
previous load data for EA calculation. If an ALU instruction is dependent on a load

Table 157. Pipeline stages

Stage Description

IFETCH1 Instruction fetch from memory

DECODE/EA Instruction decode/register read/operand forwarding/EA calculation

EXECUTE/MEM Instruction execution/memory access

WB Write back to registers

IFetch

Decode

Execute

Writeback I1 I2

IFetch

Decode/EA calc/Drive Address

Memory access/Drive Data Back

L1 L2

L1 L2

L1 L2

Writeback L1 L2

Simple Instruction

Load/Store Instruction

I1 I2

I1 I2

I1 I2

Instruction pipeline and execution timing UM0434

210/391

instruction, the data is fed directly into the ALU for execution. No pipeline bubble is incurred
in this case.

Multiply instructions require one clock to execute. All condition-setting instructions complete
in the execute stage of the pipeline.

Feed-forwarding allows the result of one instruction to be made available as the source
operand(s) of a subsequent instruction so that data-dependent instructions can execute
without waiting for previous instructions to write back their results.

8.3.2 Instruction buffers

The e200z3 contains a set of instruction buffers that supply instructions into the instruction
register (IR) for decoding.

Instruction prefetches request a 64-bit double word and the buffer is filled with a pair of
instructions at a time, except for the case of a change of flow fetch where the target is to the
second (odd) word. In that case, only a 32-bit prefetch is performed to load the instruction
buffer. This 32-bit fetch may be immediately followed by a 64-bit prefetch to fill slots 0 and 1
in the event that the branch is resolved to be taken.

In normal sequential execution, instructions are loaded into the IR from slot 0, and as a pair
of slots are emptied, they are refilled. Whenever a pair of slots is empty, a 64-bit prefetch is
initiated that fills the earliest empty slot pairs beginning with slot 0.

If the instruction buffer empties, instruction issue stalls, and the buffer is refilled. The first
returned instruction is forwarded directly to the IR.

Figure 14. Instruction buffers

Slot0

Decode

..

MUX

IR

DATA 0:63

Slot1

Slot2

Slot3

UM0434 Instruction pipeline and execution timing

 211/391

HID0[BPRED] controls if prediction is made for forward or backward branches (or both).

To resolve branch instructions and improve the accuracy of branch predictions, the e200z3
implements a dynamic branch prediction mechanism using an 8-entry branch target buffer
(BTB), a fully associative address cache of branch target addresses. The BTB is
purposefully small to reduce cost and power. It is expected to accelerate the execution of
loops with some potential change of flow within the loop body.

An entry is allocated in the BTB whenever a branch resolves as taken and the BTB is
enabled. Branches that have not been allocated are always predicted as not taken. BTB
entries are allocated on taken branches using a FIFO replacement algorithm.

Each BTB entry holds a 2-bit branch history counter, whose value is incremented or
decremented on a BTB hit, depending on whether the branch was taken. The counter can
assume four different values: strongly taken, weakly taken, weakly not taken, and strongly
not taken.

A branch is predicted as taken on a hit in the BTB with a counter value of strongly or weakly
taken. In this case, the target address contained in the BTB is used to redirect the
instruction fetch stream to the target of the branch prior to the branch reaching the
instruction decode stage. In the case of a mispredicted branch, the instruction fetch stream
returns to the sequential instruction stream after the branch has been resolved.

When a branch is predicted taken and the branch is later resolved (in the branch decode
stage), the value of the counter is updated. A branch whose counter indicates weakly taken
is resolved as taken, the counter increments so that the prediction becomes strongly taken.
If the branch resolves as not taken, the prediction changes to weakly not-taken. The counter
saturates in the strongly taken states when the prediction is correct.

The e200z3 does not implement the static branch prediction that is defined by the PowerPC
architecture. The BO prediction bit in branch encodings is ignored.

Dynamic branch prediction is enabled by setting BUCSR[BPEN]. Clearing BUCSR[BPEN]
disables dynamic branch prediction, in which case the e200z3 predicts every branch as not
taken. Additional control is available in the HID0[BPRED] field to control whether forward or
backward branches (or both) are candidates for entry into the BTB, and thus for branch
prediction. Once a branch is in the BTB, HID0[BPRED] has no further effect on that entry.

The BTB uses virtual addresses for performing tag comparisons. On allocation of a BTB
entry, the EA of a taken branch, along with the current instruction space (as indicated by
MSR[IS]) is loaded into the entry, and the counter value is set to weakly taken. The current
PID value is not maintained as part of the tag information.

The BTB is automatically flushed when the current PID value is updated by an mtspr PID
instruction. Software is otherwise responsible for maintaining coherency in the BTB when a
change in effective-to-real (virtual-to-physical) address mapping is changed. This is
supported by the BUCSR[BBFI] control bit.

Instruction pipeline and execution timing UM0434

212/391

Figure 15. Branch target buffer

8.3.3 Single-Cycle instruction pipeline operation

Sequences of single-cycle execution instructions follow the flow in Figure 16. Instructions
are issued and completed in program order. Most arithmetic and logical instructions fall into
this category.

Figure 16. Basic pipeline flow, Single-Cycle instructions

8.3.4 Basic load and store instruction pipeline operation

The EA calculations for load and store instructions are performed in the decode stage. The
memory access occurs in the execution stage.

If a load instruction is followed by a dependent ALU instruction, the load data is driven from
the memory in the MEM stage and feed-forwarded into the dependent ALU instruction in the
following cycle. As a result, there is no load-to-use pipeline bubble. Figure 17 shows the
instruction flow for a load instruction followed by a dependent add instruction.

Figure 17. A load followed by a dependent add instruction

Tag Data

IS Counter

Counter

Counter

3

IS = Instruction Space

... 2

IS 1

Branch addr[0:29]

Branch addr[0:29]

Branch addr[0:29]

Target address[0:29]

Target address[0:29]

Target address[0:29]

IS Entry

Entry

Entry

Entry

 0

IFETCH DECODE EXECUTEFirst Inst.

Time Slot

FFwd/WB

Second Instruction

Third Instruction

IFETCH DECODE EXECUTE FFwd/WB

IFETCH DECODE EXECUTE FFwd/WB

DEC/EA MEMFirst Load Instruction

Time Slot

MEM

Second Add Instruction DECODE EXECUTE MEM

IFETCH

IFETCH

Feedforward

UM0434 Instruction pipeline and execution timing

 213/391

Back-to-back load/store instructions are executed in a pipelined fashion, provided that their
EA calculations are not dependent on their previous load instructions. Figure 18 shows the
basic pipeline flow for two back-to-back load instructions. In this case, the second load does
not depend on its previous load data for its EA calculation. Notice that the memory access of
the first load instruction overlaps in time with the EA calculation of the second load
instruction.

Figure 18. Back-to-Back load instructions

When a load is followed by a load or a store instruction that depends on the first load data
for EA calculation, a pipeline stall is incurred. Figure 19 shows the instruction flow for a load
instruction followed by a dependent store instruction through EA calculation. The second
store instruction in this case is dependent on the first load instruction for its EA calculation.

Figure 19. A load followed by a dependent store instruction

A store instruction that depends on its previous load for its stored data, does not stall the
pipeline.

8.3.5 Change-of-Flow instruction pipeline operation

A branch instruction takes either one or 2 cycles to execute. Simple change of flow
instructions require 2 cycles to refill the pipeline with the target instruction for taken
branches and branch and link instructions with no prediction.

For branch-type instructions, in some situations, this 2-cycle timing may be reduced by
performing the target fetch speculatively while the branch instruction is still being fetched
into the instruction buffer. The branch target address is obtained from the BTB. The resulting
branch timing reduces to a single clock when the target fetch is initiated early enough and
the branch is taken. Figure 20 shows basic pipeline flow for branch instructions.

DEC / EA MEMFirst Load Instruction

Time Slot

WB

Second Load Instruction DEC / EA MEM WB

IFETCH

IFETCH

DECODE EXECUTEFirst Load Instruction

Time Slot

WB

Second Store Instruction DECODE EA Calc MEM

IFETCH

IFETCH WB

Feedforward

Instruction pipeline and execution timing UM0434

214/391

Figure 20. Basic pipeline flow, branch instructions

Figure 21 shows basic pipeline flow for branch speculation.

Figure 21. Basic pipeline flow, branch speculation

8.3.6 Basic Multi-Cycle instruction pipeline operation

The divide instructions and the load and store multiple instructions require multiple cycles in
the execute stage.

Figure 22. Basic pipeline flow, Multi-Cycle instructions

Instructions must complete and write back results in order. A single cycle instruction that
follows a multi-cycle instruction must wait for completion of the multi-cycle instruction prior to
its writeback in order to meet the in-order requirement. Result feed-forward paths are
provided so that execution may continue prior to result writeback.

8.3.7 Additional examples of instruction pipeline operation for load & store

Figure 23 shows an example of pipelining two non–data-dependent load or store
instructions with a following data-dependent single-cycle instruction. While the first load or
store begins accessing memory in the MEM stage, the next load or store can be calculating
a new EA in the DEC/EA stage. The add in this example does not stall despite a data
dependency on its preceding load instruction.

DECODE EXECBR Inst.

Time Slot

 Target Instruction EXEC WB . . .

IFETCH Slot0

IFETCH DECODE

IFETCH DECODEBranch Instruction

Time Slot

 Target Instruction

Slot0

DECODE EXEC

(Speculative Fetch)

BTB hit TFETCH Slot0

. . .
EXEC

IFETCH DECODE WBLoad/Store Multiple Word/Divide Instruction

Time Slot

EXEC0 EXECn. . .

UM0434 Instruction pipeline and execution timing

 215/391

Figure 23. Pipelined Load/Store instructions

For memory access instructions, wait states may occur. This causes a following memory
access instruction to stall since the following memory access may not be initiated as shown
in Figure 24. Here, the first ld/st instruction incurs a wait state on the bus interface, causing
succeeding instructions to stall.

Figure 24. Pipelined Load/Store instructions with Wait-State

8.3.8 Move to/from SPR instruction pipeline operation

Most mtspr and mfspr instructions are treated like single-cycle instructions in the pipeline
and do not cause stalls. Exceptions are for the MSR, the debug SPRs, the embedded
floating-point APUs, and MMU SPRs, which do cause stalls. Figure 25 through Figure 25
show examples of mtspr and mfspr instruction timing.

Figure 25 applies to the debug SPRs and the EFPU’s EFSCR. These instructions do not
begin execution until all previous instructions have finished their execute stage. If a
multicycle instruction precedes an mfspr or mtspr instruction, the mfspr or mtspr
instruction does not begin execution until the preceding multicycle instruction moves into the
writeback stage as shown in Figure 25. In addition, execution of subsequent instructions
stalls until the mfspr and mtspr instructions complete.

First Load/Store Instruction (No Wait)

Time Slot

Second Load/Store Instruction (No Wait)

Add Instruction

IFETCH WBDEC/EA

IFETCH MEM WB DEC/EA

WB IFETCH EXECUTEDEC

MEM

First Load/Store Instruction (With Wait)

Time Slot

Second Load/Store Instruction (No Wait)

Add Instruction

IFETCH Stall (wait)DEC/EA WB

IFETCH Stall MEM DEC / EA WB

EXECUTEIFETCH DEC Stall WB

MEM

Instruction pipeline and execution timing UM0434

216/391

Figure 25. mtspr, mfspr instruction Execution—(1)

Figure 26 applies to the mtmsr, wrtee, and wrteei instructions. Execution of subsequent
instructions stalls until these instructions writeback.

Figure 26. mtmysr, wrtee, wrteei instruction execution

Access to MMU SPRs stalls until all outstanding bus accesses complete and the MMU is
idle (p_[i,d]_cmbusy negated) to allow an access window where no translations or cache
cycles are required. Figure 27 shows an example where an outstanding bus access delays
mtspr/mfspr execution until the bus becomes idle. Processor access requests are held off
during execution of an MMU SPR instruction. A subsequent access request may be
generated in the WB cycle. This same protocol applies to MMU management instructions
(such as tlbre, tlbwe, etc.) as well as to the DCRs.

Time Slot

mtspr, mfspr

DEC EXE1IFETCH WBPrevious Instruction (Multicycle)

DEC EXEIFETCH WB

DEC StallIFETCH EXE WB
Next Instruction

EXEn. . .

. . .

. . .

Stall

Stall

Time Slot

mtmsr, wrtee, wrteei

DEC EXEIFETCHPrevious Instruction

DEC EXEIFETCH WB

DEC StallIFETCH EXE WBNext Instruction

WB

UM0434 Instruction pipeline and execution timing

 217/391

Figure 27. DCR, MMU mtspr, mfspr, and MMU management instruction execution

8.4 Stalls caused by accessing SPRs
An mfspr instruction preceded by an mtspr instruction cannot be issued until the mtspr
completes.

8.5 Instruction serialization
The core requires three types of serialization:

● Completion serialization. A completion-serialized instruction is held for execution until
all prior instructions have completed. The instruction executes when it is next to
complete in program order. Results from these instructions are not available for or
forwarded to subsequent instructions until the instruction completes. The following
instructions are completion-serialized:

– Instructions that access or modify system control or status registers—mcrxr,
mtmsr, wrtee, wrteei, mtspr, mfspr (except to CTR/LR)

– Instructions that manage TLBs

– Instructions defined by the architecture as context or execution synchronizing:
isync, msync, rfi, rfci, rfdi, and sc

● Dispatch (decode/issue) serialization. Some instructions are dispatch-serialized by the
core. An instruction that is dispatch-serialized prevents the next instruction from
decoding until all instructions up to and including the dispatch-serialized instruction

Time Slot

DEC EXE WBIFETCHSingle-Cycle Instruction

DEC StallIFETCH Stall EXE WBNext Instruction

p_[i,d]_treq_b

p_[i,d]_tbusy[0]_b

p_[i,d]_ta_b

p_rd_spr,
p_wr_spr

p_[i,d]_cmbusy

mtspr, mfspr DEC StallIFETCH Stall EXE WB

Instruction pipeline and execution timing UM0434

218/391

completes. The isync, mbar, msync, rfi, rfci, rfdi, and sc instructions are dispatch-
serialized.

● Refetch serialization. Refetch-serialized instructions inhibit dispatching of subsequent
instructions and force a pipeline refill to refetch subsequent instructions after
completion. These include the following:

– The context synchronizing instruction isync

– The rfi, rfci, rfdi, and sc instructions.

8.6 Interrupt recognition and exception processing
Figure 28 shows timing for interrupt recognition and exception processing overhead. This
example shows best-case response timing when an interrupt is received and processed
during execution of a sequence of single-cycle instructions.

Figure 28. Interrupt recognition and handler instruction execution

Time Slot

IFETCH EXE WBDEC

Single cycle
Instructions

DEC/ --IFETCH --

p_extint_b
final sample point

p_iack

IFETCH EXE WBDEC1st Instruction of handler

1 2 3 4 5 6 7 8 9 10

ec_excp_detected*

update_esr*

update_msr*

* - internal operations

oldpc_->srr0*

oldmsr_->srr1*

Abort

UM0434 Instruction pipeline and execution timing

 219/391

Figure 29 below, shows timing for interrupt recognition and exception processing overhead.
This example shows best-case response timing when an interrupt is received and
processed during execution of a load or store instruction. The fetch for the handler is
delayed until completion of the load or store, regardless of the number of wait-states.

Figure 29. Interrupt recog. & handler instruction exe-load/store in progress

Time Slot

DEC/EA wait waitMemLoad/Store
Instructions

IFETCH Abort --DEC --

p_extint_b
Final Sample Point

p_iack

IFETCH EXE WBDEC
First Instruction of handler

1 2 3 4 5 6 7 8 9 10

IFETCH Stall StallDEC/ Stall

ec_excp_detected*

oldpc_->srr0*

oldmsr_->srr1*

update_esr*

update_msr*

* Internal Operations

11

WB

Abort

Instruction pipeline and execution timing UM0434

220/391

Figure 30 below, shows timing for interrupt recognition and exception processing overhead.
This example shows best-case response timing when an interrupt is received and
processed during execution of a multicycle interruptible instruction.

Figure 30. Interrupt recog. & handler instruction exe-multi-cycle instruction abort

8.7 Instruction timings
Table shows instruction timing for various instruction classes. Pipelined instructions are
shown with cycles of total latency and throughput. Divide instructions are not pipelined and
block other instructions from executing during divide execution.

Load/store multiple instruction cycles are represented as a fixed number of cycles plus a
variable number of cycles where ‘n’ is the number of words accessed by the instruction.
Additionally, cycle times marked with an ampersand (&) require additional cycles due to
serialization.

Time Slot

Next Instruction

IFETCH EXE AbortDEC -- --
Multi-Cycle

Interruptible

IFETCH Abort --DEC --

1 2 3 4 5 6 7 8 9 10

p_extint_b

Final Sample Point

p_iack

IFETCH EXE WBDECFirst Instruction of handler

ec_excp_detected*

oldpc_->srr0*

oldmsr_->srr1*

update_esr*

update_msr*

* Internal Operations

Instruction

UM0434 Instruction pipeline and execution timing

 221/391

Instruction class cycle counts

Class of instructions Latency Throughput Special notes

Integer: add, sub, shift, rotate,
logical, cntlzw

1 1

Integer: compare 1 1

Branch 2/1 2/1
Branches take between 1 and 2
cycles to execute.

Multiply 1 1

Divide 6–16 6–16 Data dependent timing

CR logical 1 1

Loads (non-multiple) 1 1

Load multiple
1 + n/2
(max)

1 + n/2 (max)
Timing depends on n and address
alignment.

Stores (non-multiple) 1 1

Store multiple
1 + n/2
(max)

1 + n/2 (max)
Timing depends on n and address
alignment.

mtmsr, wrtee, wrteei 2& 2

mcrf 1 1

mfspr, mtspr 2& 2&
Applies to debug SPRs, optional unit
SPRs

mfspr, mfmsr 1 1 Applies to internal, non-debug SPRs

mfcr, mtcr 1 1

rfi, rfci, rfdi 3 -

sc 3 -

tw, twi 3 - Trap taken timing

Instruction pipeline and execution timing UM0434

222/391

Table 158 shows detailed timing for each instruction mnemonic along with serialization
requirements. As this table shows, the VLE instructions have the same latencies and
serialization as their equivalents in the PowerPC architecture. Those instructions are listed
by their root mnemonic.

Table 158. Instruction timing by mnemonic

Mnemonic Latency Serialization Comments

addc[o][.] 1 None

adde[o][.] 1 None

addi, e_addi[.], e_add16i, e_add2i., se_addi 1 None

addic[.], e_addic[.] 1 None

addis, e_add2is 1 None

addme[o][.] 1 None

addze[o][.] 1 None

add[o][.], se_add 1 None

andc[.], se_andc 1 None

andi., e_andi[.], e_and2i., se_andi 1 None

andis., e_and2is. 1 None

and[.], se_and[.] 1 None

bcctr[l] 2 None

bclr[l] 2 None

bc[l][a], e_bc, e_bcl, se_bc, se_bclri, se_bctr,
se_bctrl

2/1 None

b[l][a], e_b, e_bl, se_b, se_bl, se_blr, se_blrl,
se_bgeni

2/1 None

cmp, e_cmph, e_cmph16i, se_cmp 1 None

cmpi, e_cmphl, e_cmphl16i, se_cmph,
se_cmphl

1 None

cmpl, e_cmpi, e_cmp16i, se_cmpi 1 None

cmpli, e_cmpli, e_cmpl16i, se_cmpl, se_cmpli 1 None

cntlzw[.] 1 None

crand, e_crand 1 None

crandc, e_crandc 1 None

creqv, e_creqv 1 None

crnand, e_crnand 1 None

crnor, e_crnor 1 None

cror, e_cror 1 None

crorc, e_crorc 1 None

UM0434 Instruction pipeline and execution timing

 223/391

crxor, e_crxor 1 None

divwu[o][.] 6–16 None

divw[o][.] 6–16 None

With early-out
capability timing
is data
dependent

eqv[.] 1 None

extsb[.], se_extsb 1 None

extsh[.], se_extsh 1 None

e_li, e_lis, se_li 1 None

The UISA
defines li as a
simplified,
mnemonic for
addi.

e_rlw, e_rlwi 1 None

isel 1 None

isync, se_isync
3 Refetch

Plus additional
synchronization
time

lbz, e_lbz, se_lbz 1 None Aligned

lbzu, e_lbzu 1 None Aligned

lbzux, e_lha 1 None Aligned

lbzx, e_lhau 1 None Aligned

lha, e_lhz 1 None Aligned

lhau, e_lhzu 1 None Aligned

lhaux 1 None Aligned

lhax 1 None Aligned

lhbrx 1 None Aligned

lhz, se_lhz 1 None Aligned

lhzu 1 None Aligned

lhzux 1 None Aligned

lhzx 1 None Aligned

lmw, e_lmw 1 +(n/2) None

lwarx 1 None

lwbrx 1 None Aligned

lwz, e_lwz, se_lwz 1 None Aligned

lwzu, e_lwzu 1 None Aligned

Table 158. Instruction timing by mnemonic (continued)

Mnemonic Latency Serialization Comments

Instruction pipeline and execution timing UM0434

224/391

lwzux 1 None Aligned

lwzx 1 None Aligned

mbar
1 Completion

Plus additional
synchronization
time

mcrf, e_mcrf 1 None

mcrxr 1 Completion

mfcr 1 None

mfmsr 1 None

mfspr (except, debug, MMU), se_mfctr, se_mflr 1 None

mfspr, (debug, MMU)
3 Completion

Plus additional
synchronization
time

msync
1 Completion

Plus additional
synchronization
time

mtcrf 2 None

mtmsr
2 Completion

Plus additional
synchronization
time

mtspr, (debug, MMU), se_mtctr, se_mtlr
2 Completion

Plus additional
synchronization
time

mtspr, (except, debug, MMU) 1 None

mulhwu[.] 1 None

mulhw[.] 1 None

mulli, e_mulli, e_mull2i 1 None

mullw[o][.], se_mullw 1 None

nand[.] 1 None

neg[o][.], se_neg 1 None

nop, (ori, r0r00) 1 None

nor[.], e_ori[.], e_or2i, e_or2is 1 None

orc[.] 1 None

ori 1 None

oris 1 None

or[.], se_or 1 None

rfci 3 Refetch

Table 158. Instruction timing by mnemonic (continued)

Mnemonic Latency Serialization Comments

UM0434 Instruction pipeline and execution timing

 225/391

rfdi 3 Refetch

rfi 3 Refetch

rlwimi[.], e_rlwimi 1 None

rlwinm[.], e_rlwinm 1 None

rlwnm[.] 1 None

sc 3 Refetch

se_bmski 1 None

se_bseti 1 None

se_btsti 1 None

se_extzb, se_extzh 1 None

se_mfar 1 None

se_mr 1 None

The UISA
defines mr as a
simplified,
mnemonic for
or.

se_mtar 1 None

se_not 1 None

slw[.], se_slw, e_slwi, se_slwi 1 None

srawi[.], se_srawi 1 None

sraw[.], se_sraw 1 None

srw[.], se_srw, e_srwi, se_srwi 1 None

stb, e_stb, se_stb 1 None Aligned

stbu, e_stbu 1 None Aligned

stbux 1 None Aligned

stbx 1 None Aligned

sth, sth, e_sth, se_sth, e_sthu 1 None Aligned

sthbrx 1 None Aligned

sthu 1 None Aligned

sthux 1 None Aligned

sthx 1 None Aligned

stmw, e_stmw 1 + (n/2) None

stw, e_stw, se_stw 1 None Aligned

stwbrx 1 None Aligned

stwcx. 1 None

Table 158. Instruction timing by mnemonic (continued)

Mnemonic Latency Serialization Comments

Instruction pipeline and execution timing UM0434

226/391

8.7.1 SPE and embedded Floating-Point instruction timing

The tables in this section show instruction timing for SPE and embedded floating-point APU
instructions. Pipelined instructions are shown with cycles of total latency and throughput
cycles. Divide instructions are not pipelined and block other instructions from executing
during divide execution.

Instruction pipelining is affected by the possibility of a floating-point instruction generating an
exception. A load or store class instruction that follows an SPE FPU instruction stalls until it
can be ensured that no previous instruction can generate a floating-point exception. This
determination is based on which floating-point exception enable bits are set (FINVE,
FOVFE, FUNFE, FDBZE, and FINXE) and at what point in the FPU pipeline an exception
can be guaranteed to not occur. Invalid input operands are detected in the first stage of the
pipeline, while underflow, overflow, and inexactness are determined later in the pipeline.
Best overall performance occurs when either floating-point exceptions are disabled, or when
load and store class instructions are scheduled such that previous floating-point instructions
have already resolved the possibility of exceptional results.

SPE integer simple instructions timing

Instruction timing for SPE integer simple instructions is shown in Table 159. The table is
sorted by opcode. These instructions are issued as a pair of operations.

stwu, e_stwu 1 None Aligned

stwux 1 None Aligned

stwx 1 None Aligned

subfc[o][.] 1 None

subfe[o][.] 1 None

subfic, e_subfic[.], se_subi[.] 1 None

subfme[o][.] 1 None

subfze[o][.] 1 None

subf[o][.], se_subf, se_sub 1 None

tw 3 None

twi 3 None

wrtee 2 Completion

wrteei 2 Completion

xori, e_xori[.] 1 None

xoris 1 None

xor[.] 1 None

Table 158. Instruction timing by mnemonic (continued)

Mnemonic Latency Serialization Comments

UM0434 Instruction pipeline and execution timing

 227/391

Table 159. Timing for integer simple instructions

Instruction Latency Throughput Comments

brinc 1 1

evabs 1 1

evaddiw 1 1

evaddw 1 1

evand 1 1

evandc 1 1

evcmpeq 1 1

evcmpgts 1 1

evcmpgtu 1 1

evcmplts 1 1

evcmpltu 1 1

evcntlsw 1 1

evcntlzw 1 1

eveqv 1 1

evextsb 1 1

evextsh 1 1

evmergehi 1 1

evmergehilo 1 1

evmergelo 1 1

evmergelohi 1 1

evnand 1 1

evneg 1 1

evnor 1 1

evor 1 1

evorc 1 1

evrlw 1 1

evrlwi 1 1

evrndw 1 1

evsel 1 1

evslw 1 1

evslwi 1 1

evsplatfi 1 1

evsplati 1 1

evsrwis 1 1

evsrwiu 1 1

Instruction pipeline and execution timing UM0434

228/391

SPE load and store instruction timing

Instruction timing for SPE load and store instructions is shown in Table 160. The table is
sorted by opcode. Actual timing depends on alignment; the table indicates timing for aligned
operands.

evsrws 1 1

evsrwu 1 1

evsubfw 1 1

evsubifw 1 1

evxor 1 1

Table 160. SPE load and store instruction timing

Instruction Latency Throughput Comments

evldd 1 1

evlddx 1 1

evldh 1 1

evldhx 1 1

evldw 1 1

evldwx 1 1

evlhhesplat 1 1

evlhhesplatx 1 1

evlhhossplat 1 1

evlhhossplatx 1 1

evlhhousplat 1 1

evlhhousplatx 1 1

evlwhe 1 1

evlwhex 1 1

evlwhos 1 1

evlwhosx 1 1

evlwhou 1 1

evlwhoux 1 1

evlwhsplat 1 1

evlwhsplatx 1 1

evlwwsplat 1 1

evlwwsplatx 1 1

evstdd 1 1

Table 159. Timing for integer simple instructions (continued)

Instruction Latency Throughput Comments

UM0434 Instruction pipeline and execution timing

 229/391

SPE complex integer instruction timing

Timings for SPE complex integer instructions are shown in Table 161. The table is sorted by
opcode. For the divide instructions, the number of stall cycles is (latency) for following
instructions.

evstddx 1 1

evstdh 1 1

evstdhx 1 1

evstdw 1 1

evstdwx 1 1

evstwhe 1 1

evstwhex 1 1

evstwho 1 1

evstwhox 1 1

evstwwe 1 1

evstwwex 1 1

evstwwo 1 1

evstwwox 1 1

Table 161. SPE complex integer instruction timing

Instruction Latency Throughput Comments

evaddsmiaaw 1 1

evaddssiaaw 1 1

evaddumiaaw 1 1

evaddusiaaw 1 1

evdivws 12–32 12–32 Timings are data dependent

evdivwu 12–32 12–32 Timings are data dependent

evmhegsmfaa 1 1

evmhegsmfan 1 1

evmhegsmiaa 1 1

evmhegsmian 1 1

evmhegumiaa 1 1

evmhegumian 1 1

evmhesmf 1 1

evmhesmfa 1 1

evmhesmfaaw 1 1

Table 160. SPE load and store instruction timing (continued)

Instruction Latency Throughput Comments

Instruction pipeline and execution timing UM0434

230/391

evmhesmfanw 1 1

evmhesmi 1 1

evmhesmia 1 1

evmhesmiaaw 1 1

evmhesmianw 1 1

evmhessf 1 1

evmhessfa 1 1

evmhessfaaw 1 1

evmhessfanw 1 1

evmhessiaaw 1 1

evmhessianw 1 1

evmheumi 1 1

evmheumia 1 1

evmheumiaaw 1 1

evmheumianw 1 1

evmheusiaaw 1 1

evmheusianw 1 1

evmhogsmfaa 1 1

evmhogsmfan 1 1

evmhogsmiaa 1 1

evmhogsmian 1 1

evmhogumiaa 1 1

evmhogumian 1 1

evmhosmf 1 1

evmhosmfa 1 1

evmhosmfaaw 1 1

evmhosmfanw 1 1

evmhosmi 1 1

evmhosmia 1 1

evmhosmiaaw 1 1

evmhosmianw 1 1

evmhossf 1 1

evmhossfa 1 1

evmhossfaaw 1 1

evmhossfanw 1 1

Table 161. SPE complex integer instruction timing (continued)

Instruction Latency Throughput Comments

UM0434 Instruction pipeline and execution timing

 231/391

evmhossiaaw 1 1

evmhossianw 1 1

evmhoumi 1 1

evmhoumia 1 1

evmhoumiaaw 1 1

evmhoumianw 1 1

evmhousiaaw 1 1

evmhousianw 1 1

evmra 1 1

evmwhsmf 1 1

evmwhsmfa 1 1

evmwhsmi 1 1

evmwhsmia 1 1

evmwhssf 1 1

evmwhssfa 1 1

evmwhumi 1 1

evmwhumia 1 1

evmwlsmiaaw 1 1

evmwlsmianw 1 1

evmwlssiaaw 1 1

evmwlssianw 1 1

evmwlumi 1 1

evmwlumia 1 1

evmwlumiaaw 1 1

evmwlumianw 1 1

evmwlusiaaw 1 1

evmwlusianw 1 1

evmwsmf 1 1

evmwsmfa 1 1

evmwsmfaa 1 1

evmwsmfan 1 1

evmwsmi 1 1

evmwsmia 1 1

evmwsmiaa 1 1

evmwsmian 1 1

Table 161. SPE complex integer instruction timing (continued)

Instruction Latency Throughput Comments

Instruction pipeline and execution timing UM0434

232/391

Vector Floating-Point APU instruction timing

Timings for embedded vector single-precision floating-point instructions are shown in
Table 159. The number of stall cycles for evfsdiv is (latency) cycles.

evmwssf 1 1

evmwssfa 1 1

evmwssfaa 1 1

evmwssfan 1 1

evmwumi 1 1

evmwumia 1 1

evmwumiaa 1 1

evmwumian 1 1

evsubfsmiaaw 1 1

evsubfssiaaw 1 1

evsubfumiaaw 1 1

evsubfusiaaw 1 1

Table 162. SPE vector Floating-Point instruction timing

Instruction Latency Throughput Comments

evfsabs 1 1

evfsadd 1 1

evfscfsf 1 1

evfscfsi 1 1

evfscfuf 1 1

evfscfui 1 1

evfscmpeq 1 1

evfscmpgt 1 1

evfscmplt 1 1

evfsctsf 1 1

evfsctsi 1 1

evfsctsiz 1 1

evfsctuf 1 1

evfsctui 1 1

evfsctuiz 1 1

evfsdiv 12 12 Blocking, no overlap with next instruction

evfsmadd 1 1 Destination also used as source

Table 161. SPE complex integer instruction timing (continued)

Instruction Latency Throughput Comments

UM0434 Instruction pipeline and execution timing

 233/391

SPE scalar Floating-Point instruction timing

Timings for embedded scalar single-precision floating-point APU instructions are shown in
Table 163. The table is sorted by opcode.

evfsmsub 1 1 Destination also used as source

evfsmul 1 1

evfsnabs 1 1

evfsneg 1 1

evfsnmadd 1 1 Destination also used as source

evfsnmsub 1 1 Destination also used as source

evfssub 1 1

evfststeq 1 1

evfststgt 1 1

evfststlt 1 1

Table 163. Scalar SPE Floating-Point instruction timing

Instruction Latency Throughput Comments

efsabs 1 1

efsadd 1 1

efscfsf 1 1

efscfsi 1 1

efscfuf 1 1

efscfui 1 1

efscmpeq 1 1

efscmpgt 1 1

efscmplt 1 1

efsctsf 1 1

efsctsi 1 1

efsctsiz 1 1

efsctuf 1 1

efsctui 1 1

efsctuiz 1 1

efsdiv 12 12 Blocking, no execution overlap with next instruction

efsdiv 12 12 Blocking, no execution overlap with next instruction

efsmadd 1 1 Destination also used as source

efsmsub 1 1 Destination also used as source

Table 162. SPE vector Floating-Point instruction timing (continued)

Instruction Latency Throughput Comments

Instruction pipeline and execution timing UM0434

234/391

8.8 Operand placement on performance
The placement (location and alignment) of operands in memory affects relative performance
of memory accesses, and in some cases, affects it significantly. Table 164 indicates the
effects for the e200z3 core.

In Table 164, ‘optimal’ means that one EA calculation occurs during the operation; ‘good’
means that multiple EA calculations occur during the memory operation, which may cause
additional bus activities with multiple bus transfers; ‘poor’ means that the access generates
an alignment interrupt.

efsmul 1 1

efsnabs 1 1

efsneg 1 1

efsnmadd 1 1 Destination also used as source

efsnmsub 1 1 Destination also used as source

efssub 1 1

efststeq 1 1

efststgt 1 1

efststlt 1 1

Table 163. Scalar SPE Floating-Point instruction timing (continued)

Instruction Latency Throughput Comments

Table 164. Performance effects of storage operand placement

Operand Boundary crossing*

Size Byte alignment None Cache Line
Protection
boundary

4 byte
4

<4

optimal

good

--

good

--

good

2 byte
2

<2

optimal

good

--

good

--

good

1 byte 1 optimal -- --

lmw, stmw
4

<4

good

poor

good

poor

good

poor

String N/A

Optimal: One EA calculation occurs.

Good: Multiple EA calculations occur, which may cause additional bus activities with multiple bus
transfers.

Poor: Alignment Interrupt occurs.

UM0434 External core complex interfaces

 235/391

9 External core complex interfaces

This chapter describes the external interfaces of the e200z3 core complex. Signal
descriptions as well as data transfer protocols are documented in the following subsections.

Chapter 9.4: Internal signals on page 265,” describes a number of internal signals that are
not directly accessible to users, but they are mentioned in various chapters in this manual
and aid in understanding the behavior of the core.

9.1 Overview
The external interfaces encompass the following:

● Control and data signals supporting instruction and data transfers

● Support for interrupts, including vectored interrupt logic

● Reset support

● Power management interface signals

● Debug event signals

● Time base control and status information

● Processor state information

● Nexus 1/3/OnCE/JTAG interface signals

● A test interface

The memory interface that the BIU supports is based on the AMBA AHB-Lite subset of the
AMBA 2.0 AHB, with V6 AMBA extensions. (Ref. documents ARM IHI 0011A, ARM DVI
0044A, and ARM PR022-GENC-001011 0.4). Sideband signals, described in this chapter,
support additional control functions. A 64-bit data bus is implemented. The pipelined
memory interface supports read and write transfers of 8, 16, 24, 32, and 64 bits, misaligned
transfers, burst transfers of four double words, and true big- and little-endian operation.

Note: The AMBA AHB bit and byte ordering reflect a natural little-endian ordering that AMBA
documentation uses. The BIU automatically performs byte lane conversions to support big-
endian transfers. Memories and peripheral devices/interfaces should be wired according to
byte lane addresses defined in Table 170.

Single-beat and misaligned transfers are supported for cache-inhibited read and write
cycles, and write-buffer writes. Burst transfers (double-word–aligned) of 4 double words are
supported for cache line-fill and copyback operations.

Misaligned accesses are supported with one or more transfers to the core interface. If an
access is misaligned but lies within an aligned 64-bit double word, the core performs a
single transfer. The memory interface delivers (reads) or accepts (writes) the data that
corresponds to the size- and byte-enable signals aligned according to the 3 low-order
address bits. If an access is misaligned and crosses a 64-bit boundary, the BIU performs a
pair of transfers beginning at the effective address, requesting the original data size (either
half word or word) for the first transfer, along with appropriate byte enables. For the second
transfer, the address is incremented to the next 64-bit boundary, and the size and byte
enable signals are driven to correspond to the number of remaining bytes to be transferred.

External core complex interfaces UM0434

236/391

9.2 Signal index
This section contains an index of the core signals.

The following prefixes are used for signal mnemonics:

● 'm_' denotes master clock and reset signals.

● 'p_' denotes processor or core-related signals.

● 'j_' denotes JTAG mode signals.

● 'jd_' denotes JTAG and debug mode signals.

● 'ipt_' denotes scan and test mode signals.

● 'nex_' denotes Nexus3 signals.

Note: The “_b” suffix denotes active low signal. Signals with no active-low suffix are active high.

Figure 31 groups core bus and control signals by function.

UM0434 External core complex interfaces

 237/391

Figure 31. Core signal groups

Transfer

Transfer

Transfer Control

Attributes

p_htrans[1:0]
p_[d,i]_hburst[2:0]
p_[d,i]_hbstrb[7:0]

Data Bus

p_doze, p_nap, p_sleep

p_reset_b

Reset-

Power

Address Bus
p_wakeup

p_haddr[31:0]

Management

* T These signals are internal to the core.

Note:

e200z3
CPU

p_pstat[0:6], p_brstat[0:1]
Processor Status

p_devt2
p_devt1
p_ude

p_halt, p_stop

p_halted, p_stopped

p_[d,i]_hwrite
p_[d,i]_hprot[5:0]
p_[d,i]_hsize[1:0]
p_[d,i]_hunalign

Reservation
Signals

p_rsrv
p_rsrv_clr

p_tbint
p_tbclkTime Base
p_tbdisable

Signals

Debug
Support

e200z3

Module

jd_debug_b

dbg_dbgrq*

cpu_dbgack *

OnCE Control *

JTAG Interface

jd_de_b

Test Interface

jd_de_en

jd_en_once

jd_watchot[0:n]

jd_mclk_on

j_en_once_regsel

m_por
p_resetout_b
p_rstbase[0:19]related

Signals

(OnCE/Debug)

p_d_hwdata[63:0]
p_[d,i]_hrdata[63:0]

p_cpuid[0:7]
Miscellaneous p_sysvers[0:31]

p_pvrin[16:31]Signals
Processor

p_[d,i]_hresp[2:0]
p_[d,i]hready

Status
Termination/

p_mcp_b

p_chkstop
Machine Check

Interrupt

p_extint_b
p_critint_b
p_avec_b
p_voffset[0:15]
p_iack k

Signals

p_ipend

Dev
Support

e200z3

Module
nex_mseo_b[1:0]

nex_evti_b

nex_mdo[n:0]

nex_mcko

nex_rdy_b

nex_evto_b

Clock
m_clk

p_rst_endmode

p_[d,i]_hmaster[3:0]

MasterID nex_masterid[3:0]
p_masterid[3:0]

Config

p_mcp_out

Nexus3

Nexus1

p_rst_vlemode

External core complex interfaces UM0434

238/391

Table 165 below, shows the core signal function and type, signal definition, and reset value.
Signals are presented in functional groups.

Table 165. Interface signal definitions

Signal name I/O Reset Definition

Clock and signals related to reset

m_clk I Global system clock

m_por I Power-on reset

p_reset_b I Processor reset input

p_resetout_b O Processor reset output

p_rstbase[0:19] I
Reset exception handler base address, value to be loaded into
TLB entry 0 on reset.

p_rst_endmode I
Reset endian mode select, value to be loaded into TLB entry 0
on reset.

p_rst_vlemode I
Reset VLE mode select, value to be loaded into TLB entry 0 on
reset.

Memory interface signals

p_i_hmaster[3:0],
p_d_hmaster[3:0]

O — Master ID

p_i_haddr[31:0],
p_d_haddr[31:0] O — Address bus

p_i_hwrite,
p_d_hwrite O 0 Write signal (always driven low for p_i_hwrite)

p_i_hprot[5:0],
p_d_hprot[5:0] O — Protection codes

p_i_htrans[1:0],
p_d_htrans[1:0] O — Transfer type

p_i_hburst[2:0] ,
p_d_hburst[2:0] O — Burst type

p_i_hsize[1:0],
p_d_hsize[1:0] O — Transfer size

p_i_hunalign,
p_d_hunalign O — Indicates that the current data access is misaligned

p_i_hbstrb[7:0] ,
p_d_hbstrb[7:0] O 0 Byte strobes

p_i_hrdata[63:0],
p_d_hrdata[63:0] I Read data bus

p_d_hwdata[63:0] O — Write data bus

p_i_hready,
p_d_hready I Transfer ready

p_i_hresp[2:0],
p_d_hresp[2:0] I Transfer response

UM0434 External core complex interfaces

 239/391

Master ID configuration signals

p_masterid[3:0] I — CPU master ID configuration

nex_masterid[3:0] I — Nexus3 master ID configuration

Interrupt interface signals

p_extint_b I External input interrupt request

p_critint_b I Critical input interrupt request

p_avec_b I Autovector request. Use internal interrupt vector offset.

p_voffset[0:15] I Interrupt vector offset for vectored interrupts

p_iack O 0
Interrupt acknowledge. Indicates an interrupt is being
acknowledged.

p_ipend O 0 Interrupt pending. Indicates an interrupt is pending internally.

p_mcp_b I Machine check input request

Time base signals

p_tbint O 0 Time base interrupt

p_tbdisable I — Time base disable input

p_tbclk I — Time base clock input

Misc. CPU signals

p_cpuid[0:7] I CPU ID input

p_sysvers[0:31] I System version inputs (for SVR)

p_pvrin[16:31] I Inputs for PVR

p_pid0[0:7] O 0 PID0[24:31] outputs

p_pid0_updt O 0 PID0 update status

 CPU reservation signals

p_rsrv O 0 Reservation status

p_rsrv_clr I Clear reservation flag

CPU state signals

p_pstat[0:6] O 0 Processor status

p_brstat[0:1] O 0 Branch prediction status

p_mcp_out O 0 Machine check occurred

p_chkstop O 0 Checkstop occurred

p_doze O 0 Low-power doze mode of operation

p_nap O 0 Low-power nap mode of operation

p_sleep O 0 Low-power sleep mode of operation

Table 165. Interface signal definitions (continued)

Signal name I/O Reset Definition

External core complex interfaces UM0434

240/391

p_wakeup O 0
Indicates to external clock control module to enable clocks and
exit from low-power mode

p_halt I CPU halt request

p_halted O 0 CPU halted

p_stop I CPU stop request

p_stopped O 0 CPU stopped

CPU debug event signals

p_ude I Unconditional debug event

p_devt1 I Debug event 1 input

p_devt2 I Debug event 2 input

Debug/Emulation support signals (Nexus 1/OnCE)

jd_en_once I Enable full OnCE operation

jd_debug_b O 1 Processor entered debug session

jd_de_b I Debug request

jd_de_en O 0 Active-high output enable for DE_b open-drain IO cell

jd_mclk_on I System clock controller actively toggling m_clk

jd_watchpt[0:7] O 0 Address watchpoint occurred

Development support signals (Nexus 3)

nex_mcko O Nexus3 clock output

nex_rdy_b O Nexus3 ready output

nex_evto_b O Nexus3 event-out output

nex_evti_b I Nexus3 event-in input

nex_mdo[n:0] O Nexus3 message data output

nex_mseo_b[1:0] O Nexus3 message start/end output

JTAG-Related signals

j_trst_b I JTAG test reset from pad

j_tclk I JTAG test clock from pad

j_tms I JTAG test mode select from pad

j_tdi I JTAG test data input from pad

j_tdo O 0 JTAG test data out to master controller or pad

j_tdo_en O 0 Enables TDO output buffer

j_tst_log_rst O 0 Test-logic-reset state of JTAG controller

j_capture_ir O 0 Capture_IR state of JTAG controller

j_update_ir O 0 Update_IR state of JTAG controller

Table 165. Interface signal definitions (continued)

Signal name I/O Reset Definition

UM0434 External core complex interfaces

 241/391

9.3 Signal descriptions
Table 166 describes the processor clock, m_clk.

Table 167 describes signals that are related to reset. The core supports several reset input
signals for the CPU and JTAG/OnCE control logic: m_por, p_reset_b, and j_trst_b. The reset
domains are partitioned such that the CPU p_reset_b signal does not affect JTAG/OnCE
logic and j_trst_b does not affect processor logic. It is possible and desirable to access
OnCE registers while the processor is running or in reset. It is also possible and desirable to
assert j_trst_b and clear the JTAG/OnCE logic without affecting the processor state.

The synchronization logic between the processor and debug module requires an assertion
of either j_trst_b or m_por during initial processor power-on reset to ensure proper
operation. If the pin associated with j_trst_b is designed with a pull-up resistor and left
floating, assertion of m_por is required during the initial power-on processor reset. Similarly,
for those systems that do not have a power-on reset circuit and choose to tie m_por low, it is
required to assert j_trst_b during processor power-up reset. When a power-up reset is
achieved, the two resets can be asserted independently.

A reset output signal, p_resetout_b, is also provided.

j_shift_ir O 0 Shift_IR state of JTAG controller

j_capture_dr O 0 Parallel test data register load state of JTAG controller

j_shift_dr O 0 TAP controller in shift DR state

j_update_gp_reg O 0 Updates JTAG controller test data register

j_rti O 0 JTAG controller run-test-idle state

j_key_in I
Input for providing data to be shifted out during shift_IR state
when jd_en_once is negated

j_en_once_regsel O 0 External enable OnCE register select

j_nexus_regsel O 0 External Nexus register select

j_lsrl_regsel O 0 External LSRL register select

j_gp_regsel[0:11] O 0 General-purpose external JTAG register select

j_id_sequence[0:1] I JTAG ID register (2 msbs of sequence field)

j_id_version[0:3] I JTAG ID register version field

j_serial_data I Serial data from external JTAG registers

Table 165. Interface signal definitions (continued)

Signal name I/O Reset Definition

Table 166. Processor clock signal description

Signal I/O Signal description

m_clk I
Processor clock. The synchronous clock source for the core. Because the core is
designed for static operation, m_clk can be gated off to lower power dissipation (for
example, during low-power stopped states).

External core complex interfaces UM0434

242/391

A set of input signals (p_rstbase[0:19], p_rst_endmode) is provided to relocate the reset
exception handler to allow for flexible placement of boot code and to select the default
endian mode and VLE mode of the core out of reset.

Table 167. Descriptions of signals related to reset

Signal I/O Signal description

m_por I

Power-on reset. Serves the following purposes:

– m_por is ORed with j_trst_b and the resulting signal clears the JTAG TAP controller and
associated registers as well as the OnCE state machine. This signal is an asynchronous
clear with a short assertion time requirement.

– m_por is ORed with the p_reset_b function, and the resulting signal clears certain CPU
registers. This is an asynchronous clear with a short assertion time requirement.

Reset values for other registers are listed in Chapter 4.18.4: Reset settings on page 101.”

State
Meaning

Asserted—Power-on reset is requested.

Negated—Power-on reset is not requested.

p_reset_b I

Reset. Treated as an asynchronous input and is sampled by the clock control logic in the
debug module.

State
Meaning

Asserted—Reset is requested.

Negated—Reset is not requested.

p_resetout_b O
Reset out. Conditionally asserted by either the watchdog timer (Chapter 4.11.1: Timer
control register (TCR) on page 64”) or debug control logic. p_resetout_b is not asserted by
p_reset_b.

p_rstbase[0:19] I

Reset base. Allows system integrators to specify or relocate the base address of the reset
exception handler.

State
Meaning

Forms the upper 20 bits of the instruction access following negation of reset,
which is used to fetch the initial instruction of the reset exception handler. These
bits should be driven to a value corresponding to the desired boot memory
device in the system. These inputs are also used by the MMU during reset to
form a default TLB entry 0 for translation of the reset vector fetch.The initial
instruction fetch occurs to the location [p_rstbase[0:19]] || 0xFFC.

Timing
Must remain stable in a window beginning 2 clocks before the negation of reset
and extending into the cycle in which the reset vector fetch is initiated.

p_rst_endmode I

Reset endian mode. Used by the MMU during reset to form the E bit of the default TLB entry
0 for translation of the reset vector fetch.

State
Meaning

High—Causes the resultant entry E bit to be set, indicating a little-endian page.

Low—causes the resultant entry E bit to be cleared, indicating a big-endian
page.

p_rst_vlemode I

Used by the MMU during reset to form the VLE bit of the default TLB entry 0 for translation
of the reset vector fetch.

State
Meaning

A low logic level causes the resultant entry VLE bit to be cleared, indicating a
Book E page.
A high logic level causes the resultant entry VLE bit to be set, indicating a VLE
page.

UM0434 External core complex interfaces

 243/391

Table 168 describes signals for the address and data buses. These outputs provide the address for a bus
transfer. According to the AHB definition, p_haddr31 is the msb and p_haddr0 is the lsb.

j_trst_b I

JTAG/OnCE reset (IEEE 1149.1 JTAG specification TRST).

State
Meaning

Asynchronous reset with a short assertion time requirement. It is ORed with the
m_por function, and the resulting signal clears the OnCE TAP controller and
associated registers and the OnCE state machine.

Table 167. Descriptions of signals related to reset (continued)

Signal I/O Signal description

Table 168. Descriptions of signals for the address and data buses

Signal I/O Signal description

p_[d,i]_haddr[31:0] O
Address bus. Provides the address for a bus transfer. According to the AHB definition,
p_[d,i]_haddr[31] is the msb and p_[d,i]_haddr[0] is the lsb.

p_[d,i]_hrdata[63:0] I

Read data bus. Provides data to the core on read transfers. The read data bus can
transfer 8, 16, 24, 32, or 64 bits per transfer. According to the AHB definition,
p_[d,i]_hrdata63 is the msb and p_[d,i]_hrdata0 is the lsb.

Memory Byte AddressWired to p_[d,i]_hrdata Bits

0007:0

00115:8

01023:16

01131:24

10039:32

10147:40

11055:48

11163:56

p_d_hwdata[63:0] O

Write data bus. Transfers data from the core on write transfers. The write data bus can
transfer 8, 16, 24, 32, or 64 bits of data per bus transfer. According to the AHB definition,
p_d_hwdata[63] is the msb and p_d_hwdata[0] is the lsb.

Memory Byte AddressWired to p_d_hwdata Bits

0007:0

00115:8

01023:16

01131:24

10039:32

10147:40

11055:48

11163:56

External core complex interfaces UM0434

244/391

Table 169 describes transfer attribute signals, which provide additional information about the bus transfer
cycle. Attributes are driven with the address at the start of a transfer.

Table 169. Descriptions of transfer attribute signals

Signal I/O Signal description

p_[d,i]_htrans[1:0] O

Transfer type. The processor drives p_[d,i]_htrans[1:0] to indicate the current transfer type
as follows:
00 DLE—No data transfer is required. Slaves must terminate IDLE transfers with a zero
wait-state OKAY response and ignore the (non-existent) transfer.
01 BUSY—(The core does not use the BUSY encoding and does not present this type of
transfer to a bus slave.) Master is busy; burst transfer continues.
10 NONSEQ—Indicates the first transfer of a burst, or a single transfer. Address and
control signals are unrelated to the previous transfer.
11 SEQ—Indicates the continuation of a burst. Address and control signals are related to
the previous transfer. Control signals are the same. Address was incremented by the size
of the data transferred (optionally wrapped).

If the p_[d,i]_htrans[1:0] encoding is not IDLE or BUSY, a transfer is being requested.

p_[d,i]_hwrite O

Write. Defines the data transfer direction for the current bus cycle.

State
Meaning

Asserted—The current bus cycle is a write.

Negated—The current bus cycle is a read.

p_[d,i]_hsize[1:0] O

Transfer size. For misaligned transfers, size may exceed the requested size to ensure that
all asserted byte strobes are within the container defined by p_[d,i]_hsize[1:0]. Table 171
and Table 172 show p_[d,i]_hsize encodings for aligned and misaligned transfers.

00 Byte

01 Half word (2 bytes)
10 Word (4 bytes)

11 Double word (8 bytes)

UM0434 External core complex interfaces

 245/391

p_[d,i]_hburst[2:0]] O

Burst type. The core uses only SINGLE and WRAP4 burst types.

000 SINGLE—No burst, single beat only

001 INCR—Incrementing burst of unspecified length. Not used by the core.

p_[d,i]_hprot[5:0] O

Protection control. The core drives the p_[d,i]_hprot[5:0] signals to indicate the type of
access for the current bus cycle. p_[d,i]_hprot[0] indicates instruction/data,
p_[d,i]_hprot[1] indicates user/supervisor. p_[d,i]_hprot[5] indicates whether the access is
exclusive (that is, for an lwarx or stwcx.). p_[d,i]_hprot[4:2] (allocate, cacheable,
bufferable) indicate particular cache attributes for the access. The following table shows
the definitions of the p_[d,i]_hprot[5:0] signals.

p_hprot5 p_hprot4 p_hprot3 p_hprot2 p_hprot1 p_hprot0 Transfer Type
— — — — — 0 Instruction access
— — — — — 1 Data access
— — — — 0 — User mode access
— — — — 1 — Supervisor mode

access
— 0 0 0 — — Cache-inhibited
— 0 0 1 — — Guarded, not

cache-inhibited
— 0 1 0 — — Reserved
— 0 1 1 — — Reserved
— 1 0 0 — — Reserved
— 1 0 1 — — Reserved
— 1 1 0 — — Cacheable,

writethrough
— 1 1 1 — — Cacheable,

writeback
0 — — — — — Not exclusive
1 — — — — — Exclusive access

The core maps Book E storage attributes to the AHB hprot signals as described in the
following. For buffered stores, p_[d,i]_hprot[1] is driven with the user/supervisor mode
attribute associated with the store at the time it was buffered. For cache line
pushes/copybacks, p_[d,i]_hprot[1] indicates supervisor access. In both of these cases,
p_[d,i]_hprot0 indicates a data access.

TLB[I] TLB[G] TLB[W]||!L1CSR0[CWM] p_hprot[4:2] Transfer Type
0 0 0 111 Cacheable, writeback
0 0 1 110 Cacheable, writethrough
0 1 — 001 Guarded, not cache-inhibited
1 — — 000 Cache-inhibited
— — — 001 Buffered store, page marked

guarded
— — — 110 Buffered store and page

marked writethrough or
L1CSR0[CWM]=0, and non-
guarded

— — — 111 Buffered store and page
marked copyback and
L1CSR0[CWM]=1, and non-
guarded

— — — 111 Dirty line push

Table 169. Descriptions of transfer attribute signals (continued)

Signal I/O Signal description

External core complex interfaces UM0434

246/391

Table 170 describes signals for byte lane specification. Read transactions transfer from 1–8 bytes of data
on the p_[d,i]_hrdata[63:0] bus. The lanes involved in the transfer are determined by the starting byte
number specified by the lower address bits with the transfer size and byte strobes. Byte lane addressing
is shown big-endian (left to right) regardless of the core’s endian mode. The byte in memory
corresponding to address 0 is connected to B0 (p_h{r,w}data[7:0]) and the byte corresponding to address
7 is connected to B7 (p_h{r,w}data[63:56]). The CPU internally permutes read data as required for the
endian mode of the current access. Assertion of p_[d,i]_hunalign indicates misaligned transfers and that
byte strobes do not correspond exactly to size and low-order address bits.

Table 171 lists all data transfer permutations. Note that misaligned data requests that cross a 64-bit
boundary are broken into two bus transactions, and the address value and size encoding for the first
transfer are not modified. The table is arranged in a big-endian fashion, but the active lanes are the same
regardless of the endian-mode of the access. The core performs the proper byte routing internally based
on endianness.

Table 170. Descriptions of signals for byte lane specification

Signal I/O Signal description

p_[d,i]_hunalign O

Unaligned access. Indicates whether the current access is misaligned.

State
Meaning

Asserted—Asserted for misaligned data accesses and for misaligned instruction
accesses from VLE pages. Normal Book E instruction pages are always aligned.
When p_[d,i]_hunalign is asserted, the p_[d,i]_hbstrb[7:0] byte strobe signals
indicate the selected bytes involved in the current portion of the misaligned
access, which may not include all bytes defined by the size and low-order
address signals. Aligned transfers also assert the byte strobes, but in a manner
corresponding to size and low-order address bits.

Negated—No misaligned data access is occurring.

Timing The timing of this signal is approximately the same as address timing.

p_[d,i]_hbstrb[7:0] O

Byte strobes. Indicate the bytes selected for the current transfer. For a misaligned access,
the current transfer may not include all bytes defined by the size and low-order address
signals. For aligned transfers, the byte strobe signals correspond to the bytes that size and
low-order address signals define. The relationships of byte addresses to the byte strobe
signals are as follows.
Memory byte address Wired to p_h{r,w}data bits Corresponding byte strobe
signal

000 7:0 p_[d,i]_hbstrb[0]
001 15:8 p_[d,i]_hbstrb[1]
010 23:16 p_[d,i]_hbstrb[2]
011 31:24 p_[d,i]_hbstrb[3]
100 39:32 p_[d,i]_hbstrb[4]
101 47:40 p_[d,i]_hbstrb[5]
110 55:48 p_[d,i]_hbstrb[6]
111 63:56 p_[d,i]_hbstrb[7]

Table 171. Byte strobe assertion for transfers

Program size and
byte offset

A(2:0)
HSIZE

[1:0]

Data bus byte strobes
HUNALIGN

B0 B1 B2 B3 B4 B5 B6 B7

Byte @000 0 0 0 0 0 X — — — — — — — 0

Byte @001 0 0 1 0 0 — X — — — — — — 0

Byte @010 0 1 0 0 0 — — X — — — — — 0

UM0434 External core complex interfaces

 247/391

Table 172 shows the final layout in memory for data transferred from a 64-bit GPR containing the bytes ‘A
B C D E F G H’ to memory. The core breaks misaligned accesses that cross a double-word boundary into
a pair of accesses. Double-word transfers are always double-word–aligned.

Byte @011 0 1 1 0 0 — — — X — — — — 0

Byte @100 1 0 0 0 0 — — — — X — — — 0

Byte @101 1 0 1 0 0 — — — — — X — — 0

Byte @110 1 1 0 0 0 — — — — — — X — 0

Byte @111 1 1 1 0 0 — — — — — — — X 0

Half @000 0 0 0 0 1 X X — — — — — — 0

Half @001 0 0 1 1 0(1) — X X — — — — — 1

Half @010 0 1 0 0 1 — — X X — — — — 0

Half @011 0 1 1 1 1 1 — — — X X — — — 1

Half @100 1 0 0 0 1 — — — — X X — — 0

Half @101 1 0 1 1 0 1 — — — — — X X — 1

Half @110 1 1 0 0 1 — — — — — — X X 0

Half @111
(Two bus transfers)

1 1 1
0 0 0

0 1(2)

0 0
—
X

—
—

—
—

—
—

—
—

—
—

—
—

X
—

1
0

Word @000 0 0 0 1 0 X X X X — — — — 0

Word @001 0 0 1 1 1 1 — X X X X — — — 1

Word @010 0 1 0 1 1 1 — — X X X X — — 1

Word @011 0 1 1 1 1 1 — — — X X X X — 1

Word @100 1 0 0 1 0 — — — — X X X X 0

Word @101
(Two bus transfers)

1 0 1
0 0 0

1 0
0 0

—
X

—
—

—
—

—
—

—
—

X
—

X
—

X
—

1

0

Word @110
(Two bus transfers)

1 1 0
0 0 0

1 0 2

0 1
—
X

—
X

—
—

—
—

—
—

—
—

X
—

X
—

1

0

Word @111
(Two bus transfers)

1 1 1
0 0 0

1 0 2

1 0
—
X

—
X

—
X

—
—

—
—

—
—

—
—

X
—

1

1

Double word 0 0 0 1 1 X X X X X X X X 0

1. These misaligned transfers drive size according to the size of the power of two aligned containers in which the byte strobes
are asserted.

2. These misaligned cases drive request size according to the size specified by the load or store instruction.

Table 171. Byte strobe assertion for transfers (continued)

Program size and
byte offset

A(2:0)
HSIZE

[1:0]

Data bus byte strobes
HUNALIGN

B0 B1 B2 B3 B4 B5 B6 B7

External core complex interfaces UM0434

248/391

Table 172. Big-and Little-Endian storage (64-Bit GPR contains ‘A B C D E F G H’)

Program size and
byte offset

A(3:0)
HSIZE

(1:0)

Even double Word— 0 0dd double Word—1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

Byte @0000 0 0 0 0 0 0 H — — — — — — — — — — — — — — —

Byte @0001 0 0 0 1 0 0 — H — — — — — — — — — — — — — —

Byte @0010 0 0 1 0 0 0 — — H — — — — — — — — — — — — —

Byte @0011 0 0 1 1 0 0 — — — H — — — — — — — — — — — —

Byte @0100 0 1 0 0 0 0 — — — — H — — — — — — — — — — —

Byte @0101 0 1 0 1 0 0 — — — — — H — — — — — — — — — —

Byte @0110 0 1 1 0 0 0 — — — — — — H — — — — — — — — —

Byte @0111 0 1 1 1 0 0 — — — — — — — H — — — — — — — —

Byte @1000 1 0 0 0 0 0 — — — — — — — — H — — — — — — —

Byte @1001 1 0 0 1 0 0 — — — — — — — — — H — — — — — —

Byte @1010 1 0 1 0 0 0 — — — — — — — — — — H — — — — —

Byte @1011 1 0 1 1 0 0 — — — — — — — — — — — H — — — —

Byte @1100 1 1 0 0 0 0 — — — — — — — — — — — — H — — —

Byte @1101 1 1 0 1 0 0 — — — — — — — — — — — — — H — —

Byte @1110 1 1 1 0 0 0 — — — — — — — — — — — — — — H —

Byte @1111 1 1 1 1 0 0 — — — — — — — — — — — — — — — H

B. E. Half @0000 0 0 0 0 0 1 G H — — — — — — — — — — — — — —

B. E. Half @0001 0 0 0 1 1 0(1) — G H — — — — — — — — — — — — —

B. E. Half @0010 0 0 1 0 0 1 — — G H — — — — — — — — — — — —

B. E. Half @0011 0 0 1 1 1 1 1 — — — G H — — — — — — — — — — —

B. E. Half @0100 0 1 0 0 0 1 — — — — G H — — — — — — — — — —

B. E. Half @0101 0 1 0 1 1 0 1 — — — — — G H — — — — — — — — —

B. E. Half @0110 0 1 1 0 0 1 — — — — — — G H — — — — — — — —

B. E. Half @0111
0 1 1 1 0 1 — — — — — — — G — — — — — — — —

1 0 0 0 0 0 — — — — — — — — H — — — — — — —

B. E. Half @1000 1 0 0 0 0 1 — — — — — — — — G H — — — — — —

B. E. Half @1001 1 0 0 1 1 0 1 — — — — — — — — — G H — — — — —

B. E. Half @1010 1 0 1 0 0 1 — — — — — — — — — — G H — — — —

B. E. Half @1011 1 0 1 1 1 1 1 — — — — — — — — — — — G H — — —

B. E. Half @1100 1 1 0 0 0 1 — — — — — — — — — — — — G H — —

B. E. Half @1101 1 1 0 1 1 0 1 — — — — — — — — — — — — — G H —

B. E. Half @1110 1 1 1 0 0 1 — — — — — — — — — — — — — — G H

UM0434 External core complex interfaces

 249/391

B. E. Half @1111

1 1 1 1 0 1 — — — — — — — — — — — — — — — G

0 0 0 0
(next dword) 0 0

H — — — — — — — — — — — — — — —

L E. Half @0000 0 0 0 0 0 1 H G — — — — — — — — — — — — — —

L. E. Half @0001 0 0 0 1 1 0 1 — H G — — — — — — — — — — — — —

L. E. Half @0010 0 0 1 0 0 1 — — H G — — — — — — — — — — — —

L. E. Half @0011 0 0 1 1 1 1 1 — — — H G — — — — — — — — — — —

L. E. Half @0100 0 1 0 0 0 1 — — — — H G — — — — — — — — — —

L. E. Half @0101 0 1 0 1 1 0 1 — — — — — H G — — — — — — — — —

L. E. Half @0110 0 1 1 0 0 1 — — — — — — H G — — — — — — — —

L. E. Half @0111
0 1 1 1 0 1 — — — — — — — H — — — — — — — —

1 0 0 0 0 0 — — — — — — — — G — — — — — — —

L. E. Half @1000 1 0 0 0 0 1 — — — — — — — — H G — — — — — —

L. E. Half @1001 1 0 0 1 1 0 1 — — — — — — — — — H G — — — — —

L. E. Half @1010 1 0 1 0 0 1 — — — — — — — — — — H G — — — —

L. E. Half @1011 1 0 1 1 1 1 1 — — — — — — — — — — — H G — — —

L. E. Half @1100 1 1 0 0 0 1 — — — — — — — — — — — — H G — —

L. E. Half @1101 1 1 0 1 1 0 1 — — — — — — — — — — — — — H G —

L. E. Half @1110 1 1 1 0 0 1 — — — — — — — — — — — — — — H G

L. E. Half @1111

1 1 1 1 0 1 — — — — — — — — — — — — — — — H

+ 0 0 0 0
(next dword)

0 0 G — — — — — — — — — — — — — — —

B. E. Word @0000 0 0 0 0 1 0 E F G H — — — — — — — — — — — —

B. E. Word @0001 0 0 0 1 1 1 1 — E F G H — — — — — — — — — — —

B. E. Word @0010 0 0 1 0 1 1 1 — — E F G H — — — — — — — — — —

B. E. Word @0011 0 0 1 1 1 1 1 — — — E F G H — — — — — — — — —

B. E. Word @0100 0 1 0 0 1 0 — — — — E F G H — — — — — — — —

B. E. Word @0101
0 1 0 1 1 0 — — — — — E F G — — — — — — — —

1 0 0 0 0 0 — — — — — — — — H — — — — — — —

B. E. Word @0110
0 1 1 0 1 0 — — — — — — E F — — — — — — — —

1 0 0 0 0 1 — — — — — — — — G H — — — — — —

B. E. Word @0111
0 1 1 1 1 0 — — — — — — — E — — — — — — — —

1 0 0 0 1 0 — — — — — — — — F G H — — — — —

B. E. Word @1000 1 0 0 0 1 0 — — — — — — — — E F G H — — — —

Table 172. Big-and Little-Endian storage (64-Bit GPR contains ‘A B C D E F G H’) (continued)

Program size and
byte offset

A(3:0)
HSIZE

(1:0)

Even double Word— 0 0dd double Word—1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

External core complex interfaces UM0434

250/391

B. E. Word @1001 1 0 0 1 1 1 1 — — — — — — — — — E F G H — — —

B. E. Word @1010 1 0 1 0 1 1 1 — — — — — — — — — — E F G H — —

B. E. Word @1011 1 0 1 1 1 1 1 — — — — — — — — — — — E F G H —

B. E. Word @1100 1 1 0 0 1 0 — — — — — — — — — — — — E F G H

B. E. Word @1101

1 1 0 1 1 0 — — — — — — — — — — — — — E F G

+ 0 0 0 0

(next dword)
0 0 H — — — — — — — — — — — — — — —

B. E. Word @1110

1 1 1 0 1 0 — — — — — — — — — — — — — — E F

+ 0 0 0 0

(next dword)
0 1 G H — — — — — — — — — — — — — —

B. E. Word @1111

1 1 1 1 1 0 — — — — — — — — — — — — — — — E

+ 0 0 0 0

(next dword)
1 0 F G H — — — — — — — — — — — — —

L. E. Word @0000 0 0 0 0 1 0 H G F E — — — — — — — — — — — —

L. E. Word @0001 0 0 0 1 1 1 1 — H G F E — — — — — — — — — — —

L. E. Word @0010 0 0 1 0 1 1 1 — — H G F E — — — — — — — — — —

L. E. Word @0011 0 0 1 1 1 1 1 — — — H G F E — — — — — — — — —

L. E. Word @0100 0 1 0 0 1 0 — — — — H G F E — — — — — — — —

L. E. Word @0101
0 1 0 1 1 0 — — — — — H G F — — — — — — — —

1 0 0 0 0 0 — — — — — — — — E — — — — — — —

L. E. Word @0110
0 1 1 0 1 0 — — — — — — H G — — — — — — — —

1 0 0 0 0 1 — — — — — — — — F E — — — — — —

L. E. Word @0111
0 1 1 1 1 0 — — — — — — — H — — — — — — — —

1 0 0 0 1 0 — — — — — — — — G F E — — — — —

L. E. Word @1000 1 0 0 0 1 0 — — — — — — — — H G F E — — — —

L. E. Word @1001 1 0 0 1 1 1 1 — — — — — — — — — H G F E — — —

L. E. Word @1010 1 0 1 0 1 1 1 — — — — — — — — — — H G F E — —

L. E. Word @1011 1 0 1 1 1 1 1 — — — — — — — — — — — H G F E —

L. E. Word @1100 1 1 0 0 1 0 — — — — — — — — — — — — H G F E

L. E. Word @1101

1 1 0 1 1 0 — — — — — — — — — — — — — H G F

+ 0 0 0 0
(next dword)

0 0 E — — — — — — — — — — — — — — —

L. E. Word @1110

1 1 1 0 1 0 — — — — — — — — — — — — — — H G

+ 0 0 0 0

(next dword)
0 1 F E — — — — — — — — — — — — — —

Table 172. Big-and Little-Endian storage (64-Bit GPR contains ‘A B C D E F G H’) (continued)

Program size and
byte offset

A(3:0)
HSIZE

(1:0)

Even double Word— 0 0dd double Word—1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

UM0434 External core complex interfaces

 251/391

Table 173 describes the transfer control signals.

Table 174 describes the master ID configuration signals. These inputs drive the p_[d,i]_hmaster[3:0]
outputs when a bus cycle is active.

Table 175 describes interrupt control signals. Interrupt request inputs (p_extint_b, p_critint_b, and
p_mcp_b) to the core are level-sensitive. The interrupt controller must keep the interrupt request and any

L. E. Word @1111

1 1 1 1 1 0 — — — — — — — — — — — — — — — H

+ 0 0 0 0
(next dword)

1 0 G F E — — — — — — — — — — — — —

B.E. Double word - 0 0 0 1 1 A B C D E F G H — — — — — — — —

L.E. Double word - 0 0 0 1 1 H G F E D C B A — — — — — — — —

1. These misaligned transfers drive size according to the size of the power of two aligned containers in which the byte strobes
are asserted.

Table 172. Big-and Little-Endian storage (64-Bit GPR contains ‘A B C D E F G H’) (continued)

Program size and
byte offset

A(3:0)
HSIZE

(1:0)

Even double Word— 0 0dd double Word—1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

Table 173. Descriptions of signals for transfer control signals

Signal I/O Signal description

p_[d,i]_hready I

Transfer ready. Indicates whether a requested transfer operation has completed. An external
device asserts p_[d,i]_hready to terminate the transfer. p_hresp[2:0] indicate the transfer
status.

State
Meaning

Asserted—A requested transfer operation has completed. An external device
asserts p_[d,i]_hready to terminate the transfer.

Negated—A requested transfer operation has not completed.

p_hresp[2:0] I

Transfer response. Indicate status of a terminating transfer.

000 OKAY—Transfer terminated normally.
001 ERROR—Transfer terminated abnormally. See note for assertion.

010 Reserved (RETRY not supported in AHB-Lite protocol)

011 Reserved (SPLIT not supported in AHB-Lite protocol)
100 XFAIL—Exclusive store failed (stwcx. did not complete successfully). See note for
assertion. (Signaled to the CPU using the p_xfail_b internal signal. See Table 190.)
101–111 Reserved

Timing

Assertion—ERROR and XFAIL are required to be 2-cycle responses that must be
signaled one cycle before assertion of p_[d,i]_hready and must remain unchanged
during the cycle p_[d,i]_hready is asserted. The XFAIL response is signaled to the
CPU using the p_xfail_b internal signal.

Table 174. Descriptions of master ID configuration signals

Signal I/O Signal description

p_masterid[3:0] I
CPU master. Configures the master ID for the CPU. Driven on p_[d,i]_hmaster[3:0] for a
CPU-initiated bus cycle.

nex_masterid[3:0] I
Nexus3 master. Configure the master ID for the Nexus3 unit. Driven on
p_[d,i]_hmaster[3:0] for a Nexus3-initiated bus cycle.

External core complex interfaces UM0434

252/391

p_voffset or p_avec_b inputs (as appropriate) asserted until the interrupt is serviced to guarantee that
the core recognizes the request. On the other hand, when a request is generated, the core may still not
recognize the interrupt request, even if it is removed later. Requests must be held stable to avoid
spurious responses.

Table 175. Descriptions of interrupt signals

Signal I/O Signal description

p_extint_b I

External input interrupt request. Provides the external input interrupt request to the core.
p_extint_b is masked by MSR[EE].

State
Meaning

Asserted—An external input interrupt request has been signaled.

Negated—An external input interrupt request has not been signaled.

Timing
Not internally synchronized by the core. It must meet setup and hold time
constraints relative to m_clk when the core clock is running.

Assertion—Level-sensitive, must remain asserted to be guaranteed recognition.

p_critint_b I

Critical input interrupt request. Critical input interrupt request to the core. Masked by
MSR[CE].

State
Meaning

Asserted—Critical input interrupt is being requested.

Negated—No critical input interrupt is requested.

Timing

Not internally synchronized by the core. Must meet setup and hold times relative to
m_clk when the core clock is running. See Chapter 9.5.6: Interrupt interface on
page 289.”

Assertion—Level-sensitive, must remain asserted to be guaranteed to be
recognized.

p_ipend I

Interrupt pending. Indicates whether a p_extint_b or p_critint_b interrupt request or an enabled
timer facility interrupt was recognized internally by the core, is enabled by the appropriate
MSR bit, and is asserted in response to the interrupt request inputs.

p_ipend can signal other bus masters or a bus arbiter that an interrupt is pending. External
power management logic can use p_ipend to control operation of the core and other logic or
may use p_wakeup similarly. Higher priority exceptions may delay handling of the interrupt.

State
Meaning

Asserted—A p_extint_b or p_critint_b interrupt request or an enabled timer facility
interrupt (watchdog, fixed-Interval, or decrementer) was recognized internally by
the core. Assertion of p_ipend does not mean that exception processing for the
interrupt has begun.
Negated—A p_extint_b or p_critint_b interrupt request or an enabled timer facility
interrupt has not been recognized.

p_avec_b I

Autovector. Determines how a vector is chosen for critical and external interrupt signals.

State
Meaning

Asserted—Asserted with either the p_extint_b or p_critint_b interrupt request to
request use of the IVOR4 or IVOR0 for obtaining an exception vector offset.
Negated—If negated when a p_extint_b or p_critint_b interrupt is requested, an
external vector offset and context selector is taken from p_voffset[0:15].

Timing
Must be driven to a valid state during each clock cycle that either p_extint_b or
p_critint_b is asserted.

Assertion—Level-sensitive, must remain asserted to have guaranteed recognition.

UM0434 External core complex interfaces

 253/391

Table 176 describes the timer facility signals, which are associated with the time base, watchdog, fixed-
interval, and decrementer facilities.

p_voffset[0:15
] I

Interrupt vector offset. Vector offset and context selector used when processing begins for an
incoming interrupt request. Ignored if multiple hardware contexts are not implemented.

State
Meaning

Correspond to IVOR n[16–31]. p_voffset[0:11] are used in forming the exception
handler address; p_voffset[12:15] are used to select a new operating context when
multiple hardware contexts are implemented.

Timing

Sampled with the p_extint_b and p_critint_b interrupt request inputs; must be
driven to a valid value when either signal is asserted unless p_avec_b is also
asserted. If p_avec_b is asserted, these inputs are not used.
Assertion—Level-sensitive; must remain asserted to guarantee correct recognition.
Must be asserted concurrently with p_extint_b and p_critint_b when used.

p_iack O

Interrupt vector acknowledge. Interrupt vector acknowledge indicator to allow external interrupt
controllers to be informed when a critical input or external input interrupt is being processed.

State
Meaning

Asserted—An interrupt vector is being acknowledged.
Negated—An interrupt vector is not being acknowledged.

Timing
Assertion—Asserted after the cycle in which p_avec_b and p_voffset[0:15] are
sampled in preparation for exception processing. See Figure 62 and <Cross
Refs>Figure 63 for timing diagrams.

p_mcp_b I

Machine check. Machine check interrupt request to the core. Masked by HID0[EMCP].

State
Meaning

Asserted—A machine check interrupt is being requested.

Negated—A machine check interrupt is not being requested.

Timing

Because this signal is not internally synchronized by the core, it must meet setup
and hold time constraints to m_clk when the core clock is running. p_mcp_b is not
sampled while the core is in the halted or stopped power management states.

Assertion—p_mcp_b is sampled on two consecutive m_clk periods to detect a
transition from the negated to the asserted state. It is internally qualified with this
transition, but must remain asserted to be guaranteed to be recognized.

Table 175. Descriptions of interrupt signals (continued)

Signal I/O Signal description

Table 176. Descriptions of timer facility signals

Signal I/O Signal description

p_tbdisable I

Timer disable. Used to disable the internal time base and decrementer counters. Used to freeze
the state of the time base and decrementer during low power or debug operation.

State
Meaning

Asserted—Time base and decrementer updates are frozen.

Negated—Time base and decrementer updates are unaffected.

Timing
Not internally synchronized by the core; must meet setup and hold time constraints
relative to m_clk when the core clock is running, as well as to p_tbclk when selected
as an alternate time base clock source.

p_tbclk I

Timer external clock. Used as an alternate clock source for the time base and decrementer
counters. Selection of this clock is made using HID0[SEL_TBCLK] (see Chapter 4.13.1:
Hardware implementation dependent register 0 (HID0) on page 84”).

Timing
Must be synchronous to the m_clk input and cannot exceed 50% of the m_clk
frequency. Must be driven such that it changes state on the falling edge of m_clk.

External core complex interfaces UM0434

254/391

Table 177 describes the processor reservation signals associated with lwarx and stwcx..

Table 178 describes miscellaneous processor signals.

p_tbint O

Timer interrupt status. Indicates whether an internal timer facility unit is requesting an interrupt
(TSR[WIS]=1 and TCR[WIE]=1, or TSR[DIS]=1 and TCR[DIE]=1, or
TSR[FIS]=1 and TCR[FIE]=1). May be used to exit low power operation or for other system
purposes.

State
Meaning

Asserted—An internal timer facility unit is generating an interrupt request.
Negated—An internal timer facility unit is not generating an interrupt request.

Table 176. Descriptions of timer facility signals (continued)

Signal I/O Signal description

Table 177. Descriptions of processor reservation signals

Signal I/O Signal description

p_rsrv O

CPU reservation status. Indicates whether a reservation was established by the execution of an
lwarx.

State
Meaning

Asserted—A reservation was established by successful execution of an lwarx.
Remains asserted until the reservation is cleared.

Negated—No reservation is in effect.

Timing Assertion—Remains asserted until the reservation is cleared.

p_rsrv_clr I

CPU reservation clear. Used to clear a reservation. External logic may use this signal to
implement reservation management policies outside the scope of the CPU. p_xfail_b indicates
success/failure of an stwcx. as part of bus transfer termination using the XFAIL p_hresp[2:0]
encoding.

State
Meaning

Asserted—Signals that a reservation should be cleared. Asserted independently of
any bus transfer.

Timing Assertion—Asserted independently of any bus transfer.

Table 178. Descriptions of miscellaneous processor signals

Signal I/O Signal description

p_cpuid[0:7] I
CPU ID. Reflected in the PIR. See Chapter 4.4.2: Processor ID register (PIR) on page 45.”

Timing Intended to remain in a static condition and are not internally synchronized.

p_pid0[0:7] O
PID0 outputs. Reflected to PID0[56–63]. See Chapter 4.16.5: Process ID register (PID0) on
page 96.”

p_pid0_updt O

PID0 update. Indicates that PID0 is being updated by an mtspr.

State
Meaning

Asserted—PID0 is being updated by an mtspr.
Negated—PID0 is not being updated by an mtspr.

Timing Assertion—asserts during the clock cycle the p_pid0[0:7] outputs are changing.

p_sysvers[0:31] I

System version. Core version number reflected in the SVR. See Chapter 4.4.4: System
version register (SVR) on page 46.”

Timing Intended to remain in a static condition and not internally synchronized.

UM0434 External core complex interfaces

 255/391

9.3.1 Processor state signals

Table 179 describes the processor state signals.

p_pvrin[16:31] I

Processor version. Provide a portion of the version number for a particular CPU. Reflected in
the PVR. See Chapter 4.4.3: Processor version register (PVR) on page 45.”

Timing Intended to remain in a static condition and are not internally synchronized.

Table 178. Descriptions of miscellaneous processor signals (continued)

Signal I/O Signal description

Table 179. Descriptions of processor state signals

Signal I/O Signal description

p_pstat[0:6] O

Processor status. Indicate the internal execution unit status. Any values not shown are reserved.

p_pstat[0:6]Internal Processor Status
00000xx Execution stalled

00001xx Execute exception

00010xx Instruction squashed

01000xx Processor in halted state
01001xx Processor in stopped state

01010xx Processor in debug mode(1)

01011xx Processor in checkstop state
10000sm Complete instruction(2),(3)

1000100 Complete lmw or stmw
1000101 Complete e_lmw or e_stmw
1001000 Complete isync
1001011 Complete se_isync
100110m Complete lwarx or stwcx. 3

1100000 Complete branch instruction bc, bcl, bca, bcla, b, bl, ba, bla resolved as not taken

1100001 Complete branch instruction e_bc, e_bcl, e_b, e_bl resolved as not taken

1100011 Complete branch instruction se_bc, se_bcl, se_b, se_bl resolved as not taken
1100100 Complete branch instruction bc, bcl, bca, bcla, b, bl, ba, bla resolved as taken

1100101 Complete branch instruction e_bc, e_bcl, e_b, e_bl resolved as taken

1100111 Complete branch instruction se_bc, se_bcl, se_b, se_bl resolved as taken
1101000 Complete bclr, bclrl, bcctr, bcctrl resolved as not taken

1101100 Complete bclr, bclrl, bcctr, bcctrl resolved as taken

1101111 Complete se_blr, se_blrl, se_bctr, se_bctrl (always taken)
111000m Complete isel with condition false

111010m Complete isel with condition true

1111100 Complete rfi, rfci, or rfdi
1111111 Complete se_rfi, se_rfci, or se_rfdi

Timing
Synchronous with m_clk, so the indicated status may not apply to a current bus
transfer.

External core complex interfaces UM0434

256/391

Table 180 describes power management and other external control logic functions.

p_brstat[0:1] O

Branch prediction status. Indicates the status of a branch prediction prefetch. Such prefetches
are performed for branch target buffer (BTB) hits with predict taken status to accelerate
branches.

p_s1stat[0:1] S1 prefetch status
0x Default (no branch-predicted taken prefetch)

10 Branch-predicted taken prefetch resolved as not taken

11 Branch-predicted taken prefetch resolved as taken

Timing
Synchronous with m_clk, so the indicated status may not apply to a current bus
transfer.

p_mcp_out O

Processor machine check. Indicates whether a machine check condition has caused a
syndrome bit to be set in the machine check syndrome register (MCSR).

State
Meaning

Asserted—A machine check condition caused an MCSR bit to be set.

Negated—No machine check condition exists that would set an MCSR bit.

p_chkstop O

Processor checkstop. Asserted by the processor when a checkstop condition has occurred and
the CPU has entered the checkstop state.

State
Meaning

Asserted—The processor has indicated a checkstop condition.

Negated—The processor has not indicated a checkstop condition.

1. As reflected on the cpu_dbgack internal state signal

2. Except rfi, rfci, rfdi, lmw, stmw, lwarx, stwcx., isync, isel, se_rfi, se_rfci, se_rfdi, e_lmw, e_stmw, se_isel, and
change of flow instructions

3. s: instruction size, 0 = 32 bit, 1 = 16 bit.

m: 0 for Book E page, 1 for VLE page

Table 179. Descriptions of processor state signals (continued)

Signal I/O Signal description

Table 180. Descriptions of power management control signals

Signal I/O Signal description

p_halt I

Processor halt request. Used to request that the processor enter the halted state.

State
Meaning

Asserted—Requests the processor to enter halted state.

Negated—No request is being made for the processor to enter halted state.

p_halted O

Processor halted. The active-high p_halted output signal indicates that the processor entered the
halted state.

State
Meaning

Asserted—The processor is in halted state.

Negated—The processor is not in halted state.

p_stop I

Processor stop request. The active-high p_stop input signal requests that the processor enter the
stopped state.

State
Meaning

Asserted—Requests the processor to enter stopped state.
Negated—No request is being made for the processor to enter stopped state.

p_stopped O

Processor stopped. The active-high p_stopped output signal indicates that the processor entered
the stopped state.

State
Meaning

Asserted—The processor is in stopped state.

Negated—The processor is not in stopped state.

UM0434 External core complex interfaces

 257/391

Table 181 describes signal debug events to the core.

p_doze
p_nap

p_sleep
O

Low-power mode. Asserted by the processor to reflect the settings of HID0[DOZE,NAP,SLEEP]
when MSR[WE] is set. The core can be placed in a low-power state by forcing m_clk to a
quiescent state and brought out of low-power state by re-enabling m_clk. The time base facilities
may be separately enabled or disabled using combinations of the timer facility control signals.
External logic can detect the asserted edge or level of these signals to determine which low-
power mode has been requested and then place the core and peripherals in a low-power
consumption state. p_wakeup can be monitored to determine when to end the low-power
condition.

State
Meaning

Asserted—MSR[WE] and the respective HID0 bit are both set.

Negated—MSR[WE] and the respective HID0 bit are not both set.

Timing Assertion—May assert for 1 or more clock cycles.

p_wakeup O

Wake up. Used by external logic to remove the core and system logic from a low-power state. It
can also indicate to the system clock controller that m_clk should be re-enabled for debug
purposes.

p_wakeup (or other system state) should be monitored to determine when to release the
processor (and system if applicable) from a low-power state.

State
Meaning

Asserted—Asserts whenever one of the following occurs:
– A valid pending interrupt is detected by the core.

– A request to enter debug mode is made by setting the OCR[DR] or via the assertion
of jd_de_b or p_ude.

– The processor is in a debug session and jd_debug_b is asserted.

– A request to enable m_clk has been made by setting OCR[WKUP].

Timing
See Chapter 9.5.5: Power management on page 289.” This signal is asynchronous to
the system clock and should be synchronized to the system clock domain to avoid
hazards.

Table 180. Descriptions of power management control signals (continued)

Signal I/O Signal description

Table 181. Descriptions of debug events signals

Signal I/O Signal description

p_ude I

Unconditional debug event. Used to request an unconditional debug event.

State
Meaning

Asserted—An unconditional debug event has been requested. Only a transition from
negated to asserted state of p_ude causes an event to occur. However, the level on this
signal causes assertion of p_wakeup.

Negated—No unconditional debug event has been requested.

Timing

Not internally synchronized by the core, and must meet setup and hold time constraints
relative to m_clk when the core clock is running.

Assertion—Level-sensitive and must be held asserted until acknowledged by software,
or, when external debug mode is enabled, by assertion of jd_debug_b to be guaranteed
recognition. Only a transition from negated to asserted state of p_ude causes an event to
occur. However, the level on this signal causes assertion of p_wakeup.

External core complex interfaces UM0434

258/391

Table 182 lists debug/emulation (Nexus 1/ OnCE) support signals. These signals assist in implementing
an on-chip emulation capability with a controller external to the core.

Table 183 describes debug/emulation (Nexus 1/ OnCE) support signals.

p_devt1 I

External debug event 1. Used to request an external debug event. If the core clock is disabled, this
signal is not recognized. In addition, only a transition from negated to asserted state of p_devt1
causes an event to occur. It is intended to signal core-related events generated while the CPU is
active.

State
Meaning

Asserted—An external debug event is requested. Only a transition from negated to
asserted state of p_devt1 causes an event to occur. It is intended to signal core-related
events generated while the CPU is active.

Negated—No external debug event is requested.

Timing
Not internally synchronized by the core, and must meet setup and hold time constraints
relative to m_clk when the core clock is running.

p_devt2 I

External debug event 2. Used to request an external debug event. If the core clock is disabled, this
signal is not recognized. In addition, only a transition from negated to asserted state of p_devt2
causes an event to occur. It is intended to signal core-related events generated while the CPU is
active.

State
Meaning

Asserted—An external debug event is requested. Only a transition from negated to
asserted state of p_devt2 causes an event to occur.

Negated—No external debug event is requested.

Timing
Not internally synchronized by the core, and must meet setup and hold time constraints
relative to m_clk when the core clock is running.

Table 181. Descriptions of debug events signals (continued)

Signal I/O Signal description

Table 182. Core Debug/Emulation support signals

Signal Type Description

jd_en_once I Enable full OnCE operation

jd_debug_b O Debug session indicator

jd_de_b I Debug request

jd_de_en O DE_b active high output enable

jd_mclk_on I CPU clock is active indicator

UM0434 External core complex interfaces

 259/391

Table 183. Descriptions of Debug/Emulation (Nexus 1/ OnCE) support signals

Signal I/O Signal description

jd_en_once I

OnCE enable. Enables the OnCE controller to allow certain instructions and operations to be
executed. Other systems should tie this signal asserted to enable full OnCE operation.
j_en_once_regsel and j_key_in are provided to assist external logic performing security
checks.

State
Meaning

Asserted—Enables the full OnCE command set, as well as operation of control
signals and OnCE control register functions.

Negated—Only the bypass, ID, and Enable_OnCE commands are executed by the
OnCE unit; all other commands default to a bypass command. The OnCE status
register (OSR) is not visible when OnCE operation is disabled. In addition, OCR
functions and the operation of jd_de_b are disabled. Secure systems may leave
this signal negated until a security check is performed.

Timing
Must change state only during the test-logic-reset, run-test/idle, or update_dr TAP
states. A new value takes effect after one additional j_tclk cycle of synchronization.

jd_debug_b O

Debug session. A debug session includes single-step operations (Go+NoExit OnCE
commands). This signal is provided to inform system resources that access is occurring for
debug purposes, thus allowing certain resource side effects to be frozen or otherwise
controlled. Examples may include FIFO state change control and control of side-effects of
register or memory accesses. See Chapter 11.5.4: OnCE interface signals on page 309.”

State
Meaning

Asserted—Asserted when the processor enters debug mode. It remains asserted
for the duration of a debug session. that is, during OnCE single-step executions.

jd_de_b I

Debug request. Normally the input from the top-level DE_b open-drain bidirectional I/O cell.
See Chapter 11.5.4: OnCE interface signals on page 309.”

State
Meaning

Asserted—A debug request is pending.
Negated—No debug request is pending.

Timing

Assertion—Not internally synchronized by the core and must meet setup and hold
time constraints relative to j_tclk. To be recognized, it must be held asserted for a
minimum of two j_tclk periods, and jd_en_once must be in the asserted state.
jd_de_b is synchronized to m_clk in the debug module before being sent to the
processor (two clocks).

jd_de_en O

DE_b active high output enable. Enable for the top-level DE_b open-drain bidirectional I/O cell.
See Chapter 11.5.4: OnCE interface signals on page 309.”

State
Meaning

Asserted—the top-level DE_b open-drain bidirectional I/O cell is enabled.

Negated—the top-level DE_b open-drain bidirectional I/O cell is disabled.

Timing
Assertion—Asserted for three j_tclk periods upon processor entry into debug
mode.

jd_mclk_on I

Processor clock on. Driven by system-level clock control logic to indicate the m_clk input state

State
Meaning

Asserted—The processor’s m_clk input is active.

Negated—The processor’s m_clk input is not active.

Timing Assertion—Synchronized to j_tclk and provided as an OSR status bit.

jd_watchpoint
[0:7] O

Watchpoint events. Indicate whether a watchpoint occurred. Each debug address compare
function (IAC1–IAC4, DAC1–DAC2), and debug counter event (DCNT1–DCNT2) is capable of
triggering a watchpoint output.

State
Meaning

Asserted—A watchpoint occurred

Negated—No watchpoint occurred

External core complex interfaces UM0434

260/391

Table 184 lists interface signals that assist in implementing a real-time development tool
capability with a controller that is external to the core. These signals are described in
Chapter 12.11: Nexus3 pin interface on page 371.”

Table 185 lists the primary JTAG interface signals. These signals are usually connected
directly to device pins (except for j_tdo, which needs tri-state and edge support logic),
unless JTAG TAP controllers are concatenated.

Table 186 describes JTAG interface signals.

Table 184. core development support (Nexus3) signals

Signal Type Description

nex_mcko O Nexus3 clock output

nex_rdy_b O Nexus3 ready output

nex_evto_b O Nexus3 event-out output

nex_evti_b I Nexus3 event-in input

nex_mdo[n:0] O Nexus3 message data output

nex_mseo_b[1:0] O Nexus3 message start/end output

Table 185. JTAG primary interface signals

Signal name Type Description

j_trst_b I JTAG test reset

j_tclk I JTAG test clock

j_tms I JTAG test mode select

j_tdi I JTAG test data input

j_tdo O Test data out to master controller or pad

j_tdo_en O
Enables TDO output buffer. j_tdo_en is asserted when the TAP controller
is in the shift_dr or shift_ir state.

Table 186. Descriptions of JTAG interface signals

Signal I/O Signal description

j_tdi I
JTAG/OnCE serial input. Provides data and commands to the OnCE controller. Data is
latched on the rising edge of j_tclk. Data is shifted into the OnCE serial port lsb first.

j_tclk I

JTAG/OnCE serial clock. Supplies the serial clock to the OnCE control block. The serial
clock provides pulses required to shift data and commands into and out of the OnCE serial
port (data is clocked into the OnCE on the rising edge and is clocked out of the OnCE
serial port on the rising edge). The debug serial clock frequency must not exceed 50% of
the processor clock frequency.

UM0434 External core complex interfaces

 261/391

j_tdo O

JTAG/OnCE serial output. Serial data is read from the OnCE block through j_tdo.

State
Meaning

Data is shifted out the OnCE serial port lsb first.

Timing

When data is clocked out of the OnCE serial port, j_tdo changes on the rising
edge of j_tclk. The j_tdo output is always driven. An external system-level TDO
pin may be three-statable and should be actively driven in the shift-IR and
shift-DR controller states. j_tdo_en indicates when an external TDO pin should
be enabled, and is asserted during the shift-IR and shift-DR controller states.
In addition, for IEEE1149 compliance, the system-level pin should change
state on the falling edge of TCLK.

j_tms I
JTAG/OnCE test mode select. Used to cycle through states in the OnCE debug controller.
Toggling j_tms while clocking with j_tclk controls transitions through the TAP state
controller.

j_trst_b I

JTAG/OnCE test reset. Resets the OnCE controller externally by placing it in the test-logic-
reset state. The following information details additional signals that can support external
JTAG data registers using the core TAP controller.
Signal Name Type Description
j_tst_log_rst O Indicates the TAP controller is in the test-logic-reset state
j_rti O JTAG controller run-test/idle state
j_capture_ir O Indicates the TAP controller is in the capture IR state
j_shift_ir O Indicates the TAP controller is in shift IR state
j_update_ir O Indicates the TAP controller is in update IR state
j_capture_dr O Indicates the TAP controller is in the capture DR state
j_shift_dr O Indicates the TAP controller is in shift DR state
j_update_gp_reg O Updates JTAG controller general-purpose data register
j_gp_regsel[0:11] O General-purpose external JTAG register select
j_en_once_regsel O External enable OnCE register select
j_key_in I Serial data from external key logic
j_nexus_regsel O External Nexus register select
j_lsrl_regsel O External LSRL register select
j_serial_data I Serial data from external JTAG register(s)

j_tst_log_rst O

Test-logic-reset. Indicates whether the TAP controller is in test-logic-reset state.

State
Meaning

Asserted—The TAP controller is in test-logic-reset state.
Negated—The TAP controller is not in test-logic-reset state.

j_rti O

Run-test/idle. Indicates whether the TAP controller is in the run-test/idle state.

State
Meaning

Asserted—The TAP controller is in run-test/idle state.

Negated—The TAP controller is not in run-test/idle state.

j_capture_ir O

Capture IR. Indicates whether the TAP controller is in the Capture_IR state.

State
Meaning

Asserted—The TAP controller is in Capture_IR state.

Negated—The TAP controller is not in Capture_IR state.

j_shift_ir O

Shift IR. Indicates whether the TAP controller is in the Shift_IR state.

State
Meaning

Asserted—The TAP controller is in Shift_IR state.
Negated—The TAP controller is not in Shift_IR state.

Table 186. Descriptions of JTAG interface signals (continued)

Signal I/O Signal description

External core complex interfaces UM0434

262/391

j_update_ir O

Update IR. Indicates the TAP controller is in the Update_IR state.

State
Meaning

Asserted—The TAP controller is in Update_IR state.
Negated—The TAP controller is not in Update_IR state.

j_capture_dr O

Capture DR. Indicates whether the TAP controller is in the Capture_DR state.

State
Meaning

Asserted—The TAP controller is in Capture_DR state.

Negated—The TAP controller is not in Capture_DR state.

j_shift_dr O

Shift DR. Indicates whether the TAP controller is in the Shift_DR state.

State
Meaning

Asserted—The TAP controller is in Shift_DR state.

Negated—The TAP controller is not in Shift_DR state.

j_update_gp_reg O

Update DR. Indicates whether the TAP controller is in the Update_DR state.

State
Meaning

Asserted—The TAP controller is in the Update_DR state, and OCMD[R/W] is
low (write command). j_gp_regsel[0:11] should be monitored to see which
register, if any, needs updating.
Negated—The TAP controller is not in the Update_DR state.

j_gp_regsel O

Register select. Decoded from the OCMD[RS]. They are used to specify which external
general-purpose JTAG register to access using the core TAP controller.

Signal Name Type RS
j_gp_regsel[0] O 0x70
j_gp_regsel[1] O 0x71
j_gp_regsel[2] O 0x72
j_gp_regsel[3] O 0x73
j_gp_regsel[4] O 0x74
j_gp_regsel[5] O 0x75
j_gp_regsel[6] O 0x76
j_gp_regsel[7] O 0x77
j_gp_regsel[8] O 0x78
j_gp_regsel[9] O 0x79
j_gp_regsel[10] O 0x7A
j_gp_regsel[11] O 0x7B

j_en_once_regsel O

Enable once register select. This control signal can be used by external security logic to
help control jd_enable_once. The external enable_OnCE register should be muxed onto
the j_serial_data input. During the Shift_DR state, j_serial_data is supplied to j_tdo.

State
Meaning

Asserted—A decode of OCMD[RS] indicates an external enable_OnCE
register is selected (0b1111110 encoding) for access using the core TAP
controller.

j_nexus_regsel O

External Nexus register select.

State
Meaning

Asserted—A decode of OCMD[RS] indicates an external Nexus register is
selected (0b1111100 encoding) for access using the core TAP controller.
Negated—No Nexus register is selected.

j_lsrl_regsel O

LSRL register select.

State
Meaning

Asserted—A decode of OCMD[RS] indicates an external LSRL register is
selected (0b1111101 encoding) for access using the core TAP controller.

Table 186. Descriptions of JTAG interface signals (continued)

Signal I/O Signal description

UM0434 External core complex interfaces

 263/391

Figure 32 shows an example for designing an external JTAG register set using the inputs
and outputs provided along with the JTAG primary inputs. The main components are a clock
generation unit, a JTAG shifter (load, shift, hold, clr), the registers (load, hold, clr), and an
input mux to the shifter for the serial output back to the core.The shifter and the registers
may be as wide as the application warrants [0:x]. The length determines the number of
states the TAP controller is held in Shift_DR (x+1).

Figure 32. Example external JTAG register design

9.3.2 JTAG ID signals

Table 187 shows the JTAG ID register unique to Freescale as specified by the IEEE 1149.1
JTAG Specification. Note that bit 31 is the msb of this register.

j_serial_data I
Serial data. Receives serial data from external JTAG registers. All external registers share
this serial output back to the core. Therefore it must be muxed using j_gp_regsel[0:11],
j_lsrl_regsel, and j_en_once_regsel. The data is internally routed to j_tdo.

j_key_in I

Key data in. Receives serial data from logic to indicate a key or other value to be scanned
out in the Shift_IR state when the current value in the IR is the Enable_OnCE instruction.
This input is provided to assist in implementing security logic outside of the core, which
conditionally asserts jd_en_once. During the Shift_IR state, when jd_en_once is negated,
this input is sampled on the rising edge of j_tclk, and, after a 2-clock delay, the data is
internally routed to j_tdo. This allows provision of a key value via the j_tdo output following
a transition from Capture_IR to Shift_IR. j_key_in provides the key value.

Table 186. Descriptions of JTAG interface signals (continued)

Signal I/O Signal description

Shifter

D

Data

Q

REG0
Q

D REG1
Q

j_gp_regsel[1:0] S

D

01

reg0_dat

reg1_dat

clk_reg0 2

clk_reg13

2. clk_reg0 = j_tclk & j_update_gp_reg & j_gp_regsel[0]
3. clk_reg1 = j_tclk & j_update_gp_reg & j_gp_regsel[1]

SI

SO
j_serial_data

j_tdi

clk_shfter 1

1. clk_shfter = j_tclk & (j_shift_dr | j_capture_dr)

CLK
GEN

j_tclk

j_gp_regsel[1:0]

j_shift_dr

j_update_gp_reg

SHIFT
LOAD

j_capture_dr

j_shift_dr
j_capture_dr

j_trst_b

NOTES:

External core complex interfaces UM0434

264/391

The core shifts out a 1 as the first bit on j_tdo if the Shift_DR state is entered directly from
the test-logic-reset state, per the JTAG specification, and informs any JTAG controller that
an ID register exists on the part. The JTAG ID register is accessed by writing the OCMR
(OnCE command register) with the value 0x02 in OCMD[RS].

The JTAG ID bit, manufacturer ID field, and design center number are fixed by the JTAG
Consortium or Freescale. The version numbers and the 2 msbs of the sequence number are
variable and brought out to external ports. The 8 lsbs of the sequence number are variable
and are strapped internally to track variations in processor deliverables.

Table 188 shows the inputs to the JTAG ID register that are input ports on the core. These
bits can help a customer track revisions of a device using the core.

Table 189 describes the JTAG ID signals.

Table 187. JTAG register ID fields

Bit field Type Description Value

[31:28] Variable Version number Variable

[27:22] Fixed Design center number (e200z3) 01_1111

[21:12] Variable Sequence number Variable

[11:1] Fixed Motorola manufacturer ID 000_0000_1110

0 Fixed JTAG ID register identification bit 1

Table 188. JTAG ID register inputs

Signal name Type Description

j_id_sequence[0:1] I JTAG ID register (2 msbs of sequence field)

j_id_version[0:3] I JTAG ID register version field

Table 189. Descriptions of JTAG ID signals

Signal I/O Signal description

j_id_sequence[0:1] I

JTAG ID sequence. Corresponds to the two msbs of the 10-bit
sequence number in the JTAG ID register. These inputs are normally
static and are provided for the integrator for further component variation
identification.

j_id_sequence[2:9] I

JTAG ID sequence. Internally strapped by EPS to track variations in
processor and module deliverables. Each core deliverable has a unique
sequence number. Additionally, each revision of these modules can be
identified by unique sequence numbers. EPS maintains a database of
the sequence numbers.

j_id_version[0:3] I
JTAG ID version. Corresponds to the 4-bit version number in the JTAG
ID register. These inputs are normally static. They are provided to the
customer for strapping to facilitate identification of component variants.

UM0434 External core complex interfaces

 265/391

9.4 Internal signals
Table 190 lists internal signals that are mentioned in this manual. These signals are not
directly accessible to the user, but are used in this document to help describe the general
behavior of the core.

9.5 Timing diagrams
The following sections discuss various types of timing diagrams.

9.5.1 Processor Instruction/Data transfers

Transfer of data between the core and peripherals involves the address bus, data buses,
and control and attribute signals. The address and data buses are parallel, non-multiplexed
buses, supporting byte, half word, 3-byte, word, and double-word transfers. All bus inputs
and outputs are sampled and driven with respect to the rising edge of m_clk. The core
moves data on the bus by issuing control signals and using a handshake protocol to ensure
correct data movement.

The memory interface operates in a pipelined fashion to allow additional access time for
memory and peripherals. AHB transfers consist of an address phase that lasts only one
cycle, followed by the data phase that may last for one or more cycles, depending on the
state of p_[d,i]_hready.

Table 190. Internal signal descriptions

Signal name Description

p_addr[0:31] Address bus. Provides the address for a bus transfer.

p_ta_b

Transfer acknowledge. Indicates completion of a requested data transfer
operation. An external device asserts p_ta_b to terminate the transfer. For
the core to accept the transfer as successful, p_tea_b must remain high
while p_ta_b is asserted.

p_tea_b

Transfer error acknowledge. Indicates that a transfer error condition has
occurred and causes the core to immediately terminate the transfer. An
external device asserts p_tea_b to terminate the transfer with error. p_tea_b
has higher priority than p_ta_b.

p_treq_b Transfer request. The core drives this output to indicate that a new access
has been requested.

p_xfail_b

Store exclusive failure. An external agent causes assertion of p_xfail_b to
indicate a failure of the store portion of an stwcx. for the current transfer.
p_xfail_b is ignored if p_tea_b is asserted, because the store terminated with
an error.
Assertion of p_xfail_b with p_ta_b does not cause an exception; it indicates
that the store was not performed due to a loss of reservation (determined by
an external agent). The CPU updates the condition code accordingly and
clears any outstanding reservation. p_xfail_b may be asserted by reservation
logic or as a result of a system bus transfer with a failure response that is
passed back to the CPU from the BIU. The AMBA XFAIL response is
signaled back to the CPU using this signal. See Chapter 5.7: Memory
synchronization and reservation instructions on page 111.” p_xfail_b is
ignored for all transfers other than an stwcx..

External core complex interfaces UM0434

266/391

Read transfers consist of the following:

● A request cycle, where address and attributes are driven along with a transfer request

● One or more memory access cycles to perform accesses and return data to the CPU
for alignment, sign or zero extension, and forwarding.

Write transfers consist of a request cycle, in which address and attributes are driven along
with a transfer request; and of one or more data drive cycles, in which write data is driven
and external devices accept write data for the access.

To support sustained single-cycle transfers, access requests can overlap. Up to two access
requests may be in progress during any cycle—one access outstanding and a second in the
pending request phase. If access retraction is enabled via HID1[ARD] = 0, the BIU is free to
change the current request at any time, even if part of a burst transfer.

Access requests are assumed to be accepted as long as either no access is in progress or
an access is terminated during the same cycle when a new request is active (p_[d,i]_hready
asserted). When an access is accepted, the BIU is free to change the current request.

The local memory control logic is responsible for proper pipelining and latching of all
interface signals to initiate memory accesses.

The system hardware can use p_hresp[2:0] to signal, using the ERROR response encoding,
that the current bus cycle has an error when a fault is detected. ERROR assertion requires a
2-cycle response. In the first cycle of the response, p_hresp[2:0] are driven to indicate
ERROR and p_[d,i]_hready must be negated. During the following cycle, the ERROR
response must continue to be driven, and p_[d,i]_hready must be asserted. When the core
recognizes a bus error condition for an access at the end of the first cycle of the 2-cycle
error response, a subsequent pending access request may be removed by the BIU driving
p_[d,i]_htrans[2:0] to the IDLE state in the second cycle of the 2-cycle error response. Not
all pending requests are removed, however.

When a bus cycle is terminated with a bus error, the core can enter storage error exception
processing immediately following the bus cycle, or it can defer processing the exception.

The instruction prefetch mechanism requests instruction words from the instruction memory
unit before it is ready to execute them. If a bus error occurs on an instruction fetch, the core
does not take the exception until it attempts to use the instruction. Should an intervening
instruction cause a branch, or should a task switch occur, the storage error exception for the
unused access does not occur. A bus error termination for any write access or read access
that references data specifically requested by the execution unit causes the core to begin
exception processing.

Basic read transfer cycles

During a read transfer, the core receives data from a memory or peripheral device.
Figure 33 shows functional timing for basic read transfers, and clock-by-clock descriptions of
activity follow.

UM0434 External core complex interfaces

 267/391

Figure 33. Basic read Transfer—Single-Cycle reads, full pipelining

● Clock 1 (C1)—The first read transfer starts in clock cycle 1. During C1, the core places
valid values on the address bus and transfer attributes. The burst type
(p_[d,i]_hburst[2:0]), protection control (p_[d,i]_hprot[5:0]), and transfer type
(p_[d,i]_htrans[1:0]) attributes identify the specific access type. The transfer size
attributes (p_[d,i]_hsize[1:0]) indicate the size of the transfer. The byte strobes
(p_[d,i]_hbstrb[7:0]) are driven to indicate active byte lanes. The write (p_[d,i]_hwrite)
signal is driven low for a read cycle.

The core asserts a transfer request (p_[d,i]_htrans= NONSEQ) during C1 to indicate
that a transfer is being requested. Because the bus is currently idle, (0 transfers
outstanding), the first read request to addrx is considered taken at the end of C1. The
default slave drives a ready/OKAY response for the current idle cycle.

● Clock 2 (C2)—During C2, the addrx memory access takes place, using the address
and attribute values that were driven during C1 to enable reading of 1 or more bytes of
memory. Read data from the slave device is provided on the p_[d,i]_hrdata inputs. The
slave device responds by asserting p_[d,i]_hready to indicate that the cycle is
completing, and it drives an OKAY response.

Another read transfer request is made during C2 to addry (p_[d,i]_htrans = NONSEQ),
and because the access to addrx is completing, it is considered taken at the end of C2.

● Clock 3 (C3)—During C3, the addry memory access takes place, using the address
and attribute values that were driven during C2 to enable reading of one or more bytes
of memory. Read data from the slave device for addry is provided on the p_[d,i]_hrdata
inputs. The slave device responds by asserting p_[d,i]_hready to indicate the cycle is
completing, and it drives an OKAY response.

Another read transfer request is made during C3 to addrz (p_[d,i]_htrans = NONSEQ),
and because the access to addry is completing, it is considered taken at the end of C3.

● Clock 4 (C4)—During C4, the addrz memory access takes place, using the address
and attribute values that were driven during C3 to enable reading of one or more bytes

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y data z

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

External core complex interfaces UM0434

268/391

of memory. Read data from the slave device for addrz is provided on the p_[d,i]_hrdata
inputs. The slave device responds by asserting p_[d,i]_hready to indicate the cycle is
completing, and it drives an OKAY response.

Because the CPU has no additional outstanding requests, p_[d,i]_htrans indicates
IDLE and the address and attribute signals are undefined.

Read transfer with wait state

Figure 34 shows an example of wait state operation. Because signal p_[d,i]_hready for the
first request (addrx) is not asserted during C2, a wait state is inserted until p_[d,i]_hready is
recognized (during C3).

Meanwhile, a subsequent request was generated by the CPU for addry which is not taken in
C2, because the previous transaction is still outstanding. The address and transfer attributes
remain driven in cycle C3 and are taken at the end of C3 because the previous access is
completing. Data for addrx and a ready/OKAY response are driven back by the slave device.
In cycle C4, a request for addrz is made. The request for access to addrz is taken at the end
of C4, and during C5, the slave device provides the data and a ready/OKAY response. In
cycle C5, no further accesses are requested.

Figure 34. Read with Wait-State, Single-Cycle reads, full pipelining

Basic write transfer cycles

During a write transfer, the core provides write data to a memory or peripheral device.
Figure 35 shows functional timing for basic write transfers. Clock-by-clock descriptions of
activity in Figure 35 follow.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y data z

okay okay okay okay okay

1 2 3 4 5 6
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

UM0434 External core complex interfaces

 269/391

Figure 35. Basic write Transfers—Single-Cycle writes, full pipelining

● Clock 1 (C1)—The first write transfer starts in clock cycle 1. During C1, the core places
valid values on the address bus and transfer attributes. The burst type
(p_[d,i]_hburst[2:0]), protection control (p_[d,i]_hprot[5:0]), and transfer type
(p_[d,i]_htrans[1:0]) attributes identify the specific access type. The transfer size
attributes (p_[d,i]_hsize[1:0]) indicate the size of the transfer. The byte strobes
(p_[d,i]_hbstrb[7:0]) are driven to indicate active byte lanes. The write (p_[d,i]_hwrite)
signal is driven high for a write cycle. The core asserts transfer request (p_[d,i]_htrans=
NONSEQ) during C1 to indicate that a transfer is being requested. Because the bus is
idle, (0 transfers outstanding), the first read request to addrx is considered taken at the
end of C1. The default slave drives a ready/OKAY response for the current idle cycle.

● Clock 2 (C2)—During C2, the write data for the access is driven and the addrx memory
access occurs using the address and attribute values (driven during C1) to enable
writing of one or more bytes of memory. The slave device responds by asserting
p_[d,i]_hready to indicate the cycle is completing and drives an OKAY response.

Another write transfer request is made during C2 to addry (p_[d,i]_htrans = NONSEQ),
and because the access to addrx is completing, it is considered taken at the end of C2.

● Clock 3 (C3)—During C3, write data for addry is driven, and the addry memory access
takes place using the address and attribute values (driven during C2) to enable writing
of one or more bytes of memory. The slave device responds by asserting
p_[d,i]_hready to indicate the cycle is completing and drives an OKAY response.

Another write transfer request is made during C3 to addrz (p_[d,i]_htrans = NONSEQ),
and because the access to addry is completing, it is considered taken at the end of C3.

● Clock 4 (C4)—During C4, write data for addrz is driven, and the addrz memory access
takes place using the address and attribute values (driven during C3) to enable reading
of one or more bytes of memory. The slave device responds by asserting
p_[d,i]_hready to indicate the cycle is completing and drives an OKAY response.

Because the CPU has no more outstanding requests, p_[d,i]_htrans indicates IDLE
and the address and attribute signals are undefined.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y data z

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

External core complex interfaces UM0434

270/391

Write transfer with wait states

Figure 36 shows an example write wait state operation. Because p_[d,i]_hready for the first
request (addrx) is not asserted during C2, a wait state is inserted until p_[d,i]_hready is
recognized (during C3).

Figure 36. Write with Wait-state, Single-Cycle writes, full pipelining

Meanwhile, the core generates a subsequent request for addry which is not taken in C2,
because the previous transaction is outstanding. The address, transfer attributes, and write
data remain driven in cycle C3 and are taken at the end of C3 because a ready/OKAY
response is driven back by the slave device for the previous access. In cycle C4, a request
for addrz is made. The request for access to addrz is taken at the end of C4, and during C5,
the slave device provides a ready/OKAY response. In C5, no further accesses are
requested.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y data z

okay okay okay okay okay

1 2 3 4 5 6
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

UM0434 External core complex interfaces

 271/391

Read and write transfers

Figure 37 shows a sequence of read and write cycles.

Figure 37. Single-Cycle reads, Single-Cycle write, full pipelining

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. The
second read request (addry) is taken at the end of C2 because a ready/OKAY response is
asserted during C2 for the first read access (addrx). During C3, a request is generated for a
write to addry which is taken at the end of C3 because the second access is terminating.

Data for the addrz write cycle is driven in C4, the cycle after the access is taken, and a
ready/OKAY response is signaled to complete the write cycle to addrz.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y

data z

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

External core complex interfaces UM0434

272/391

Figure 38 shows another sequence of read and write cycles. This example shows an
interleaved write access between two reads.

Figure 38. Single-Cycle read, write, Read—Full pipelining

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. The
first write request (addry) is taken at the end of C2 because the first access is terminating
(addrx). Data for the addry write cycle is driven in C3, the cycle after the access is taken.
Also during C3, a request is generated for a read to addrz, which is taken at the end of C3
because the write access is terminating.

During C4, the addry write access is terminated, and no further access is requested.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data z

data y

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

UM0434 External core complex interfaces

 273/391

Figure 39 shows another sequence of read and write cycles. In this example, reads incur a
single wait state.

Figure 39. Multiple-Cycle reads with Wait-State, Single-Cycle writes, full pipelining

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. The
second read request (addry) is not taken at the end of cycle C2 because no ready response
is signaled and only one access can be outstanding (addrx). It is taken at the end of C3 once
the first read request has signaled a ready/OKAY response.

The first write request (addrz) is not taken during C4 because a ready response is not
asserted during C4 for the second read access (addry). During C5, the request for a write to
addrz is taken because the second access is terminating.

Data for the addrz write cycle is driven in C6, the cycle after the access is taken. During C6,
the addrz write access is terminated and the addrw write request is taken.

During C7, data for the addrw write access is driven, and a ready/OKAY response is
asserted to complete the write cycle to addrw.

nonseq nonseq nonseq nonseq idle

addr x addr y addr z addr w

single single single single

data x data y

data z data w

okay okay okay okay okay okay okay

1 2 3 4 5 6 7 8
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

External core complex interfaces UM0434

274/391

Figure 40 shows another sequence of read and write cycles. In this example, reads incur a
single wait state.

Figure 40. Multi-Cycle read with Wait-State, Single-Cycle write,
read with Wait-State, Single-Cycle write, full pipelining -

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle.

The first write request (addry) is not taken at the end of cycle C2 because no ready
response is signaled and only one access can be outstanding (addrx). It is taken at the end
of C3 once the first read request has signaled a ready/OKAY response.

Data for the addry write cycle is driven in C4, the cycle after the access is taken. The second
read request (addrz) is taken during C4 because the addry write is terminating.

A second write request (addrw) is not taken at the end of C5 because the second read
access is not terminating, and it continues to drive the address and attributes into cycle C6.
During C6, the addrz read access is terminated and the addrw write access is taken.

In cycle C7, data for the addrw write access is driven. During C7, a ready/OKAY response is
asserted to complete the write cycle to addrw. No further accesses are requested, so
p_[d,i]_htrans signals IDLE.

nonseq nonseq nonseq nonseq idle

addr x addr y addr z addr w

single single single single

data x data z

data y data w

okay okay okay okay okay okay okay

1 2 3 4 5 6 7 8
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

UM0434 External core complex interfaces

 275/391

Misaligned accesses

Figure 41 shows functional timing for a misaligned read transfer. The read to addrx is
misaligned across a 64-bit boundary. Note that only half-word and word transfers may be
misaligned; double-word transfers are always aligned.

Figure 41. Misaligned read, read, full pipelining

The first portion of the misaligned read transfer starts in C1. During C1, the core places valid
values on the address bus and transfer attributes. The p_[d,i]_hwrite signal is driven low for
a read cycle. The transfer size attributes (p_[d,i]_hsize) indicate the size of the transfer.
Even though the transfer is misaligned, the size value driven corresponds to the size of the
entire misaligned data item. p_[d,i]_hunalign is driven high to indicate that the access is
misaligned. The p_[d,i]_hbstrb outputs are asserted to indicate the active byte lanes for the
read, which may not correspond to size and low-order address outputs. p_[d,i]_htrans is
driven to NONSEQ.

During C2, the addrx memory access takes place using the address and attribute values
which were driven during C1 to enable reading of one or more bytes of memory.

The second portion of the misaligned read transfer request is made during C2 to addrx+
(which is aligned to the next higher 64-bit boundary), and because the first portion of the
misaligned access is completing, it is taken at the end of C2. The p_[d,i]_htrans signals
indicate NONSEQ. The size value driven is the size of the remaining bytes of data in the
misaligned read, rounded up (for the 3-byte case) to the next higher power of 2. The
p_[d,i]_hbstrb signals indicate the active byte lanes. For the second portion of a misaligned
transfer, p_[d,i]_hunalign is driven high for the 3-byte case (low for all others). The next read
access is requested in C3 and p_[d,i]_htrans indicates NONSEQ. p_[d,i]_hunalign is
negated, because this access is aligned.

nonseq nonseq nonseq idle

addr x addr x+ addr y

single single single

 **

data x data x+ data y

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

External core complex interfaces UM0434

276/391

Figure 42 shows functional timing for a misaligned write transfer. The write to addrx is
misaligned across a 64-bit boundary. Note that only half-word and word transfers may be
misaligned; double-word transfers are always aligned.

Figure 42. Misaligned write, write, full pipelining

The first portion of the misaligned write transfer starts in C1. During C1, the core places
valid values on the address bus and transfer attributes. The p_[d,i]_hwrite signal is driven
high for a write cycle. The transfer size attribute (p_[d,i]_hsize) indicates the size of the
transfer. Even though the transfer is misaligned, the size value driven corresponds to the
size of the entire misaligned data item. p_[d,i]_hunalign is driven high to indicate that the
access is misaligned. The p_[d,i]_hbstrb outputs are asserted to indicate the active byte
lanes for the write, which may not correspond to size and low-order address outputs.
p_[d,i]_htrans is driven to NONSEQ.

During C2, data for addrx is driven, and the addrx memory access takes place using the
address and attribute values that were driven during C1 to enable writing of one or more
bytes of memory.

The second portion of the misaligned write transfer request is made during C2 to addrx+
(which is aligned to the next higher 64-bit boundary), and because the first portion of the
misaligned access is completing, it is taken at the end of C2. The p_[d,i]_htrans signals
indicate NONSEQ. The size value driven is the size of the remaining bytes of data in the
misaligned write, rounded up (for the 3-byte case) to the next higher power-of-2. The
p_[d,i]_hbstrb signals indicate the active byte lanes. For the second portion of a misaligned
transfer, p_[d,i]_hunalign is driven high for the 3-byte case (low for all others).

The next write access is requested in C3 and p_[d,i]_htrans indicates NONSEQ.
p_[d,i]_hunalign is negated, because this access is aligned.

nonseq nonseq nonseq idle

addr x addr x+ addr y

single single single

 **

data x data x+ data y

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

UM0434 External core complex interfaces

 277/391

An example of a misaligned write cycle followed by an aligned read cycle is shown in
Figure 43. It is similar to the example in Figure 42.

Figure 43. Misaligned write, single cycle read transfer, full pipelining

9.5.2 Burst accesses

Figure 44 shows functional timing for a burst read transfer.

Figure 44. Burst read transfer

nonseq nonseq nonseq idle

addr x addr x+ addr y

single single single

 **

data y

data x data x+

okay okay okay okay

1 2 3 4 5
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

nonseq seq seq seq ...

addr x addr x+8 addr x+16 addr x+24

INCR

data x data x+8 data x+16 data x+24

okay okay okay okay okay

Burst Read
1 2 3 4 5 6

m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

External core complex interfaces UM0434

278/391

The p_[d,i]_hburst signals indicate INCR for all burst transfers. The p_[d,i]_hunalign signal is
negated. p_[d,i]_hsize indicates 64-bits, and all eight p_[d,i]_hbstrb signals are asserted.
The burst address is aligned to a 64-bit boundary and increments by double words. Note
that in this example four beats are shown, but in operation the burst may be of any length
including only a single beat.

Note: Bursts can be interrupted immediately at any time and can be followed by any type of cycle.
No idle cycle is required.

Figure 45 shows functional timing for a burst read with wait-state transfer.

Figure 45. Burst read with Wait-state transfer

The first cycle of the burst incurs a single wait-state.

nonseq seq seq seq ...

addr x addr x+8 addr x+16 addr x+24

incr

data x data x+8 data x+16 data x+24

okay okay okay okay okay okay

Burst Read with wait-state
1 2 3 4 5 6 7

m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

UM0434 External core complex interfaces

 279/391

Figure 46 shows functional timing for a burst write transfer.

Figure 46. Burst write transfer

Figure 45 shows functional timing for a burst write with wait-state transfer.

Figure 47. Burst write with Wait-State transfer

nonseq seq seq seq ...

addr x addr x+8 addr x+16 addr x+24

incr

data x data x+8 data x+16 data x+24

okay okay okay okay okay

Burst Write
1 2 3 4 5 6

m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

nonseq seq seq seq ...

addr x addr x+8 addr x+16 addr x+24

incr

data x data x+8 data x+16 data x+24

okay okay okay okay okay okay

Burst Write with Wait-state
1 2 3 4 5 6 7

m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

External core complex interfaces UM0434

280/391

The first cycle of the burst incurs a single wait-state. Data for the second beat of the burst is
valid the cycle after the second beat is taken.

Figure 48 shows functional timing for a pair of burst read transfers.

Figure 48. Burst read transfers

Note that in this example the first burst is two beats long and is followed immediately by a
second burst which is unrelated to the first.

Note: Bursts may be of any length (including a single beat) and may be followed immediately by
any type of transfer. No idle cycles are required.

nonseq seq nonseq seq ...

addr x addr x+8 addr y addr y+8

incr

data x data x+8 data y data y+8

okay okay okay okay okay

Burst Read
1 2 3 4 5 6

m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

UM0434 External core complex interfaces

 281/391

Figure 49 shows functional timing for a burst read with wait-state transfer where the second
beat to addr x+8 is retracted and replaced with a new burst transfer.

Figure 49. Burst read with Wait-State transfer, retraction

The 1st cycle of the burst incurs a single wait state, & the burst is replaced by another burst.

Figure 50 shows functional timing for a burst write transfer. The 2nd burst is only 1 beat long.

Figure 50. Burst write transfers, Single-Beat burst

This same scenario can occur for read bursts as well.

nonseq seq seq seq idle

addr x addr y+8 addr y+16

incr

data x data y data y+8 data y+16

okay okay okay okay okay okay

Burst Read with wait-state
1 2 3 4 5 6 7

m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

addr yaddr x+8

nonseq

nonseq seq seq nonseq idle

addr x addr x+8 addr x+16 addr y

incr

data x data x+8 data x+16 data y

okay okay okay okay okay

Burst Write
1 2 3 4 5 6

m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

External core complex interfaces UM0434

282/391

9.5.3 Address retraction

Address retraction is the process of replacing a request with a new unrelated one. Although
the AMBA AHB protocol requires an access request to remain driven unchanged once
presented on the bus, higher system performance may be obtained if this aspect of the
protocol is modified to allow an access request to be changed before being taken.
Figure 57 shows an example of address retraction during wait state operation. Signal
p_[d,i]_hready for the first request (addrx) is not asserted during C2, so a wait state is
inserted during C3 until p_[d,i]_hready is recognized.

Meanwhile, a subsequent request has been generated by the CPU for addry which is not
taken in C2 since the previous transaction is still outstanding. The address and transfer
attributes are retracted in cycle C3, and a new access request to addrz is requested and are
taken at the end of C3 because the previous access is completing. Data for addrx and a
ready/OKAY response is driven back by the slave device. In cycle C4, a request for addrw is
made. The request for access to addrw is taken at the end of C4; during C5, the data and a
ready/OKAY response is provided by the slave device. In cycle C5, no further accesses are
requested.

Figure 51. Read transfer with Wait-State, address retraction

Figure 52 shows functional timing for a burst read with wait-state transfer where the second
beat to addr x+8 is retracted and replaced with a new burst transfer.

nonseq nonseq nonseq idle

addr x addr y addr w

single single single

data x data z data w

okay okay okay okay okay

Read with wait-state, address retraction
1 2 3 4 5 6

m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

addr z

nonseq

UM0434 External core complex interfaces

 283/391

Figure 52. Burst read with Wait-State transfer, retraction

The first cycle of the burst incurs a single wait-state, and the burst is replaced by another
burst. Replacement by a single access is also possible.

Address retraction does not occur on a requested write cycle, only on read cycles. It also
may occur any time during a burst cycle.

Error termination operation

The p_[d,i]_hresp[2:0] inputs signal an error termination for an access in progress. The
ERROR encoding is used with the assertion of p_[d,i]_hready to terminate a cycle with
error. Error termination is a two-cycle termination; the first cycle consists of signaling the
ERROR response on p_[d,i]_hresp[2:0] while holding p_[d,i]_hready negated, and during
the second cycle, asserting p_[d,i]_hready while continuing to drive the ERROR response
on p_[d,i]_hresp[2:0]. This 2-cycle termination allows the BIU to retract a pending access if it
desires to do so. p_[d,i]_htrans may be driven to IDLE during the second cycle of the two-
cycle error response, or may change to any other value, and a new access unrelated to the
pending access may be requested. The cycle that may have been previously pending while
waiting for a response that terminates with error may be changed. It is not required to
remain unchanged when an error response is received.

nonseq seq seq seq idle

addr x addr y+8 addr y+16

incr

data x data y data y+8 data y+16

okay okay okay okay okay okay

Burst Read with wait-state
1 2 3 4 5 6 7

m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

addr yaddr x+8

nonseq

External core complex interfaces UM0434

284/391

Figure 53 shows an example of error termination.

Figure 53. Read and write Transfers: instruction read with error,
data read, write, full pipelining

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. It is an
instruction prefetch.

The second read request (addry) is not taken at the end of C2 because the first access is
still outstanding (no p_[d,i]_hready assertion). An error response is signaled by the
addressed slave for addrx by driving ERROR onto the p_[d,i]_hresp[2:0] inputs. This is the
first cycle of the two cycle error response protocol.

p_[d,i]_hready is asserted during C3 for the first read access (addrx) while the ERROR
encoding remains driven on p_[d,i]_hresp[2:0], terminating the access. The read data bus is
undefined.

In this example of error termination, the CPU continues to request an access to addry. It is
taken at the end of C3. During C4, read data is supplied for the addry read, and the access
is terminated normally during C4.

Also during C4, a request is generated for a write to addrz, which is taken at the end of C4
because the second access is terminating.

Data for the addrz write cycle is driven in C5, the cycle after the access is taken.

During C5, a ready/OKAY response is signaled to complete the write cycle to addrz.

In this example of error termination, a subsequent access remained requested. This does
not always occur when certain types of transfers are terminated with error. The following
figures outline cases where an error termination for a given cycle causes a pending request
to be aborted prior to initiation.

Figure 54 shows another example of error termination.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y

data z

okay error error okay okay

1 2 3 4 5 6
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

UM0434 External core complex interfaces

 285/391

Figure 54. Data read with error, data write retracted, instruction read, full pipelining

The first read request (addrx) is taken at the end of cycle C1 because the bus is idle. It is a
data read.

The second request (write to addry) is not taken at the end of C2 because the first access is
still outstanding (no p_[d,i]_hready assertion). An error response is signaled by the
addressed slave for addrx by driving ERROR onto the p_[d,i]_hresp[2:0] inputs. This is the
first cycle of the two cycle error response protocol.

p_[d,i]_hready is asserted during C3 for the first read access (addrx) while the ERROR
encoding remains driven on p_[d,i]_hresp[2:0], terminating the access. The read data bus is
undefined.

In this example of error termination, the CPU retracts the requested access to addry by
driving p_[d,i]_htrans signals to the IDLE state during the second cycle of the two-cycle
error response.

A different access to addrz is requested during C4 and is taken at the end of C4. During C5,
read data is supplied for the addrz read, and the access is terminated normally.

In this example of error termination, a subsequent access was aborted.

nonseq nonseq idle nonseq idle

addr x addr y addr z

single single single

data x data z

okay error error okay okay

1 2 3 4 5 6
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

External core complex interfaces UM0434

286/391

Figure 55 shows another example of error termination, this time on the initial portion of a
misaligned write.

Figure 55. Misaligned write with error, data write retracted,
burst read substituted, full pipelining

The first portion of the misaligned write request is terminated with error. The second portion
is aborted by the CPU during the second cycle of the two cycle error response, and a
subsequent burst read access to addrw becomes pending instead.

nonseq nonseq idle nonseq seq seq seq idle

addr x addr x+ addr w addr w+8 addr w+16 addr w+24

single single wrap 4

**

data w w+8 w+16 w +24

data x

okay error error okay okay okay okay okay

1 2 3 4 5 6 7 8
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

UM0434 External core complex interfaces

 287/391

Figure 56 shows another example of error termination, this time on the initial portion of a
burst read. The aborted burst is followed by a burst write.

Figure 56. Burst read with error termination, burst write

The first portion of the burst read request is terminated with error. The second portion is
aborted by the CPU during the second cycle of the two cycle error response, and a
subsequent burst write access to addry becomes pending instead.

9.5.4 Address retraction

Address retraction is the process of replacing a request with a new unrelated one. Although
the AMBA AHB protocol requires an access request to remain driven unchanged once
presented on the bus, higher system performance may be obtained if this aspect of the
protocol is modified to allow an access request to be changed before being taken.
Figure 57 shows an example of address retraction during wait state operation. Signal
p_hready for the first request (addrx) is not asserted during C2, so a wait state is inserted
during C3 until p_hready is recognized.

Meanwhile, a subsequent request has been generated by the CPU for addry which is not
taken in C2 since the previous transaction is still outstanding. The address and transfer
attributes are retracted in cycle C3, and a new access to addrz is requested and made at the
end of C3 because the previous access is completing. Data for addrx and a ready/OKAY
response are driven back by the slave device. In cycle C4, a request for addrw is made. The
request for access to addrw is taken at the end of C4; during C5, the data and a ready/OKAY
response are provided by the slave device. In cycle C5, no further accesses are requested.

nonseq seq idle nonseq seq seq seq idle

addr x addr x+8 addr y addr y+8 addr y+16 addr y+24

wrap4 wrap4

data x

data y y+8 y+16 y+24

okay error error okay okay okay okay okay

1 2 3 4 5 6 7 8
m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

External core complex interfaces UM0434

288/391

Figure 57. Read transfer with Wait-State, address retraction

Figure 58 shows functional timing for a burst read with wait-state transfer where the second
beat to addr x+8 is retracted and replaced with a new burst transfer.

Figure 58. Burst read with Wait-State transfer, retraction

The first cycle of the burst incurs a single wait-state, and the burst is replaced by another
burst. Replacement by a single access is also possible.

nonseq nonseq nonseq idle

addr x addr y addr w

single single single

data x data z data w

okay okay okay okay okay

Read with wait-state, address retraction
1 2 3 4 5 6

m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

addr z

nonseq

nonseq seq seq seq idle

addr x addr y+8 addr y+16

incr

data x data y data y+8 data y+16

okay okay okay okay okay okay

Burst Read with wait-state
1 2 3 4 5 6 7

m_clk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

addr yaddr x+8

nonseq

UM0434 External core complex interfaces

 289/391

Address retraction does not occur on a requested write cycle, only on read cycles. It also
may occur any time during a burst cycle.

9.5.5 Power management

Figure 59 shows the relationship of the wake-up control signal p_wakeup to the relevant
input signals.

Figure 59. Wakeup control signal (p_wakeup)

9.5.6 Interrupt interface

Figure 60 shows the relationship of the interrupt input signals to the CPU clock. The
p_avec_b, p_extint_b, p_critint_b, and p_voffset[0:15] inputs must meet setup and hold
timing relative to the rising edge of m_clk. In addition, during each clock cycle in which either
p_extint_b or p_critint_b is asserted, p_avec_b and p_voffset[0:15] are required to be in a
valid state for the highest priority interrupt requested.

Figure 60. Interrupt interface input signals

m_clk

p_extint_b

p_wakeup

p_critint_b
jd_de_b,

p_ude,
OCR[WKUP]

p_extint_b

p_voffset[0:15]

p_critint_b
p_avec_b

m_clk

External core complex interfaces UM0434

290/391

Figure 61 shows the relationship between p_ipend and the interrupt request inputs. Note
that p_ipend is asserted combinationally from the p_extint_b and p_critint_b inputs.

Figure 61. Interrupt pending operation

Figure 62 shows the relationships among p_iack, the interrupt request inputs, and exception
vector fetching.

Figure 62. Interrupt acknowledge operation case 1

m_clk

p_extint_b

p_ipend

p_critint_b

Exception vector fetch

 pair

vec A vec B

A handler A +8 A +16

idle 1 outst. 2 outst.

1st inst pair

int A handlr A hand + 8

int A hand addr int A hand + 8

1 2 3 4 5
m_clk

p_critint_b

p_extint_b

p_voffset[0:15]

sample point

p_iack

p_avec_b

p_treq_b

p_addr

attributes

p_r/w

p_tbusy_b

p_data_in

p_ta_b

mmu access

cache access

cache miss

UM0434 External core complex interfaces

 291/391

In this example, an external input interrupt is requested in cycle 1. The p_voffset[0:15]
inputs are driven with the vector offset for ‘A’, and p_avec_b is negated, indicating vectoring
is desired. For this example, the bus is idle at the time of assertion. The CPU may sample a
requested interrupt as early as the cycle in which it is initially requested, and it does so in
this example. The interrupt request,the vector offset, and the autovector input are sampled
at the end of cycle 1. In cycle 3, the interrupt is acknowledged by the assertion of the p_iack
output, indicating that the values present on interrupt inputs at the beginning of cycle 2 have
been internally latched and committed for servicing. Note that the interrupt vector lines have
changed to a value of ‘B’ during cycle 2, and the p_critint_b input has been asserted by the
interrupt controller. The vector number and autovector signals must be consistent with the
higher priority critical input request, and thus must change when the state of the interrupt
request inputs change. The p_iack output assertion in cycle 3 indicates that the values
present at the rise of cycle 2 (vector ‘A’) have been committed to. During cycle 3, the CPU
begins instruction fetching of the handler for vector ‘A’. The new request for a subsequent
critical interrupt ‘B’ was not received in time to be acted on first. It is acknowledged after the
fetch for the external input interrupt handler is completed and has entered decode.

Note that the time between assertion of an interrupt request input and the acknowledgment
of an interrupt may be multiple cycles, and the interrupt inputs may change during that
interval. The CPU asserts the p_iack output to indicate the cycle at which an interrupt is
committed to. In the following example, because the CPU was unable to acknowledge the
external input interrupt during cycle 2 due to internal or external execution conditions, the
critical input request was sampled. This case is shown in Figure 63.

Figure 63. Interrupt acknowledge operation case 2

vec A vec B

B handler B +8

idle 1 outst. 2 outst.

int B handlr B hand + 8

int B hand addr int B hand + 8

1 2 3 4 5
m_clk

p_critint_b

p_extint_b

p_voffset[0:15]

sample point

p_iack

p_avec_b

p_treq_b

p_addr

attributes

p_r/w

p_tbusy_b

p_data_in

p_ta_b

mmu access

cache access

cache miss

Power management UM0434

292/391

10 Power management

This chapter describes the power management facilities as they are defined by Book E and
implemented in devices that contain the core. The scope of this chapter is limited to core
complex features. Additional power management capabilities associated with a device that
integrates this core (referred to as an integrated device) are documented separately.

10.1 Overview
Power management minimizes overall system power consumption. The core provides the
ability to initiate power management from external sources as well as through software
techniques. Table 191 describes core power states.

Table 191. Power states

State Description

Active
(Default)

All internal units on the core operate at full processor clock speed. The core provides
dynamic power management in which idle internal units may stop clocking automatically.

Halted

Instruction execution and bus activity are suspended, and most internal clocks are gated
off. The core asserts p_halted to indicate it is in the halted state. Before entering halted
state, all outstanding bus transactions complete, and the cache’s store and push buffers
are flushed. The m_clk input should remain running to allow further transitions into the
power-down state if requested and to keep the time base operational if it is using m_clk as
the clock source.

Power
down

(stopped)

All core functional units except the time base unit and clock control state machine logic
are stopped. m_clk may be kept running to keep the time base active and to allow quick
recovery to full-on state. Clocks are not running to functional units except to the time
base. The core reaches power-down state after transitioning through halted state with
p_stop asserted; at this point p_stopped output is asserted.

Additional power may be saved by disabling the time base by asserting p_tbdisable or by
integrated logic stopping m_clk after the core is in power-down state and has asserted
p_stopped.

To exit power-down state, integrated logic must first restart m_clk.

Because the time base is off during power-down state, if m_clk is the clock source and is
stopped, or if time base clocking is disabled by the assertion of p_tbdisable, system
software must usually have to access an external time base source after returning to the
full-on state to reinitialize the time base unit. A time-base related interrupt source (such as
the decrementer) cannot be used to exit low-power states.

The core also provides the ability to clock the time base from an independent (but
externally synchronized) clock source, which allows the time base to be maintained
during the power-down state, and allows a time-base related interrupt to be generated to
indicate an exit condition from the power-down state.

UM0434 Power management

 293/391

Figure 64 is a power management state diagram.

Figure 64. Power management state diagram

10.1.1 Power management signals

Table 191 summarizes power management signals.
More detailed information is provided in Chapter 9.5.5: Power management on page 289.”

Halted

Power-Down

~p_stop & p_halt

p_stop

~p_halt & ~p_stopp_halt | p_stop

~p_stopp_stop

Active ~p_halt & ~p_stop

(p_stopped asserted)

(p_halted asserted)

Table 192. Descriptions of timer facility and power management signals

Signal I/O Signal description

p_halt I
Processor halt request. The active-high p_halt input requests that the core enter
the halted state.

p_halted O
Processor halted. The active-high p_halted output indicates that the core entered
the halted state.

p_stop I
Processor stop request. The active-high p_stop input requests that the core enter
the stopped state.

p_stopped O
Processor stopped. The active-high p_stopped output indicates that the core
entered stopped state.

p_doze
p_nap

p_sleep
O

Low-power mode. These signals are asserted by the core to reflect the settings of
the HID0[DOZE], HID0[NAP], and HID0[SLEEP] control bits when MSR[WE] is
set. The core can be placed in a low-power state by forcing m_clk to a quiescent
state, and brought out of low-power state by re-enabling m_clk. The time base
facilities may be separately enabled or disabled using combinations of the timer
facility control signals.

p_wakeup O

Wakeup. Used by external logic to remove the core and system logic from a low-
power state. It can also indicate to the system clock controller that m_clk should be
re-enabled for debug purposes.

p_wakeup (or other system state) should be monitored to determine when to
release the core (and system if applicable) from a low-power state.

p_tbdisable I
Timer disable. Used to disable the internal time base and decrementer counters.
This signal can be used to freeze the state of the time base and decrementer
during low power or debug operation.

Power management UM0434

294/391

10.1.2 Power management control bits

Software uses the register fields listed in Table 193 to generate a request to enter a power-
saving state and to choose the state to be entered.

10.1.3 Software considerations for power management

Setting MSR[WE] generates a request to enter a power-saving state (doze, nap, or sleep).
This state must be previously determined by setting the appropriate HID0 bit. Setting
MSR[WE] does not directly affect execution, but is reflected on p_doze, p_nap, and p_sleep,
depending on the setting of the HID0 DOZE, NAP, and SLEEP bits. Note that the core is not
affected by assertion of these signals directly. External system hardware may interpret the
state of these signals and activate the p_halt and/or p_stop inputs to cause the core to enter
a quiescent state, in which clocks may be disabled for low-power operation.

To ensure a clean transition into and out of a power-saving mode, the following program
sequence is recommended:

sync
mtmsr (WE)
isync

loop:br loop

An interrupt is typically used to exit a power-saving state. The p_wakeup output is used to
indicate to the system logic that an interrupt (or a debug request) has become pending.
System logic uses this output to re-enable the clocks and exit a low-power state. The
interrupt handler is responsible for determining how to exit the low-power loop if one is used.

p_tbclk I

Timer external clock. Used as an alternate clock source for the time base and
decrementer counters. Selection of this clock is made using HID0[SEL_TBCLK]
(see Chapter 4.13.1: Hardware implementation dependent register 0 (HID0) on
page 84”).

p_tbint O

Timer interrupt status. Indicates whether an internal timer facility unit is requesting
an interrupt (TSR[WIS] = 1 and TCR[WIE] = 1, or TSR[DIS] = 1 and
TCR[DIE] = 1, or TSR[FIS] = 1 and TCR[FIE] = 1). May be used to exit low-power

operation or for other system purposes.

Table 193. Power management control bits

Bit Description

MSR[WE]
Used to qualify assertion of the p_doze, p_nap, and p_sleep outputs to the integrated
logic. When MSR[WE] is negated, these signals are negated. If MSR[WE] is set,
these pins reflect the state of their respective HID0 control bits.

HID0[DOZE]
The interpretation of the DOZE mode bit is done by the external integrated logic.
Doze mode on the core is intended to be the halted state with the clocks running.

HID0[NAP]
The interpretation of the NAP mode bit is done by the external integrated logic. Nap
mode on the core may be used for a power-down state with the time base enabled.

HID0[SLEEP]
The interpretation of the SLEEP mode bit is done by the external integrated logic.
Sleep mode on the core may be used for a power-down state with the time base
disabled.

Table 192. Descriptions of timer facility and power management signals (continued)

Signal I/O Signal description

UM0434 Power management

 295/391

The vectored interrupt capability provided by the core may help determine whether an
external hardware interrupt is used to perform the wake-up.

10.1.4 Debug considerations for power management

When a debug request is presented to the core when it is in either the halted or stopped
state, p_wakeup is asserted, and when m_clk is provided to the CPU, it temporarily exits the
halted or stopped state and enters debug mode, regardless of the assertion of p_halt or
p_stop. The p_halted and p_stopped outputs are negated as long as the CPU remains in a
debug session (jd_debug_b asserted). When the debug session is exited, the CPU
resamples the p_halt and p_stop inputs and re-enters halted or stopped state as
appropriate.

Debug support UM0434

296/391

11 Debug support

11.1 Introduction
This chapter describes the debug features of the e200z3 core, including the software and
hardware debug facilities, events, and registers. It also details the external debug support
features available and introduces the reader to the on-chip emulation circuitry (OnCE) and
its key attributes, that is, the interface signals, debug inputs, and outputs. This chapter also
covers watchpoint support, MMU and cache operations during debug, cache array access,
and the basic steps for enabling, using, and exiting external debug mode.

11.2 Overview
Internal debug support in the core allows for software and hardware debugging by providing
debug functions such as instruction and data breakpoints and program trace modes. For
software-based debugging, debug facilities consisting of a set of software-accessible debug
registers and interrupt mechanisms are provided. These facilities are also available to a
hardware-based debugger that communicates using a modified IEEE 1149.1 test access
port (TAP) controller and pin interface. When hardware debugging is enabled, the debug
facilities are protected from software modification.

Software debug facilities are defined as part of Book E. The core supports a subset of these
defined facilities. In addition to the Book E–defined facilities, the core provides additional
flexibility and functionality in the form of debug event counters, linked instruction and data
breakpoints, and sequential debug event detection. These features are also available to a
hardware-based debugger.

The core also supports an external Nexus real-time debug module. Real-time system-level
debugging is supported by an external Nexus class 2, 3, or 4 module. Definitions and
features of this module are part of the system/platform specification and are not further
defined in this chapter. Additional information can be found in Chapter 12: Nexus3 module
on page 329.”

11.2.1 Software debug facilities

The debug facilities enable hardware and software debug functions, such as instruction and
data breakpoints and program single-stepping. The debug facilities consist of a set of debug
control registers (DBCR0–DBCR3), a set of address compare registers (IAC1–IAC4, DAC1,
and DAC2), a configurable debug counter register (DBCNT), a debug status register
(DBSR) for enabling and recording various kinds of debug events, and a special debug
interrupt type built into the interrupt mechanism (see Chapter 6.6.16: Debug interrupt
(IVOR15) on page 180,” for more information). The debug facilities also provide
mechanisms for software-controlled processor reset and for controlling the operation of the
timers in a debug environment.

Software debug facilities are enabled by setting the internal debug mode bit, DBCR0[IDM]. If
DBCR0[IDM] is set, debug events can occur and can be enabled to record exceptions in the
DBSR. If enabled by MSR[DE], these exceptions cause debug interrupts. If DBCR0[IDM]
and DBCR0[EDM] (EDM represents the external debug mode bit) are cleared, no debug
events occur and no status flags are set in DBSR unless already set. In addition, if
DBCR0[IDM] is cleared (or is overridden by DBCR0[EDM] being set), no debug interrupts
can occur, regardless of the contents of DBSR. A software debug interrupt handler can

UM0434 Debug support

 297/391

access all system resources and perform the necessary functions appropriate for system
debugging.

PowerPC book E compatibility

The core implements a subset of the PowerPC Book E internal debug features. The
following restrictions on functionality are present:

● Instruction address compares do not support compare on physical (real) addresses.

● Data address compares do not support compare on physical (real) addresses.

● Data value compares are not supported.

11.2.2 Additional debug facilities

In addition to the debug functionality defined in Book E, the core provides the capability to
link instruction and data breakpoints. The core also provides a configurable debug event
counter to allow debug exception generation and a sequential breakpoint control
mechanism.

The core also defines two new debug events (critical interrupt taken and critical return) for
debugging around critical interrupts.

In addition, the core implements the debug auxiliary processing unit (APU) which, when
enabled, allows debug interrupts to use a dedicated set of save/restore registers (DSRR0
and DSRR1) to save state information when a debug interrupt occurs and restore this state
information at the end of a debug interrupt handler with the rfdi instruction.

11.2.3 Hardware debug facilities

The core contains facilities that allow for external test and debugging. A modified
IEEE 1149.1 control interface is used to communicate with core resources. This interface is
implemented through a standard 1149.1 TAP (test access port) controller.

By using public instructions, the external debugger can freeze or halt the core, read and
write internal state and debug facilities, single-step instructions, and resume normal
execution.

Hardware debug is enabled by setting the external debug mode enable bit (DBCR0[EDM]).
Setting DBCR0[EDM] overrides the internal debug mode enable bit DBCR0[IDM]. If the
hardware debug facility is enabled, software is blocked from modifying the debug facilities. In
addition, because resources are owned by the hardware debugger, inconsistent values may
be present if software attempts to read debug-related resources.

When hardware debug is enabled (DBCR0[EDM] = 1), the registers and resources
described in Chapter 11.3: Debug registers,” are reserved for use by the external debugger.
The events described in Chapter 11.3: Debug registers,” are also used for external
debugging, but exceptions are not generated to running software. Debug events enabled in
the respective DBCR0–DBCR3 registers are recorded in the DBSR regardless of MSR[DE],
and no debug interrupts are generated. Instead, the CPU enters debug mode when an
enabled event causes a DBSR bit to become set. DBCR0[EDM] may only be written through
the OnCE port.

A program trace program counter FIFO (PC FIFO) is also provided to support program
change-of-flow capture.

To perform write accesses from the external hardware debugger, most debug resources
(registers) require the CPU clock (m_clk) to be running.

Debug support UM0434

298/391

Figure 65 shows the core debug resources.

Figure 65. Core debug resources

11.3 Debug registers
The debug facility registers are listed in Table 194 and described in Chapter 4.12: Debug
registers on page 69.”

Pstat#
Attr#

Addr#
j_tdo, j_tdo_en

j_tdi

j_tclk

Breakpoint and
Trace Logic

Pipeline
Information

j_tms

dbg_dbgrq

cpu_dbgack

jd_watchpt[0:n]

#internal signals
to/from CPU only

p_devt[1,2]

j_trst_b

jd_de_en
jd_debug_b

Data#

jd_en_once

jd_de_b

jd_mclk_on

p_ude

PC
FIFO

Debug
Registers

and
Comparators

OnCE
Controller

and
Serial

Interface

Table 194. Debug registers

Mnemonic Name
SPR

number
Access Privileged

Core
specific

DBCR0 Debug control register 0 308 R/W Yes No

DBCR1 Debug control register 1 309 R/W Yes No

DBC.R2 Debug control register 2 310 R/W Yes No

DBCR3 Debug control register 3 561 R/W Yes Yes

DBSR Debug status register 304 Read/Clear(1) Yes No

DBCNT Debug counter register 562 R/W Yes Yes

IAC1 Instruction address compare 1 312 R/W Yes No

UM0434 Debug support

 299/391

11.4 Software debug events and exceptions
Software debug events and exceptions are available if internal debug mode is enabled
(DBCR0[IDM] = 1) and not overridden by external debug mode (DBCR0[EDM] = 0). When
enabled, debug events cause debug exceptions to be recorded in the debug status register.
Specific event types are enabled by DBCR0–DBCR3. The unconditional debug event (UDE)
is an exception to this rule; it is always enabled. Once a DBSR bit other than MRR and
CNT1TRG is set, if debug interrupts are enabled by MSR[DE], a debug interrupt is
generated. The debug interrupt handler is responsible for ensuring that multiple repeated
debug interrupts do not occur by clearing the DBSR as appropriate.

Certain debug events are not allowed to occur when MSR[DE] = 0 and DBCR0[EDM] = 0.
Under these conditions, no debug exception occurs and thus no DBSR bit is set. Other
debug events may cause debug exceptions and set DBSR bits regardless of the state of
MSR[DE]. A debug interrupt is delayed until MSR[DE] is set.

When a DBSR bit is set while MSR[DE] = 0 and DBCR0[EDM] = 0, an imprecise debug
event flag (DBSR[IDE]) is also set to indicate that an exception bit in the DBSR was set
while debug interrupts were disabled. The debug interrupt handler software can use this bit
to determine whether DSRR0 holds the address associated with the instruction causing the
debug exception or the address of the instruction that enabled a delayed debug interrupt by
setting MSR[DE]. An mtmsr or mtdbcr0, which causes both MSR[DE] and DBCR0[IDM] to
be set, enabling precise debug mode, may cause an imprecise (delayed) debug exception to
be generated due to an earlier recorded event in the DBSR.

The following types of debug events are defined by Book E:

● Instruction address compare debug events

● Data address compare debug events

● Trap debug events

● Branch taken debug events

● Instruction complete debug events

● Interrupt taken debug events

● Return debug events

● Unconditional debug events

These events are described in further detail in the EREF.

IAC2 Instruction address compare 2 313 R/W Yes No

IAC3 Instruction address compare 3 314 R/W Yes No

IAC4 Instruction address compare 4 315 R/W Yes No

DAC1 Data address compare 1 316 R/W Yes No

DAC2 Data address compare 2 317 R/W Yes No

1. The DBSR can be read using mfspr rD,DBSR. It cannot be directly written to. Instead, DBSR bits
corresponding to 1 bits in GPR(rS) can be cleared using mtspr DBSR,rS.

Table 194. Debug registers (continued)

Mnemonic Name
SPR

number
Access Privileged

Core
specific

Debug support UM0434

300/391

The core defines the following debug events, which are described in Table 195:

● The debug counter debug events DCNT1 and DCNT2

● The external debug events DEVT1 and DEVT2

● The critical interrupt taken debug event (CIRPT)

● The critical return debug event (CRET)

The core debug framework supports most of these event types. The following Book E–
defined functionality is not supported:

● Instruction address compare and data address compare real address mode

● Data value compare mode

A brief description of each of the debug event types is shown in Table 195. In these
descriptions, DSRR0 and DSRR1 are used to store the address of the instruction following a
load or store, assuming that the debug APU is enabled. If it is disabled, CSRR0 is used.

UM0434 Debug support

 301/391

Table 195. Debug event descriptions

Event name Type Description

Instruction
Address
Compare Event

IAC

Occurs when enabled and upon attempted execution of an instruction at an
address that meets the criteria specified in the DBCR0, DBCR1,and IACn registers.
Instruction address compares may specify user/supervisor mode and instruction
space (MSR[IS]), along with an effective address, masked effective address, or
range of effective addresses for comparison. This event can occur and be recorded
in DBSR regardless of the setting of MSR[DE]. IAC events do not occur when an
instruction would not have normally begun execution due to a higher priority
exception at an instruction boundary.

IAC compares perform a 31-bit compare for VLE instruction pages, and 30-bit
compares for BookE instruction pages. Each half-word fetched by the instruction
fetch unit will be marked with a set of bits indicating whether an Instruction Address
Compare occurred on that half-word. Debug exceptions will occur if enabled and a
16-bit instruction, or the first half-word of a 32-bit instruction, is tagged with an IAC
hit. For instruction fetches that miss in the TLB, Book E pages are assumed, and a
30-bit compare is performed.

Data Address
Compare Event

DAC

Data address compare debug events occur if data address compare debug events
are enabled and execution of a load or store class instruction or a cache
maintenance instruction results in a data access with an address that meets the
criteria specified in DBCR0, DBCR2, DAC1, and DAC2. Data address compares
may specify user/supervisor mode and data space (MSR[DS]), along with an
effective address, masked effective address, or range of effective addresses for
comparison. This event can occur and be recorded in DBSR regardless of the
setting of MSR[DE]. Two address compare values (DAC1 and DAC2) are provided.

In contrast to the Book E definition, data address compare events on the core do
not prevent the load or store instruction from completing. If a load or store class
instruction completes successfully without a data TLB or data storage interrupt,
data address compare exceptions are reported at the completion of the instruction.
If the exception results in a precise debug interrupt, the address value saved in
DSRR0 (or CSRR0 if the debug APU is disabled) is the address of the instruction
following the load or store class instruction.

If a load or store class instruction does not complete successfully due to a data TLB
or data storage exception, and a data address compare debug exception also
occurs, the result is an imprecise debug interrupt, the address value saved in
DSRR0 (or CSRR0 if the debug APU is disabled) is the address of the load or store
class instruction, and DBSR[IDE] is set. In addition to occurring when
DBCR0[IDM] = 1, this can also occur when DBCR0[EDM] = 1.

DAC events are not recorded or counted if an lmw or stmw instruction is
interrupted before completion by a critical input or external input interrupt.

– DAC events are not signaled on the following:
—The second portion of a misaligned load or store that is broken up into two
separate accesses
—The tlbre, tlbwe, tlbsx, or tlbivax instructions

Debug support UM0434

302/391

Linked Instruction
Address and
Data Address
Compare Event

DAC1LNK
,

DAC2LNK

Data address compare debug events may be linked with an instruction address
compare event by setting the DAC1LNK and/or DAC2LNK control bits in DBCR2 to
further refine when a data address compare debug event is generated. DAC1 may
be linked with IAC1, and DAC2 (when not used as a mask or range bounds
register) may be linked with IAC3. When linked, a DAC1 (or DAC2) debug event
occurs when the same instruction that generates the DAC1 (or DAC2) hit also
generates an IAC1 (or IAC3) hit. When linked, the IAC1 (or IAC3) event is not
recorded in the DBSR, regardless of whether a corresponding DAC1 (or DAC2)
event occurs, or whether the IAC1 (or IAC3) event enable is set.

When enabled and execution of a load or store class instruction results in a data
access with an address, and that address meets the criteria specified in DBCR0,
DBCR2, DAC1, and DAC2, and the instruction also meets the criteria for generating
an instruction address compare event, a linked data address compare debug event
occurs. This event can occur and be recorded in DBSR regardless of the setting of
MSR[DE]. The normal DAC1 and DAC2 status bits in the DBSR are used for
recording these events. The IAC1 and IAC3 status bits are not set if the
corresponding instruction address compare register is linked.

Linking is enabled using DBCR2 control bits. If data address compare debug
events are used to control or modify operation of the debug counter, linking is also
available, even though DBCR0 may not have enabled IAC or DAC events. Also,
instruction address compare events that are linked may still affect the debug
counter (if enabled to) and may be used to either trigger a counter or be counted, in
contrast to being blocked from affecting the DBSR.

Linked DAC events are not recorded or counted if an lmw or stmw instruction is
interrupted before completion by a critical input or external input interrupt.

Trap Debug
Event

TRAP

A trap debug event occurs if trap debug events are enabled (DBCR0[TRAP] = 1), a
trap instruction (tw, twi) is executed, and the conditions specified by the instruction
for the trap are met. This event can occur and be recorded in DBSR regardless of
the setting of MSR[DE]. When a trap debug event occurs, DBSR[TRAP] is set.

Branch Taken
Debug Event

BRT

A branch taken debug event occurs if branch taken debug events are enabled
(DBCR0[BRT] = 1) and execution is attempted of a branch instruction that will be
taken (either an unconditional branch or a conditional branch whose branch
condition is true), and MSR[DE] = 1 or DBCR0[EDM] = 1. Branch taken debug
events are not recognized if MSR[DE] = 0 and DBCR0[EDM] = 0 at the time of
execution of the branch instruction and thus DBSR[IDE] can not be set by a branch
taken debug event. When a branch taken debug event is recognized, DBSR[BRT] is
set to record the debug exception, and the address of the branch instruction is
recorded in DSRR0 (only when the interrupt is taken).

Table 195. Debug event descriptions (continued)

Event name Type Description

UM0434 Debug support

 303/391

Instruction
Complete Debug
Event

IAC

An instruction-complete debug event occurs if instruction-complete debug events
are enabled (DBCR0[ICMP] = 1), execution of any instruction is completed, and
MSR[DE] = 1 or DBCR0[EDM] = 1. If execution of an instruction is suppressed due
to the instruction causing some other exception that is enabled to generate an
interrupt, then the attempted execution of that instruction does not cause an
instruction complete debug event. The sc instruction does not fall into the category
of an instruction whose execution is suppressed, since the instruction actually
executes and then generates a system call interrupt. In this case, the instruction
complete debug exception is also set. When an instruction complete debug event is
recognized, DBSR[ICMP] is set to record the debug exception, and the address of
the next instruction to be executed is recorded in DSRR0.
Instruction complete debug events are not recognized if MSR[DE] = 0 and
DBCR0[EDM] = 0 at the time of execution of the instruction; thus, DBSR[IDE] is not
generally set by an ICMP debug event.

One circumstance may cause DBSR[ICMP] and DBSR[IDE] to be set. This occurs
when an embedded FPU round exception occurs. Because the instruction is by
definition completed (SRR0 points to the following instruction), this interrupt takes
higher priority than the debug interrupt so as not to be lost, and DBSR[IDE] = 1 to
indicate imprecise recognition of a debug interrupt. In this case, the debug interrupt
is taken with SRR0 pointing to the instruction following the instruction that
generated the SPEFPU round exception, and DSRR0 points to the round exception
handler. In addition to occurring when DBCR0[IDM] = 1, this circumstance can also
occur when DBCR0[EDM] = 1.

Instruction complete debug events are not generated by the execution of an
instruction that sets MSR[DE] while DBCR0[ICMP] = 1, nor by the execution of an
instruction that sets DBCR0[ICMP] while MSR[DE] = 1 or DBCR0[EDM] = 1.

Interrupt Taken
Debug Event

IRPT

An interrupt-taken debug event occurs if interrupt-taken debug events are enabled
(DBCR0[IRPT] = 1) and a non-critical interrupt occurs. Only non-critical class
interrupts cause an interrupt-taken debug event. This event can occur and be
recorded in DBSR regardless of the setting of MSR[DE]. When an interrupt-taken
debug event occurs, DBSR[IRPT] is set to record the debug exception. DSRR0
holds the address of the non-critical interrupt handler.

Critical Interrupt
Taken Debug
Event

CIRPT

A critical interrupt taken debug event occurs if critical interrupt taken debug events
are enabled (DBCR0[CIRPT] = 1) and a critical interrupt (other than a debug
interrupt when the debug APU is disabled) occurs. Only critical class interrupts
cause a critical-interrupt-taken debug event. This event can occur and be recorded
in DBSR regardless of the setting of MSR[DE]. When a critical-interrupt-taken
debug event occurs, DBSR[CIRPT] bit is set, ensuring that debug exceptions are
recorded. DSRR0 holds the address of the critical interrupt handler.

To avoid corruption of CSRR0 or CSRR1, this debug event should not normally be
enabled unless the debug APU is also enabled.

Table 195. Debug event descriptions (continued)

Event name Type Description

Debug support UM0434

304/391

11.5 External debug support
External debug support is supplied through the core’s OnCE controller serial interface,
which allows access to internal CPU registers and other system state while in external
debug mode (DBCR0[EDM] is set). All debug resources, including DBCR0–DBCR3, DBSR,
IAC1–IAC4, DAC1, DAC2 and DBCNT are accessible through the serial on-chip emulation
(OnCE) interface in external debug mode. Setting the DBCR0[EDM] bit through the OnCE
interface enables external debug mode and disables software updates to the debug
registers. When DBCR0[EDM] is set, debug events enabled to set respective DBSR status

Return Debug
Event

RET

A return debug event occurs if return debug events are enabled (DBCR0[RET] = 1)
and an attempt is made to execute an rfi instruction. This event can occur and be
recorded in DBSR regardless of the setting of MSR[DE]. When a return debug
event occurs, the DBSR[RET] bit is set so the debug exceptions are recorded.

If MSR[DE] = 0 and DBCR0[EDM] = 0 when rfi executes (that is, before the MSR is
updated by the rfi), DBSR[IDE] is also set to record the imprecise debug event.

If MSR[DE] = 1 when rfi executes, a debug interrupt occurs provided no higher
priority exception is enabled to cause an interrupt. DSRR0 holds the address of the
rfi instruction.

Critical Return
Debug Event

CRET

A critical return debug event occurs if critical return debug events are enabled
(DBCR0[CRET] = 1) and an attempt is made to execute an rfci instruction. This
event can occur and be recorded in DBSR regardless of the setting of MSR[DE].
When a critical return debug event occurs, the DBSR[CRET] bit is set to record the
debug exception.

If MSR[DE] = 0 and DBCR0[EDM] = 0 at the time of the execution of the rfci (that is
before the MSR is updated by the rfci), DBSR[IDE] is also set to record the
imprecise debug event.

If MSR[DE] = 1 at the time of the execution of the rfci, a debug interrupt occurs
provided no higher priority exception is enabled to cause an interrupt. Debug
save/restore register 0 is set to the address of the rfci instruction. Note that this
debug event should not normally be enabled unless the debug APU is also enabled
to avoid corruption of CSRR0 or CSRR1.

Debug Counter
Debug Event

DCNT1,
DCNT2

A debug counter debug event occurs if debug counter debug events are enabled
(DBCR0[DCNT1] = 1 or DBCR0[DCNT2] = 1), a debug counter is enabled, and a
counter decrements to zero. This event can occur and be recorded in DBSR
regardless of the setting of MSR[DE]. When a debug counter debug event occurs,
DBSR[DCNT1] or DBSR[DCNT2] is set to record the debug exception.

External Debug
Event

DEVT1,
DEVT2

An external debug event occurs if external debug events are enabled
(DBCR0[DEVT1] = 1 or DBCR0[DEVT2] = 1), and the respective p_devt1 or
p_devt2 input signal transitions to the set state. This event can occur and be
recorded in DBSR regardless of the setting of MSR[DE]. When an external debug
event occurs, DBSR[DEVT1] or DBSR[DEVT2] is set to record the debug
exception.

Unconditional
Debug Event

UDE

An unconditional debug event occurs when the unconditional debug event (p_ude)
input transitions to the set state, and either DBCR0[IDM] = 1 or DBCR0[EDM] = 1.
The unconditional debug event is the only debug event that does not have a
corresponding enable bit for the event in DBCR0. This event can occur and be
recorded in DBSR regardless of the setting of MSR[DE]. When an unconditional
debug event occurs, DBSR[UDE] is set, so debug exceptions are recorded.

Table 195. Debug event descriptions (continued)

Event name Type Description

UM0434 Debug support

 305/391

bits also cause the CPU to enter debug mode, as opposed to generating debug interrupts.
In debug mode, the CPU is halted at a recoverable boundary, and an external debug control
module may control CPU operation through the OnCE logic. No debug interrupts can occur
while DBCR0[EDM] remains set.

Note: On the initial setting of DBCR0[EDM], other bits in DBCR0 are unchanged. After
DBCR0[EDM] is set, all debug register resources may be subsequently controlled through
the OnCE interface. DBSR should be cleared as part of the process of enabling external
debug activity. The CPU should be placed into debug mode through the OCR[DR] control bit
before setting EDM. This allows the debugger to cleanly write to the DBCRn registers and
the DBSR to clear out any residual state/control information that could cause unintended
operation.

Note: It is intended for the CPU to remain in external debug mode (DBCR0[EDM] = 1) in order to
single-step or perform other debug mode entry/reentry through the OCR[DR], by performing
OnCE Go+NoExit commands, or by assertion of jd_de_b.

Note: DBCR0[EDM] operation is blocked if the OnCE operation is disabled (jd_en_once negated)
regardless of whether it is set or cleared. This means that if DBCR0[EDM] was previously
set and then jd_en_once is negated (this should not occur), entry into debug mode is
blocked, all events are blocked, and watchpoints are blocked.

Due to clock domain design, the CPU clock (m_clk) must be active for writes to be
performed to debug registers other than the OnCE command register (OCMD), the OnCE
control register (OCR), or DBCR0[EDM]. Register read data is synchronized back to the
j_tclk clock domain. The OnCE control register provides the capability of signaling the
system level clock controller that the CPU clock should be activated if not already active.

Updates to DBCRn, DBSR, and DBCNT through the OnCE interface should be performed
with the CPU in debug mode to guarantee proper operation. Due to the various points in the
CPU pipeline where control is sampled and event handshaking is performed, it is possible
that modifications to these registers while the CPU is running may result in early or late
entry into debug mode and incorrect status information posted in DBSR.

11.5.1 OnCE introduction

The on-chip emulation circuitry (OnCE/Nexus class 1 interface) provides a means of
interacting with the core and integrated system so that a user may examine registers,
memory, or on-chip peripherals. OnCE operation is controlled through an industry-standard
IEEE 1149.1 TAP controller. By using JTAG instructions, the external hardware debugger
can freeze or halt the CPU, read and write internal state, and resume normal execution. The
core does not contain IEEE 1149.1 standard boundary cells on its interface, as it is a
building block for further integration. It does not support the JTAG-related boundary scan
instruction functionality, although JTAG public instructions may be decoded and signaled to
external logic.

The OnCE logic provides for Nexus class 1 static debug capability (using the same set of
resources available to software while the core is in internal debug mode), and is present in
all e200z3-based designs. The OnCE module also provides support for directly integrating a
Nexus class 2 or class 3 real-time debug unit with the core for development of real-time
systems where traditional static debug is insufficient. The partitioning between a OnCE
module and a connected Nexus module to provide real-time debugging allows for capability
and cost tradeoffs to be made.

The core is designed to be a fully integratable module. The OnCE TAP controller and
associated enabling logic are designed to allow concatenation with an existing JTAG

Debug support UM0434

306/391

controller if one is present in the system. Thus, the core module can be easily integrated
with existing JTAG designs or as a stand-alone controller.

To enable full OnCE operation, the jd_enable_once input signal must be asserted. In some
system integrations, this is automatic since the input will be tied asserted. Other integrations
may require the execution of the Enable OnCE command through the TAP and appropriate
entry of serial data. Refer to the documentation for the integrating device. The
jd_enable_once input should not change state during a debug session, or undefined activity
may occur.

Figure 67 shows the TAP controller and TAP registers implemented by the OnCE logic.

Figure 66. Core debug resources

Figure 67. OnCE TAP controller and registers

The OnCE controller is implemented as a 16-state finite state machine (FSM), shown in
Figure 68, with a one-to-one correspondence to the states defined for the JTAG TAP
controller.

OnCE Mapped Debug Registers

Auxiliary Data Registers

External Data Registers

Bypass Register

TAP Instruction Register

TAP
Controllerj_trst_b

j_tclk
j_tms TDO

Mux Logic

j_tdi j_tdo

j_tdo_en

 (OnCE OCMD)

UM0434 Debug support

 307/391

Figure 68. OnCE controller as an FSM

Access to core processor registers and the contents of memory locations is performed by
enabling external debug mode (setting DBCR0[EDM]), placing the processor into debug
mode, and scanning instructions and data into and out of the core CPU scan chain
(CPUSCR); execution of scanned instructions by the core is used as the method for
accessing required data. Memory locations may be read by scanning a load instruction into
the core that references the desired memory location, executing the load instruction, and
then scanning out the result of the load. Other resources are accessed in a similar manner.

The initial entry by the CPU into the debug state (or mode) from normal, stopped, halted, or
checkstop states (all indicated by the OnCE status register (OSR) described in Chapter :
OnCE status register (OSR) on page 311”) by assertion of one or more debug requests
begins a debug session. The jd_debug_b output signal indicates that a debug session is in
progress, and the OSR indicates that the CPU is in the debug state. Instructions may be
single-stepped by scanning new values into the CPUSCR and performing a OnCE
Go+NoExit command (see Chapter : OnCE command register (OCMD) on page 312”). The
CPU then temporarily exits the debug state (but not the debug session) to execute the

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select DR-ScanRun-Test/Idle

Test-Logic-Reset

1

0

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

0 0

00

0 0

00

00

0

0

00

0

Select IR-Scan

Debug support UM0434

308/391

instruction and returns to the debug state (again indicated by the OSR). The debug session
remains in force until the final Go+Exit command is executed, at which time the CPU returns
to its previous state (unless a new debug request is pending). A scan into the CPUSCR is
required before executing each Go+Exit or Go+NoExit command.

11.5.2 JTAG/OnCE signals

The JTAG/OnCE interface is used to transfer OnCE instructions and data to the OnCE
control block. Depending on the resource being accessed, the CPU may need to be placed
in debug mode. For resources outside the CPU block and contained in the OnCE block, the
processor is not disturbed and may continue execution. If a processor resource is required,
an internal debug request (dbg_dbgrq) may be asserted to the CPU by the OnCE controller,
and causes the CPU to finish the instruction being executed, save the instruction pipeline
information, enter debug mode, and wait for further commands. Asserting dbg_dbgrq
causes the chip to exit the low-power mode enabled by setting MSR[WE].

Table 196 details the primary JTAG/OnCE interface signals.

A full description of JTAG signals is provided in Chapter 9.3.2: JTAG ID signals.”

11.5.3 OnCE internal interface signals

The following sections describe the OnCE interface signals to other internal blocks
associated with the OnCE controller. Table 197 shows the OnCE internal interface signals.

Table 196. JTAG/OnCE primary interface signals

Signal name I/O Description

j_trst_b I JTAG test reset

j_tclk I JTAG test clock

j_tms I JTAG test mode select

j_tdi I JTAG test data input

j_tdo O Test data out to master controller or pad

j_tdo_en O
Enables TDO output buffer. Set when the TAP controller is
in the Shift-DR or Shift-IR state.

Table 197. OnCE internal interface signals

Signal name I/O Description

CPU Debug
Request
(dbg_dbgrq)

O

The dbg_dbgrq signal is set by the OnCE control logic to request the
CPU to enter the debug state. It may be set for a number of different
conditions, and causes the CPU to finish the current instruction being
executed, save the instruction pipeline information, enter debug mode,
and wait for further commands.

CPU Debug
Acknowledge
(cpu_dbgack)

I

The cpu_dbgack signal is set by the CPU upon entering the debug
state. This signal is used as part of the handshake mechanism between
the OnCE control logic and the rest of the CPU. The CPU core may
enter debug mode through either a software or hardware event.

UM0434 Debug support

 309/391

CPU address and attributes

The CPU address and attribute information are used by an external Nexus class 2–4 debug
unit with information for real-time address trace information.

CPU data

The CPU data bus is used to supply an external Nexus class 2–4 debug unit with
information for real-time data trace capability.

11.5.4 OnCE interface signals

The following sections describe additional OnCE interface signals to other external blocks
such as a Nexus controller and external blocks that may need information pertaining to
debug operation.

Table 198 describes the OnCE interface signals.

Table 198. OnCE interface signals

Signal name I/O Description

OnCE enable
(jd_en_once) I

The OnCE enable signal, jd_en_once, is used to enable the OnCE controller to allow
certain instructions and operations to be executed. Assertion of this signal enables the
full OnCE command set, as well as operation of control signals and OnCE control
register functions. When this signal is disabled, only the Bypass, ID and
Enable_OnCE commands are executed by the OnCE unit, and all other commands
default to the Bypass command. The OSR is not visible when OnCE operation is
disabled. Also OCR functions are also disabled, as is the operation of the jd_de_b
input. Secure systems may choose to leave jd_en_once negated until a security check
has been performed. Other systems should tie this signal asserted to enable full
OnCE operation. The j_en_once_regsel output signal is provided to assist external
logic performing security checks. Refer to Chapter : OnCE control register (OCR) on
page 315,” for a description of the j_en_once_regsel output.

The jd_en_once input must change state only during the test-logic-reset, Run-
Test/Idle, or Update-DR TAP states. A new value takes effect after one additional j_tclk
cycle of synchronization. In addition, jd_enable_once must not change state during a
debug session, or undefined activity may occur.

OnCE debug
request
(jd_de_b)/event
(jd_de_en)

I/O

The system-level bidirectional open drain debug event pin, DE_b, (not part of the
interface described in Chapter 9: External core complex interfaces on page 235”)
provides a fast means of entering the debug mode of operation from an external
command controller (when input) as well as a fast means of acknowledging entry into
debug mode of operation to an external command controller (when output). The
assertion of this pin by a command controller causes the CPU core to finish the
current instruction being executed, save the instruction pipeline information, enter
debug mode, and wait for commands to be entered. If DE_b was used to enter debug
mode, DE_b must be negated after the OnCE controller responds with an
acknowledge and before sending the first OnCE command. The assertion of this pin
by the CPU core acknowledges that it has entered the debug mode and is waiting for
commands to be entered. To support operation of this system pin, the OnCE logic
supplies the jd_de_en output and samples the jd_de_b input when OnCE is enabled
(jd_en_once set). Assertion of jd_de_b causes the OnCE logic to place the CPU into
debug mode. Once debug mode has been entered, the jd_de_en output is asserted
for three j_tclk periods to signal an acknowledge; jd_de_en can be used to enable the
open-drain pulldown of the system level DE_b pin.

Debug support UM0434

310/391

11.5.5 OnCE controller and serial interface

The OnCE controller contains the OnCE command register, the OnCE decoder, and the
status/control register. Figure 69 is a block diagram of the OnCE controller. In operation, the
OnCE command register acts as the instruction register (IR) for the TAP controller, and all
other OnCE resources are treated as data registers (DR) by the TAP controller. The
command register is loaded by serially shifting in commands during the TAP controller Shift-
IR state, and is loaded during the Update-IR state. The command register selects a
resource to be accessed as a data register (DR) during the TAP controller Capture-DR,
Shift-DR, and Update-DR states.

OnCE debug
output
(jd_debug_b)

O

The OnCE debug output jd_debug_b is used to indicate to on-chip resources that a
debug session is in progress. Peripherals and other units may use this signal to modify
normal operation for the duration of a debug session, which may involve the CPU
executing a sequence of instructions solely for the purpose of visibility/system control
that are not part of the normal instruction stream the CPU would have executed had it
not been placed in debug mode. This signal is set the first time the CPU enters the
debug state, and remains set until the CPU is released by a write to the core OnCE
command register (OCMD) with the GO and EX bits set, and a register specified as
either no register selected or the CPUSCR. This signal remains set even though the
CPU may enter and exit the debug state for each instruction executed under control of
the OnCE controller. See Chapter : OnCE command register (OCMD) on page 312,”
for more information on the function of the GO and EX bits. This signal is not normally
used by the CPU.

 CPU clock on input
(jd_mclk_on)

I

The CPU clock on input (jd_mclk_on) is used to indicate that the CPU’s m_clk input is
active. This input signal is expected to be driven by system logic external to the core,
is synchronized to the j_tclk (scan clock) clock domain and presented as a status flag
on the j_tdo output during the Shift-IR state. External firmware may use this signal to
ensure proper scan sequences occur to access debug resources in the m_clk clock
domain.

Watchpoint events
(jd_watchpt[0:7]) O

The jd_watchpt[0:7] signals may be set by the OnCE control logic to signal that a
watchpoint condition has occurred. Watchpoints do not cause the CPU to be affected.
They are provided to allow external visibility only. Watchpoint events are conditioned
by the settings in DBCR0, DBCR1, and DBCR2.

Table 198. OnCE interface signals (continued)

Signal name I/O Description

UM0434 Debug support

 311/391

Figure 69. OnCE controller and serial interface

OnCE status register (OSR)

Status information regarding the state of the CPU is latched into the OSR when the OnCE
controller state machine enters the Capture-IR state. When OnCE operation is enabled, this
information is provided on the j_tdo output in serial fashion when the Shift-IR state is
entered following a Capture-IR. Information is shifted out least-significant bit first.

Table 199. OnCE status register (OSR)

Table 200 describes OnCE status register bits.

 .

0 1 2 3 4 5 6 7 8 9

Field MCLK ERR CHKSTOP RESET HALT STOP DEBUG 0 1

Table 200. OSR field descriptions

Bits Name Description

0 MCLK

m_clk status bit. Reflects the logic level on the jd_mclk_on input signal after
capture by j_tclk.

0 Inactive state

1 Active state

1 ERR

Error. Used to indicate that an error condition occurred during attempted execution
of the last single-stepped instruction (Go+NoExit with CPUSCR or no register
selected in OCMD), and that the instruction may not have executed properly. This
can occur if an interrupt (all classes including external, critical, machine check,
storage, alignment, program, TLB, and so on) occurs while attempting to perform
the instruction single-step. In this case, CPUSCR contains information related to
the first instruction of the interrupt handler, and no portion of the handler will have
executed.

2 CHKSTOP
Checkstop mode. Reflects the logic level on the CPU p_chkstop output after
capture by j_tclk.

OnCE Command Register
TDI
TCLK

Status and Control
Registers

TDO

Mode Select

OnCE Decoder

RegisterRegister CPU

Update

Read WriteControl/
Status

Debug support UM0434

312/391

OnCE command register (OCMD)

The OnCE command register (OCMD) is a 10-bit shift register that receives its serial data
from the TDI pin and serves as the instruction register (IR). It holds the 10-bit commands to
be used as input for the OnCE decoder. OCMD is shown in Table 202. It is updated when
the TAP controller enters the Update-IR state. It contains fields for controlling access to a
resource, as well as controlling single-step operation and exit from OnCE mode.

Although OCMD is updated during the Update-IR TAP controller state, the corresponding
resource is accessed in the DR scan sequence of the TAP controller, and as such, the
Update-DR state must be transitioned through for an access to occur. In addition, the
Update-DR state must also be transitioned through in order for the single-step and/or exit
functionality to be performed, even though the command appears to have no data resource
requirement associated with it. Table 202 describes OCMD fields.

 .

3 RESET
Reset mode. Reflects the inverted logic level on the CPU p_reset_b input after
capture by j_tclk.

4 HALT
Halt mode. Reflects the logic level on the CPU p_halted output after capture by
j_tclk.

5 STOP
Stop mode. Reflects the logic level on the CPU p_stopped output after capture by
j_tclk.

6 DEBUG
Debug mode. Set once the CPU is in debug mode. It is negated once the CPU
exits debug mode (even during a debug session).

7 — Reserved, set to 0

8 — Reserved, set to 0 for 1149.1 compliance

9 — Reserved, set to 1 for 1149.1 compliance

Table 201. OCMD fields

0 1 2 3 9

Field R/W GO EX RS

Reset 0b10_0000_0010 on assertion of j_trst_b or m_por or while in test-logic-reset state

Table 200. OSR field descriptions (continued)

Bits Name Description

UM0434 Debug support

 313/391

Table 202. OCMD field descriptions

Bits Name Description

0 R/W

Read/Write. Specifies the direction of data transfer.

0 Write the data associated with the command into the register specified by RS

1 Read the data contained in the register specified by RS
Note: R/W is generally ignored for read-only or write-only registers, although the PC FIFO pointer is
only guaranteed to be updated when R/W = 1. In addition, it is ignored for all bypass operations.
When performing writes, most registers are sampled in the Capture-DR state into a 32-bit shift
register and subsequently shifted out on j_tdo during the first 32 clocks of Shift-DR.

1 GO

Go. If the GO bit is set, the chip executes the instruction which resides in the IR register in the
CPUSCR. To execute the instruction, the processor leaves debug mode, executes the instruction,
and, if the EX bit is cleared, returns to debug mode immediately after executing the instruction. The
processor goes on to normal operation if the EX bit is set, and no other debug request source is set.
The GO command is executed only if the operation is a read/write to CPUSCR or a read/write to no
register selecte. Otherwise the GO bit is ignored. The processor leaves debug mode after the TAP
controller Update-DR state is entered.
On a Go+NoExit operation, returning to debug mode is treated as a debug event; thus, exceptions
such as machine checks and interrupts may take priority and prevent execution of the intended
instruction. Debug firmware should mask these exceptions as appropriate. OSR[ERR] indicates
such an occurrence.
0 Inactive (no action taken)

1 Execute instruction in IR

Debug support UM0434

314/391

2 EX

Exit. The Exit command is executed only if the Go command is issued and the operation is a
read/write to CPUSCR or a read/write to no register selected. Otherwise, the EX bit is ignored.
The processor leaves debug mode after the TAP controller Update-DR state is entered. Note that if
the DR bit in the OnCE control register is set or remains set, or if a bit in the DBSR is set, or if a bit in
the DBSR is set and DBCR0[EDM] = 1 (external debug mode is enabled), then the processor may
return to the debug mode without execution of an instruction, even though the EX bit was set.

0 Remain in debug mode

1 Leave debug mode. The processor leaves debug mode and resumes normal operation until
another debug request is generated.

3–9 RS

Register select. Defines which register is the source for the read or the destination for the write
operation. Table 205 indicates the OnCE register addresses. Attempted writes to read-only registers
are ignored.

000 0000–000 0001 Reserved
000 0010 JTAG ID read–only

000 0011–000 1111 Reserved

001 0000 CPU scan register CPUSCR

001 0001 No register selected bypass
001 0010 OnCE control register OCR

001 0011–001 1111 Reserved

010 0000 Instruction address compare 1 IAC1
010 0001 Instruction address compare 2 IAC2

010 0010 Instruction address compare 3 IAC3

010 0011 Instruction address compare 4 IAC4
010 0100 Data address compare 1 DAC1

010 0101 Data address compare 2 DAC2

010 0110 Reserved DVC1 future use
010 0111 Reserved DVC2 future use

010 1000–010 1011 Reserved

010 1100 Debug counter register DBCNT
010 1101 Debug PCFIFO (PCFIFO) read–only

010 1110–010 1111 Reserved

011 0000 Debug status register DBSR
011 0001 Debug control register 0 DBCR0

011 0010 Debug control register 1 DBCR1

011 0011 Debug control register 2 DBCR2
011 0100 Debug control register 3 DBCR3

011 0101–101 1111 Reserved (do not access)

111 0000–111 1001 General purpose register selects [0–9]
111 1010–111 1011 Reserved

111 1100 Nexus3–Access–See Chapter 12: Nexus3 module on page 329.”

111 1101 Reserved
111 1110 Enable_OnCE(1)

1. Causes assertion of the j_en_once_regsel output. Refer to Chapter : OnCE control register (OCR) on page 315.”

Table 202. OCMD field descriptions (continued)

Bits Name Description

UM0434 Debug support

 315/391

The OnCE decoder receives as input the 10-bit command from the OCMD and the status
signals from the processor, and generates all the strobes required for reading and writing
the selected OnCE registers.

Single-stepping of instructions is performed by placing the CPU in debug mode, scanning
appropriate information into the CPUSCR, and setting the GO bit (with the EX bit cleared)
with the RS field indicating either the CPUSCR or no register selected. After executing a
single instruction, the CPU re-enters debug mode and awaits further commands. During
single-stepping, exception conditions may occur if not properly masked by debug firmware
(interrupts, machine checks, bus error conditions, and so on) and may prevent the desired
instruction from being successfully executed. The OSR[ERR] bit is set to indicate this
condition. In these cases, values in the CPUSCR correspond to the first instruction of the
exception handler.

Additionally, while single-stepping, to prevent debug events from generating debug
interrupts, DBCR0[EDM] is internally forced to 1. Also, during a debug session, DBSR and
DBCNT are frozen from updates due to debug events regardless of DBCR0[EDM]. They
may still be modified during a debug session through a single-stepped mtspr instruction if
DBCR0[EDM] is cleared, or through OnCE access if DBCR0[EDM] is set.

OnCE control register (OCR)

The OCR, shown in Table 203, forces the core into debug mode and enables/disables
sections of the OnCE control logic. It also provides control over the MMU during a debug
session. (See Chapter 11.7: MMU and cache operation during debug on page 327.”) The
control bits are read/write. These bits are effective only while OnCE is enabled (jd_en_once
set).

Table 204 describes OnCE control register fields.

Table 203. OnCE control register fields

0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 28 29 30 31

Field — I_DMDIS — I_DVLE I_DI I_DM I_DE DMDIS — DW DI DM DG DE — WKUP FDB DR

Reset 0x0000_0000 on m_por, j_trst_b, or entering test-logic-reset state

Table 204. OnCE control register bit definitions

Bits Name Description

0–7 — Reserved, should be cleared.

8 I_DMDIS

Instruction side debug MMU disable control bit. May be used to control whether the MMU is
enabled or disabled during a debug session for instruction accesses.

0MMU not disabled for debug sessions. The MMU functions normally.

1MMU disabled for debug sessions. For instruction accesses, no address translation is
performed (1:1 address mapping) and the TLB IME bits are taken from the OCR bits I_DI,
I_DM, and I_DE. The SX and UX access permission control bits are set, allowing full access.
When disabled, no TLB miss or TLB exceptions are generated for instruction accesses.
External access errors can still occur.

9–10 — Reserved, should be cleared.

11 I_DVLE
Instruction side debug TLB VLE attribute bit. Provides the VLE attribute bit for when the MMU is
disabled during a debug session.

Debug support UM0434

316/391

12 I_DI
Instruction side debug TLB I attribute bit. Provides the I attribute bit for instruction accesses
when the MMU is disabled for instruction accesses during a debug session.

13 I_DM
Instruction side debug TLB M attribute bit. Provides the M attribute bit to be used for instruction
accesses when the MMU is disabled for instruction accesses during a debug session.

14 — Reserved, should be cleared.

15 I_DE
Instruction side debug TLB E attribute bit. Provides the E attribute bit for instruction accesses
when the MMU is disabled for instruction accesses during a debug session.

16 D_DMDIS

Data side debug MMU disable control bit. Controls whether the MMU is enabled normally or is
disabled during a debug session for data accesses.

0 MMU not disabled for debug sessions. The MMU functions normally
1 MMU disabled for debug sessions. For data accesses, no address translation is performed
(1:1 address mapping) and the TLB WIMGE bits are taken from the OCR bits D_DW, D_DI,
D_DM, D_DG, and D_DE bits. The SR, SW, UR, and UW access permission control bits are
set to allow full access. When disabled, no TLB miss or TLB exceptions are generated for data
accesses. External access errors can still occur.

17–18 — Reserved, should be cleared.

19 D_DW
Data side debug TLB W attribute bit. Provides the W attribute bit for data accesses when the
MMU is disabled for data accesses during a debug session.

20 D_DI
Data side debug TLB I attribute bit. Provides the I attribute bit for data accesses when the MMU
is disabled for data accesses during a debug session.

21 D_DM
Data side debug TLB M attribute bit. Provides the M attribute bit for data accesses when the
MMU is disabled for data accesses during a debug session.

22 D_DG
Data side debug TLB G attribute bit. Provides the G attribute bit for data accesses when the
MMU is disabled for data accesses during a debug session.

23 D_DE
Data side debug TLB E attribute bit. Provides the E attribute bit for data accesses when the
MMU is disabled for data accesses during a debug session.

24–28 — Reserved, should be cleared.

29 WKUP

Wakeup request bit. Used to force the p_wakeup output to be asserted. To ensure that debug
resources may be properly accessed by external hardware through scan sequences, debug
firmware can use this control function to request that the chip-level clock controller restore the
m_clk input to normal operation regardless of whether the core is in a low-power state.

30 FDB

Force breakpoint debug mode. Determines whether the processor is operating in breakpoint
debug enable mode. The processor may be placed in breakpoint debug enable mode by
setting this bit. In breakpoint debug enable mode, execution of the bkpt pseudo-instruction
causes the processor to enter debug mode, as if the jd_de_b input had been asserted. FDB is
qualified with DBCR0[EDM], which must be set for FDB to take effect.

31 DR

CPU debug request control. Used to unconditionally request the CPU to enter debug mode.
The CPU indicates that debug mode has been entered via the data scanned out in the shift-IR
state.

0 No debug mode request
1 Unconditional debug mode request. The processor enters debug mode at the next instruction
boundary.

Table 204. OnCE control register bit definitions (continued)

Bits Name Description

UM0434 Debug support

 317/391

11.5.6 Access to debug resources

Resources contained in the OnCE module that do not require the core to be halted for
access may be accessed without interfering with processor execution. Accesses to other
resources such as the CPUSCR require the core to be placed in debug mode to avoid
synchronization hazards. Debug firmware may ensure that it is safe to access these
resources by determining the state of the core before access.

Note: A scan operation to update the CPUSCR is required before exiting debug mode.

Some cases of write accesses other than accesses to the OnCE command and control
registers or DBCR0[EDM] require the m_clk to be running for proper operation. The OnCE
control register provides a means of signaling this need to a system level clock control
module.

In addition, because the CPU may cause multiple bits of certain registers to change state,
reads of certain registers while the CPU is running (for example, DBSR and DBCNT) may
not have consistent bit settings unless read twice with the same value indicated. To
guarantee that the contents are consistent, the CPU should be placed into debug mode, or
multiple reads should be performed until consistent values have been obtained on
consecutive reads.

Table 205 lists access requirements for OnCE registers.

Table 205. OnCE register access requirements

Register name

Access requirements

Notes
jd_en_once

to be Set

 DBCR0

[EDM] = 1

 m_clk
active

for
Write

Access

 CPU to
be

Halted

for Read
Access

 CPU to
be

Halted

for
Write

Access

Enable_OnCE N N N N —

Bypass N N N N N

CPUSCR Y Y Y Y Y

DAC1 Y Y Y N *(1)

DAC2 Y Y Y N *(1)

DBCNT Y Y Y N *(1)

Date read from DBCNT while the CPU
is running may not be self-consistent
due to synchronization across clock
domains.

DBCR0 Y Y Y N *(1) *DBCR0[EDM] access only requires
jd_en_once set

DBCR1 Y Y Y N *(1)

DBCR2 Y Y Y N *(1)

DBCR3 Y Y Y N *(1)

Debug support UM0434

318/391

11.5.7 Methods for entering debug mode

The OSR indicates that the CPU has entered the debug mode through the debug status bit.
The following sections describe how debug mode is entered assuming the OnCE circuitry
has been enabled.
OnCE operation is enabled by the assertion of the jd_en_once input (see Table 195).

DBSR Y Y Y N *(1)

Reads of DBSR while the CPU is
running may not give data that is self-
consistent due to synchronization
across clock domains.

IAC1 Y Y Y N *(1)

IAC2 Y Y Y N *(1)

IAC3 Y Y Y N *(1)

IAC4 Y Y Y N *(1)

JTAG ID N N — N — Read only

OCR Y N N N N

OSR Y N — N —
Read only, accessed by scanning out
IR while jd_en_once is set

PC FIFO Y N — N —

Read only, updates frozen while
OCMD holds PCFIFO register
encoding

Note: PCFIFO cannot be updated
while the OnCE state machine is in
Test_Logic_Reset state

Cache debug
access control
(CDACNTL)

Y N Y Y Y
CPU must be in debug mode with
clocks running

Cache debug
access data

(CDADATA)
Y N Y Y Y

CPU must be in debug mode with
clocks running

Nexus3-Access Y N N N N

External GPRs Y N N N N

LSRL Select Y N ? ? ?
System test logic implementation
determines LSRL functionality

1. Writes to these registers while the CPU is running may have unpredictable results due to the pipelined nature of the
operation and the fact that updates are not synchronized to a particular clock, instruction, or bus cycle boundary; therefore,
it is strongly recommended to ensure the processor is first placed into debug mode before updates to these registers are
performed.

Table 205. OnCE register access requirements (continued)

Register name

Access requirements

Notes
jd_en_once

to be Set

 DBCR0

[EDM] = 1

 m_clk
active

for
Write

Access

 CPU to
be

Halted

for Read
Access

 CPU to
be

Halted

for
Write

Access

UM0434 Debug support

 319/391

Table 206 describes the methods for entering debug mode.

11.5.8 CPU status and control scan chain register (CPUSCR)

A number of on-chip registers store the CPU pipeline status and are configured in a single
scan chain for access by the OnCE controller. CPUSCR contains these processor
resources, which are used to restore the pipeline and resume normal chip activity upon
return from debug mode, as well as a mechanism for the emulator software to access

Table 206. Methods for entering debug mode

Method
name

Description

External
debug
request
during reset

Holding jd_de_b asserted while p_reset_b is asserted and holding it asserted following the
negation of p_reset_b causes the core to enter debug mode. After receiving an acknowledge
through the OnCE status register debug bit, the external command controller should negate
jd_de_b before sending the first command. Note that in this case the core does not execute an
instruction before entering debug mode, although the first instruction to be executed may be fetched
before entering debug mode.

In this case, all values in the debug scan chain are undefined and the external debug control
module is responsible for proper initialization of the chain before debug mode is exited. In particular,
the exception processing associated with reset may not be performed when debug mode is exited;
thus, the debug controller must initialize PC, MSR, and IR to the image that the processor would
have obtained in performing reset exception processing, or it must cause the appropriate bit reset to
be re-asserted.

Debug
request
during reset

Setting OCR[DR] while p_reset_b is asserted causes the device to enter debug mode; the chip may
fetch the first instruction of the reset interrupt handler but does not execute an instruction before
entering debug mode. In this case, all values in the debug scan chain are undefined and the
external debug control module is responsible for properly initializing the chain before debug mode is
exited. In particular, interrupt processing associated with reset may not be performed when debug
mode is exited; thus, the debug controller must initialize PC, MSR, and IR to the image that the
processor would have obtained in performing reset exception processing, or it must cause the
appropriate reset to be re-asserted.

Debug
request
during normal
activity

Setting OCR[DR] during normal chip activity causes the chip to finish execution of the current
instruction and then enter debug mode. Note that in this case the chip completes execution of the
current instruction and stops after the newly fetched instruction enters the CPU instruction register.
This process is the same for any newly fetched instruction, including instructions fetched by the
interrupt processing or those aborted by the interrupt processing.

Debug
request
during halted
or stopped
state

Setting OCR[DR] when the device is in the halted or stopped state (p_halted or p_stopped set)
causes the CPU to exit the state and enter debug mode once the CPU clock m_clk has been
restored. Note that in this case, the CPU negates both the p_halted and p_stopped outputs. Once
the debug session has ended, the CPU returns to the state it was in before entering debug mode.
To signal the chip-level clock generator to re-enable m_clk, the p_wakeup output is set whenever
the debug block is asserting a debug request to the CPU due to OCR[DR] being set, or jd_de_b
assertion, and remains set from then until the debug session ends (jd_debug_b goes from set to
negated). In addition, the status of the jd_mclk_on input (after synchronization to the j_tclk clock
domain) may be sampled along with other status bits from the j_tdo output during the Shift-IR TAP
controller state. This status may be used if necessary by external debug firmware to ensure that
proper scan sequences occur to registers in the m_clk clock domain.

Software
request
during normal
activity

Upon executing a ‘bkpt’ pseudo-instruction (for the core, defined to be an all zeros instruction
opcode), when OCR [FDB] is set (debug mode enable control bit is true) and DBCR0[EDM] = 1, the
CPU enters debug mode after the instruction following the ‘bkpt’ pseudo-instruction has entered the
instruction register.

Debug support UM0434

320/391

processor and memory contents. Figure 70 shows the block diagram of the pipeline
information registers contained in the CPUSCR. Once debug mode has been entered, it is
required to scan in and update this register before exiting debug mode.

Figure 70. CPU scan chain register (CPUSCR)

Instruction register (IR)

The instruction register provides a way to control the debug session by serving as a means
of forcing in selected instructions and causing them to be executed in a controlled manner
by the debug control block. The opcode of the next instruction to be executed when entering
debug mode is contained in this register when the scan-out of this chain begins. This value
should be saved for later restoration if continuation of the normal instruction stream is
desired.

On scan-in, in preparation for exiting debug mode, this register is filled with an instruction
opcode selected by debug control software. By selecting appropriate instructions and
controlling the execution of those instructions, the results of execution may be used to
examine or change memory locations and processor registers. The debug control module
external to the processor core controls execution by providing a single-step capability. Once
the debug session is complete and normal processing is to be resumed, this register may be
loaded with the value originally scanned out.

TDO

TDI

TCK

MSR

WBBRUpper

32

32
0 31

0 31

PC

32
0 31

IR

32
0 31

CTL

32
0 31

WBBRLower

32
0 31

UM0434 Debug support

 321/391

Control state register (CTL)

The control state register (CTL), shown in Table 207, stores the value of certain internal
CPU state variables before debug mode is entered. This register is affected by the
operations performed during the debug session and should normally be restored by the
external command controller when returning to normal mode. In addition to saved internal
state variables, two of the bits are used by emulation firmware to control the debug process.
In certain circumstances, emulation firmware must modify the content of this register as well
as the PC and IR values in the CPUSCR before exiting debug mode. These cases are
described more specifically in the text after the table.

Table 207. Control state register (CTL)

0 15

Field Internal state bits

16 19 20 21 22 23 24 25 26 27 28 29 30 31

Field PCOFSTPCINVFFRA
IRSTAT

0
IRSTAT

1
IRSTAT

2
IRSTAT

3
IRSTAT

4
IRSTAT

5
IRSTAT

6
IRSTAT

7
IRSTAT

8
IRSTAT

9

Table 208. CTL field definitions

Bits Name Description

0–15
Internal

state bits

Internal state bits.These control bits represent the internal processor state and should be
restored to their original value after a debug session is completed, that is, when a OnCE
command is issued with the GO and EX bits set and not ignored. When performing instruction
execution during a debug session (see Chapter 11.2.1: Software debug facilities on page 296”),
these bits should be cleared.

16–19 PCOFST

PC offset field. Indicates whether the value in the PC portion of the CPUSCR must be adjusted
before exiting debug mode. Due to the pipelined nature of the CPU, the PC value must be
backed up by emulation software in certain circumstances. The PCOFST field specifies the
value to be subtracted from the original value of the PC. This adjusted PC value should be
restored into the PC portion of the CPUSCR just before exiting debug mode with a Go+Exit. In
the event the PCOFST is non-zero, the IR should be loaded with a nop instruction instead of the
original IR value; otherwise, the original value of IR should be restored (but see PCINV which
overrides this field).

0000 No correction required
0001 Subtract 0x04 from PC.

0010 Subtract 0x08 from PC.

0011 Subtract 0x0C from PC.
0100 Subtract 0x10 from PC.

0101 Subtract 0x14 from PC.

All other encodings are reserved.

20 PCINV

PC and IR invalid status bit. This status bit indicates that the values in the IR and PC portions of
the CPUSCR are invalid. Exiting debug mode with the saved values in the PC and IR will have
unpredictable results. Debug firmware should initialize the PC and IR values in the CPUSCR
with desired values before exiting debug mode if this bit was set when debug mode was initially
entered.

0 No error condition exists.

1 Error condition exists. PC and IR are corrupted.

Debug support UM0434

322/391

Emulation firmware should modify the CTL, PC, and IR values in the CPUSCR during
execution of debug-related instructions as well as just before exiting debug with a Go+Exit

21 FFRA

Feed forward RA operand bit. This control bit causes the content of the WBBRlower to be used as
the rA (rS for logical and shift operations) operand value of the first instruction to be executed
following an update of the CPUSCR. This allows the debug firmware to update processor
registers, initialize the WBBRlower with the desired value, set the FFRA bit, and execute an ori
Rx,Rx,0 instruction to the desired register.
0 No action

1 Content of WBBR used as rA (rS for logical and shift operations) operand value

22 IRSTAT0

IR status bit 0.This control bit indicates an ERROR termination status for the IR.

0 No TEA occurred on the fetch of this instruction.

1 A TEA occurred on the fetch of this instruction

23 IRSTAT1

IR status bit 1. Indicates a TLB miss status for the IR.

0 No TLB miss occurred on the fetch of this instruction.
1 TLB miss occurred on the fetch of this instruction.

24 IRSTAT2

IR status bit 2. Indicates an instruction address compare 1 event status for the IR.

0 No instruction address compare 1 event occurred on the fetch of this instruction.
1 An instruction address compare 1 event occurred on the fetch of this instruction.

25 IRSTAT3
IR status bit 3. Indicates an instruction address compare 2 event status for the IR.
0 No instruction address compare 2 event occurred on the fetch of this instruction.

1 An instruction address compare 2 event occurred on the fetch of this instruction.

26 IRSTAT4

IR status bit 4. Indicates an instruction address compare 3 event status for the IR.

0 No instruction address compare 3 event occurred on the fetch of this instruction.

1 An instruction address compare 3 event occurred on the fetch of this instruction.

27 IRSTAT5

IR status bit 5. Indicates an instruction address compare 4 event status for the IR.

0 No instruction address compare 4 event occurred on the fetch of this instruction.
1 An instruction address compare 4 event occurred on the fetch of this instruction.

28 IRSTAT6
IR status bit 6. This control bit indicates a parity error status for the IR.
0 No parity error occurred on the fetch of this instruction.

1 A parity error occurred on the fetch of this instruction.

29 IRSTAT7

IR status bit 7. Indicates a precise external termination error status for the IR.

0 No precise external termination error occurred on the fetch of this instruction.

1 Precise external termination error occurred on the fetch of this instruction.

30 IRSTAT8

IR status bit 8. Indicates the VLE status for the IR. IRStat8 affects the behavior of IRStat9.

0 IR contains a BookE instruction.
1 IR contains a VLE instruction, aligned in the most significant portion of IR if 16-bit.

31 IRSTAT9

IR status bit 9. Indicates the VLE byte-ordering error status for the IR or a Book E misaligned
instruction fetch, depending on the state of IRStat8.

0 IR contains an instruction without a byte-ordering error and no misaligned instruction fetch
exception has occurred (no MIF).

1 If IRStat8 = 0, A Book E misaligned instruction fetch exception occurred while filling the IR.
If IRStat8 = 1, IR contains an instruction with a byte-ordering error due to mismatched VLE

page attributes, or due to E indicating little-endian for a VLE page.

Table 208. CTL field definitions (continued)

Bits Name Description

UM0434 Debug support

 323/391

command. During the debug session, the CTL register should be written with the FFRA bit
set as appropriate and all other bits cleared, and with IR set to the value of the desired
instruction to be executed.

The PCINV status bit which was originally present when debug mode was first entered
should be tested before exiting debug mode with a Go+Exit and, if set, the PC and IR
initialized for performing whatever recovery sequence is appropriate for a faulted exception
vector fetch. If the PCINV bit is cleared, the PCOFST bits should be examined to determine
whether the PC value must be adjusted. Due to the pipelined nature of the CPU, the PC
value must be backed up by emulation software in certain circumstances. The PCOFST field
specifies the value to be subtracted from the original value of the PC. This adjusted PC
value should be restored into the PC portion of the CPUSCR just before exiting debug mode
with a Go+Exit. In the event that PCOFST is non-zero, the IR should be loaded with a nop
instruction (such as ori r0,r0,0) instead of the original IR value; otherwise, the original value
of IR should be restored. Note that when a correction is made to the PC value, it generally
points to the last completed instruction, although that instruction will not be re-executed. The
nop instruction is executed instead, and instruction fetch and execution resumes at location
PC+4.

For CTL, the internal state bits should be restored to their original value. The IRStatus bits
should be cleared if the PC was adjusted. If no PC adjustment was performed, emulation
firmware should determine whether IRStat2–5 should be cleared to avoid re-entry into
debug mode for an instruction breakpoint request. On exiting debug mode with Go+Exit, if
one of these bits is set, debug mode is re-entered before any further instruction execution.

Program counter register (PC)

The PC is a 32-bit register that stores the value of the program counter that was present
when the chip entered debug mode. It is affected by the operations performed during debug
mode and must be restored by the external command controller when the CPU returns to
normal mode. PC normally points to the instruction contained in the IR portion of CPUSCR.
If debug firmware wishes to redirect program flow to an arbitrary location, the PC and IR
should be initialized to correspond to the first instruction to be executed on resumption of
normal processing. Alternatively, the IR may be set to a nop and the PC set to point to the
location before the location at which it is desired to redirect flow to. On exiting debug mode
the nop is executed, and instruction fetch and execution resumes at PC+4.

Write-Back bus register (WBBR (lower) and WBBR (upper))

WBBR provides a way to pass operand information between the CPU and the external
command controller. Whenever the external command controller needs to read the contents
of a register or memory location, it forces the chip to execute an instruction that brings that
information to WBBR. WBBRlower holds the 32-bit result of most instructions including load
data returned for a load or load with update instruction. For SPE instructions that generate
64-bit results, WBBRlower holds the low-order 32 bits of the result. WBBRupperholds the
updated effective address calculated by a load with update instruction. For SPE instructions
that generate 64-bit results, WBBRupper holds the high-order 32 bits of the result. It is
undefined for other instructions.

As an example, to read the lower 32 bits of processor register r1, an ori r1,r1,0 instruction is
executed, and the result value of the instruction is latched into WBBRlower. The contents of
WBBRlower can then be delivered serially to the external command controller. To update a
processor resource, this register is initialized with a data value to be written, and an ori
instruction is executed that uses this value as a substitute data value. The control state
register FFRA bit forces the value of the WBBRlower to be substituted for the normal RS

Debug support UM0434

324/391

source value of the ori instruction, thus allowing updates to processor registers to be
performed. (Refer to Chapter : Control state register (CTL) on page 321,” for more details.).

WBBRlower and WBBRupper are generally undefined on instructions that do not write back a
result and, due to control issues, are not defined on lmw or branch instructions either.

To read and write the entire 64 bits of a GPR, both WBBRlower and WBBRupper are used. For
reads, an evslwi rn,rn,0 may be used. For writes, the same instruction may be used, but the
CTL[FFRA] bit must be set as well.

Note: MSR[SPE] must be set in order for these operations to be performed properly.

Machine state register (MSR)

The MSR is a 32-bit register used to read/write the machine state register (MSR). Whenever
the external command controller needs to save or modify the contents of the machine state
register, this register is used. This register is affected by the operations performed during
debug mode and must be restored by the external command controller when returning to
normal mode. Chapter 4: Register model on page 38,” further describes the MSR.

11.5.9 Instruction address FIFO buffer (PC FIFO)

To assist debugging and keep track of program flow, a first-in-first-out (FIFO) buffer stores
the addresses of the last eight instruction change-of-flow destinations that were fetched.
These include exception vectoring to an exception handler and returns, as well as pipeline
refills due to execution of the isync instruction.

The PC FIFO stores the addresses of the last eight instruction change-of-flow addresses
that were actually taken. The FIFO is implemented as a circular buffer containing eight 32-
bit registers and one 3-bit counter. All the registers have the same address, but any read
access to the FIFO address causes the counter to increment, making it point to the next
FIFO register. The registers are serially available to the external command controller
through the common FIFO address. Figure 71 shows the block diagram of the PC FIFO.

UM0434 Debug support

 325/391

Figure 71. OnCE PC FIFO

The FIFO is not affected by the operations performed during a debug session except for the
FIFO pointer increment when reading the FIFO. When entering debug mode, the FIFO
counter is pointing to the FIFO register containing the address of the oldest of the eight
change-of-flow prefetches. When OCMD [RS] is loaded with the value corresponding to the
PC FIFO (010 1101), the current pointer value is captured into a temporary register. This
temporary value (not the actual FIFO counter) is incremented as FIFO reads are performed.
The first FIFO read obtains the oldest address and the following FIFO read returns the other
addresses from the oldest to the newest (the order of execution).

Updates to the FIFO are frozen whenever the OCMD register contains a command whose
RS[0–6] field points to the PC FIFO (010 1101) to allow firmware to read the contents of the
PC FIFO without placing the CPU into debug mode. After completing all accesses to the PC

PC FIFO Register 0

TDO
TCK

PC FIFO Register 1

PC FIFO Register 2

PC FIFO Register 3

PC FIFO Register 4

Instruction Fetch Address

Circular
Buffer
Pointer

PC FIFO Shift Register

PC FIFO Register 5

PC FIFO Register 6

PC FIFO Register 7

Debug support UM0434

326/391

FIFO, another OCMD value that does not select the PC FIFO should be entered to allow the
PC FIFO to resume updating.

To ensure FIFO coherence, a complete set of eight reads of the FIFO should be performed
because each read increments the temporary FIFO pointer, thus making it point to the next
location. After eight reads the pointer points to the same location it pointed to before starting
the read procedure. The temporary counter value captures the actual counter each time the
OCMD RS field transitions to the value corresponding to the PC FIFO (010 1101).

The FIFO pointer is reset to entry 0 when either j_trst_b or m_por is set.

11.5.10 Reserved registers

The reserved registers are used to control various test control logic. These registers are not
intended for customer use. To preclude device and/or system damage, these registers
should not be accessed.

11.6 Watchpoint support
The core supports the generation and signaling of watchpoints when operating in internal
debug mode (DBCR0[IDM] = 1) or in external debug mode (DBCR0[EDM] = 1). Watchpoints
are indicated with a dedicated set of interface signals. The jd_watchpoint[0:7] output signals
are used to indicate that a watchpoint has occurred.

Each debug address compare function (IAC1–IAC4, DAC1 and DAC2) and debug counter
event (DCNT1 and DCNT2) can trigger a watchpoint output. The DBCR1, DBCR2, and
DBCR3 control fields are used to configure watchpoints, regardless of whether events are
enabled in DBCR0. Watchpoints may occur whenever an associated event would have been
posted in the debug status register if enabled. No explicit enable bits are provided for
watchpoints; they are always enabled by definition (except during a debug session). If not
desired, the base address values for these events may be programmed to an unused
system address. MSR[DE] has no effect on watchpoint generation.

External logic may monitor the assertion of these signals for debugging purposes.
Watchpoints are signaled in the clock cycle following the occurrence of the actual event. The
Nexus3 module also monitors assertion of these signals for various development control
purposes.

Table 209. Watchpoint output signal assignments

Signal name Type Description

jd_watchpt[0] IAC1
Instruction address compare 1 watchpoint. Set whenever an IAC1 compare
occurs regardless of whether IAC1 compares are enabled to set DBSR
status.

jd_watchpt[1] IAC2
Instruction address compare 2 watchpoint. Set whenever an IAC2 compare
occurs regardless of whether IAC2 compares are enabled to set DBSR
status.

jd_watchpt[2] IAC3
Instruction address compare 3 watchpoint. Set whenever an IAC3 compare
occurs regardless of whether IAC3 compares are enabled to set DBSR
status.

jd_watchpt[3] IAC4
Instruction address compare 4 watchpoint. Set whenever an IAC4 compare
occurs regardless of whether IAC4 compares are enabled to set DBSR
status.

UM0434 Debug support

 327/391

11.7 MMU and cache operation during debug
Normal operation of the MMU may be modified during a debug session using the OnCE
OCR. A debug session begins when the CPU initially enters debug mode and ends when a
OnCE command with Go+Exit is executed, releasing the CPU for normal operation. If
desired during a debug session, the debug firmware may disable the translation process
and may substitute default values for the access protection (UX, UR, UW, SX, SR, SW) bits,
and values obtained from the OnCE control register and page attribute (VLE, W, I, M, G, E)
bits normally provided by a matching TLB entry. In addition, no address translation is
performed; instead, a 1:1 mapping of effective-to-real addresses is performed.

When disabled during a debug session, TLB miss or TLB-related DSI conditions cannot
occur. If the debugger desires to use the normal translation process, the MMU may be left
enabled in the OnCE OCR, and normal translation (including the possibility of a TLB miss or
DSI) remains in effect.

The OCRDMDIS, DW, DI, DM, DG, and DE control bits are used when debug mode is
entered. Refer to the bit definitions in the OCR (See Chapter : OnCE control register (OCR)
on page 315,” for more detail). These substituted page attribute bits control cache operation
on accesses initiated during debug. No address translation is performed; instead, a 1:1
mapping between effective and real addresses is performed.

11.8 Enabling, using, and exiting external debug Mode: example
The following steps show one possible scenario for a debugger wishing to use the external
debug facilities. This simplified flow shows basic operations and does not cover all potential
methods in depth.

Enable external debug mode and initialize debug registers:

1. To enable OnCE operation, the debugger should ensure that the jd_en_once is set.

2. Write a value to OCR in which OCR[DR] and OCR[WKUP] are set. The TAP controller
must step through the proper states as outlined earlier. This step places the CPU in a

jd_watchpt[4] DAC1(1)
Data address compare 1 watchpoint. Set whenever a DAC1 compare
occurs regardless of whether DAC1 compares are enabled to set DBSR
status.

jd_watchpt[5] DAC2(1)
Data address compare 2 watchpoint. Set whenever a DAC2 compare
occurs regardless of whether DAC2 compares are enabled to set DBSR
status.

jd_watchpt[6] DCNT1
Debug counter 1 watchpoint. Set whenever debug counter 1 decrements to
zero regardless of whether DCNT1 compares are enabled to set DBSR
status.

jd_watchpt[7] DCNT2
Debug counter 2 watchpoint. Set whenever debug counter 2 decrements to
zero regardless of whether DCNT2 compares are enabled to set DBSR
status.

1. If the corresponding event is completely disabled in DBCR0, either load-type or store-type data accesses
are allowed to generate watchpoints, otherwise watchpoints are generated only for the enabled conditions.

Table 209. Watchpoint output signal assignments (continued)

Signal name Type Description

Debug support UM0434

328/391

debug state where it is halted and awaiting single-step commands or a release to
normal mode.

3. Scan out the OSR value to determine that the CPU clock is running and the CPU has
entered debug state. This can be done in conjunction with a CPUSCR read. The OSR
is shifted out during the Shift-IR state. The CPUSCR is shifted out during the Shift-DR
state. The debugger should save the scanned-out value of CPUSCR for later
restoration.

4. Select the DBCR0 register and update it with DBCR0[EDM] set.

5. Clear the DBSR status bits.

6. Write appropriate values to the DBCR0–DBCR3, IAC, DAC, and DBCNT registers.

Note: The initial write to DBCR0 only affects the EDM bit, so the remaining portion of the register
must now be initialized, keeping the EDM bit set.

At this point the system is ready to begin debug operations. Depending on the desired
operation, different steps must occur.

1. Optionally set the OCR[DMDIS] control bit to ensure that no TLB misses occur while
performing the debug operations.

2. Optionally ensure that the values entered into the MSR portion of the CPUSCR during
the following steps cause interrupts to be disabled (clearing MSR[EE] and MSR[CE]).
This ensures that external interrupt sources do not cause single-step errors.

To single-step the CPU:

1. The debugger scans in either a new or a previously saved value of the CPUSCR (with
appropriate modification of the PC and IR as described in Chapter : Control state
register (CTL) on page 321”) with a Go+NoExit OnCE command value.

2. The debugger scans out the OSR with no register selected, GO cleared, and
determines that the PCU has re-entered the debug state and that no ERR condition
occurred.

To return the CPU to normal operation (without disabling external debug mode):

1. OCR[DMDIS] and OCR[DR] should be cleared, leaving OCR[WKUP] set.

2. The debugger restores the CPUSCR with a previously saved value of the CPUSCR
(with appropriate modification of the PC and IR as described in Chapter : Control state
register (CTL) on page 321”), with a Go+Exit OnCE command value.

3. OCR[WKUP] may then be cleared.

To exit external debug mode:

1. The debugger should place the CPU in the debug state through the OCR[DR] with
OCR[WKUP] set, scanning out and saving the CPUSCR.

2. The debugger should write to DBCR0–DBCR3 as needed, likely clearing every enable
except DBCR0[EDM].

3. The debugger should write the DBSR to a cleared state.

4. The debugger should rewrite the DBCR0 with all bits including EDM cleared.

5. The debugger should clear OCR[DR].

6. The debugger restores the CPUSCR with the previously saved value of the CPUSCR
(with appropriate modification of the PC and IR as described in Chapter : Control state
register (CTL) on page 321”) with a Go+Exit OnCE command value.

7. OCR[WKUP] may then be cleared.

Note: These steps are only examples rather than an exact template for debugger operations.

UM0434 Nexus3 module

 329/391

12 Nexus3 module

The e200z3 Nexus3 module provides real-time development capabilities for e200z3
processors in compliance with the IEEE-ISTO Nexus 5001-2003 standard. This module
provides development support capabilities without requiring the use of address and data
pins for internal visibility.

A portion of the pin interface (the JTAG port) is also shared with the OnCE/Nexus1 unit. The
IEEE-ISTO 5001-2003 standard defines an extensible auxiliary port which is used in
conjunction with the JTAG port in e200z3 processors.

12.1 Introduction

12.1.1 General description

This chapter defines the auxiliary pin functions, transfer protocols and standard
development features of a class 3 device in compliance with the IEEE-ISTO Nexus 5001-
2003 standard. The development features supported are program trace, data trace,
watchpoint messaging, ownership trace, and read/write access through the JTAG interface.
The Nexus3 module also supports two class 4 features: watchpoint triggering, and
processor overrun control.

12.1.2 Terms and definitions

Table 210 contains a set of terms and definitions associated with the Nexus3 module.

Table 210. Terms and definitions

Term Description

IEEE-ISTO 5001
Consortium and standard for real-time embedded system design.
World Wide Web documentation at the Nexus 5001™ Forum website.

Auxiliary port
Refers to Nexus auxiliary port. Used as auxiliary port to the IEEE
1149.1 JTAG interface.

Branch trace messaging
(BTM)

Visibility of addresses for taken branches and exceptions, and the
number of sequential instructions executed between each taken
branch.

Data read message (DRM) External visibility of data reads to memory-mapped resources.

Data write message (DWM) External visibility of data writes to memory-mapped resources.

Data trace messaging
(DTM)

External visibility of how data flows through the embedded system. This
may include DRM and/or DWM.

JTAG compliant Device complying to IEEE 1149.1 JTAG standard.

JTAG IR and DR sequence

JTAG instruction register (IR) scan to load an opcode value for selecting
a development register. The JTAG IR corresponds to the OnCE
command register (OCMD). The selected development register is then
accessed through a JTAG data register (DR) scan.

Nexus3 module UM0434

330/391

12.1.3 Feature list

The Nexus3 module is compliant with class 3 of the IEEE-ISTO 5001-2003 standard. The
following features are implemented:

● Program trace through branch trace messaging (BTM). Displays program flow
discontinuities, direct and indirect branches, and exceptions, allowing the development
tool to interpolate what transpires between the discontinuities. Thus static code may be
traced.

● Data trace by means of data write messaging (DWM) and data read messaging (DRM).
DRM and DWM provide the capability for the development tool to trace reads and/or
writes to selected internal memory resources.

● Ownership trace by means of ownership trace messaging (OTM). Facilitates ownership
trace by providing visibility of which process ID or operating system task is activated.
An ownership trace message is transmitted when a new process/task is activated,
allowing the development tool to trace ownership flow.

● Run-time access to embedded processor registers and memory map through the JTAG
port. This allows for enhanced download/upload capabilities.

● Watchpoint messaging through the auxiliary pins

● Watchpoint trigger enable of program and/or data trace messaging

● Auxiliary interface for higher data input/output:

– Configurable, min/max, message data out pins, nex_mdo[n:0]
– One or two message start/end out pins, nex_mseo_b[1:0]
– One read/write ready pin, nex_rdy_b
– One watchpoint event pin, nex_evto_b
– One event in pin, nex_evti_b
– One message clock out (MCKO) pin

Nexus1
The e200z3 (OnCE) debug module. This module integrated with each
e200z3 processor provides all static, core-halted, debug functionality.
This module complies with class 1 of the IEEE-ISTO 5001 standard.

Ownership trace message
(OTM)

Visibility of process/function that is currently executing.

Public messages
Messages on the auxiliary pins for meeting common visibility and
controllability requirements.

SOC
System-on-a-chip (SOC) signifies all of the modules on a single die.
This generally includes one or more processors with associated
peripherals, interfaces, and memory modules.

Standard
The phrase “according to the standard” is used to indicate the IEEE-
ISTO 5001 standard.

Transfer code (TCODE)
Message header that identifies the number and/or size of packets to be
transferred and how to interpret each of the packets.

Watchpoint
A data or instruction breakpoint that does not cause the processor to
halt. Instead, a pin is used to signal that the condition occurred. A
watchpoint message is also generated.

Table 210. Terms and definitions (continued)

Term Description

UM0434 Nexus3 module

 331/391

● Registers for program trace, data trace, ownership trace, and watchpoint trigger

● All features controllable and configurable through the JTAG port

Note: Configuration of the message data out pins is controlled by the port control register at the
SoC level in multiple Nexus implementations. For single Nexus implementations, this
configuration is controlled by DC1 within the e200z3 Nexus3 module.
In either implementation, full port mode (FPM—maximum number of MDO pins) or reduced
port mode (RPM—minimum number of MDO pins) is supported. This setting should not be
changed while the system is running.
The configuration of the message start/end out pins, 1 or 2, is determined at the SOC
integration level. This option is hard-wired based on SOC bandwidth requirements.
Figure 72 shows the functional block diagram.

Figure 72. Nexus3 functional block diagram

nex_mseo0_b

nex_mcko

C
or

e
V

irt
ua

l B
us

A
H

B
 S

ys
te

m
 B

us

Nexus3 Block

Nexus1 Block (within core CPU)

nex_mdo[n:0]

j_tdo

j_tdi

j_tms
j_tclk
j_trst_b

nex_evto_b

nex_rdy_b

nex_evti_b

nex_mseo1_b

N+1

nex_aux_req[1:0]

npc_aux_grant

2

Note: The nex_aux_req[1:0], npc_aux_grant and nex_aux_busy signals are used for inter-module

nex_aux_busy

communication in a multiple Nexus environment. They are not pins on the SoC.

ext_multi_nex_sel

Registers

DMA Registers

OnCE Debug

Breakpoint/
Watchpoint

Control

Memory
Control

Control/Statust
Registers

Instruction
Snoop

I/O
Logic

Data
Snoop

DMA
(R/W)

Message
Queues

Nexus3 module UM0434

332/391

12.2 Enabling Nexus3 operation
The Nexus module is enabled by loading a single instruction, NEXUS3-Access, into the
JTAG instruction register/OnCE OCMD register. For the e200z3 Nexus3 module, the OCMD
value is 0b00_0111_1100. Once enabled, the module is ready to accept control input
through the JTAG/OnCE pins.

The Nexus module is disabled when the JTAG state machine reaches the test-logic-reset
state. This state can be reached by the assertion of the j_trst_b pin or by cycling through the
state machine using the j_tms pin. The Nexus module can also be disabled if a power-on
reset (POR) event occurs. If the Nexus3 module is disabled, no trace output is provided, and
the module disables auxiliary port output pins, nex_mdo[n:0], nex_mseo[1:0], and
nex_mcko. Nexus registers are not available for reads or writes.

Note: See Nexus 3 Integration Guide for details on IEEE-ISTO 5001 compliance output pins &
multiple Nexus module configurations.

12.3 TCODEs supported
The Nexus3 pins allow for flexible transfer operations through public messages. A TCODE
defines the transfer format, the number and/or size of the packets to be transferred, and the
purpose of each packet. The IEEE-ISTO 5001-2003 standard defines a set of public
messages. The Nexus3 block supports the public TCODEs seen in Table 211. Each
message contains multiple packets transmitted in the order shown in the table.

Table 211. Public TCODEs supported

Message name
Minimum

Packet
Size (Bits)

Maximum
Packet

Size (Bits)

Packet
type

Packet description

Debug status

6 6 Fixed TCODE number = 0 (0x00)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

8 8 Fixed Debug status register (DS[31–24])

Ownership trace
message

6 6 Fixed TCODE number = 2 (0x02)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

32 32 Fixed Task/process ID tag

Program trace–Direct
branch message

6 6 Fixed TCODE number = 3 (0x03)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

1 8 Variable
Number of sequential instructions executed since last
taken branch

UM0434 Nexus3 module

 333/391

Program trace–Indirect
branch message

6 6 Fixed TCODE number = 4 (0x04)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

1 8 Variable
Number of sequential instructions executed since last
taken branch

1 32 Variable
Unique part of target address for taken
branches/exceptions

Data trace–Data write
message

6 6 Fixed TCODE number = 5 (0x05)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

3 3 Fixed Data size. Refer to Table 215.

1 32 Variable Unique portion of the data write address

1 64 Variable Data write value(s). See data trace section for details.

Data trace–Data read
message

6 6 Fixed TCODE number = 6 (0x06)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

3 3 Fixed Data size. Refer to Table 215.

1 32 Variable Unique portion of the data read address

1 64 Variable Data read value(s). See data trace section for details.

Error message

6 6 Fixed TCODE number = 8 (0x08)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

5 5 Fixed Error code

Program trace–Direct
branch message with
synchronization

6 6 Fixed TCODE number = 11 (0x0B)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

1 8 Variable
Number of sequential instructions executed since last
taken branch

1 32 Variable Full target address (leading zeros truncated)

Program trace–Indirect
branch message with
synchronization

6 6 Fixed TCODE number = 12 (0x0C)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

1 8 Variable
Number of sequential instructions executed since last
taken branch

1 32 Variable Full target address (leading zeros truncated)

Table 211. Public TCODEs supported (continued)

Message name
Minimum

Packet
Size (Bits)

Maximum
Packet

Size (Bits)

Packet
type

Packet description

Nexus3 module UM0434

334/391

Data trace–Data write
message with
synchronization

6 6 Fixed TCODE number = 13 (0x0D)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

3 3 Fixed Data size. Refer to Table 215.

1 32 Variable Full access address (leading zeros truncated)

1 64 Variable Data write value(s). See data trace section for details.

Data trace–Data read
message with
synchronization

6 6 Fixed TCODE number = 14 (0x0E)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

3 3 Fixed Data size. Refer to Table 215.

1 32 Variable Full access address (leading zeros truncated)

1 64 Variable Data read value(s). See data trace section for details.

Watchpoint message

6 6 Fixed TCODE number = 15 (0x0F)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

8 8 Fixed Number indicating watchpoint source(s)

Resource full message

6 6 Fixed TCODE number = 27 (0x1B)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

4 4 Fixed
Resource code. Refer to Table 213. Indicates which
resource is the cause of this message.

1 32 Variable
Branch/predicate instruction history (see
Chapter 12.7.1: Branch trace messaging (BTM) on
page 350”)

Program trace–Indirect
branch history
message

6 6 Fixed TCODE number = 28 (0x1C). See note below.

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

1 8 Variable
Number of sequential instructions executed since last
taken branch

1 32 Variable
Unique part of target address for taken
branches/exceptions

1 32 Variable
Branch/predicate instruction history (see
Chapter 12.7.1: Branch trace messaging (BTM) on
page 350”).

Table 211. Public TCODEs supported (continued)

Message name
Minimum

Packet
Size (Bits)

Maximum
Packet

Size (Bits)

Packet
type

Packet description

UM0434 Nexus3 module

 335/391

Table 212 shows error code encodings used when reporting an error through the Nexus3 error message.

Program trace–Indirect
branch history
message with
synchronization

6 6 Fixed TCODE number = 29 (0x1D). See note below.

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

1 8 Variable
Number of sequential instructions executed since last
taken branch

1 32 Variable Full target address (leading zero (0) truncated)

1 32 Variable
Branch/predicate instruction history (see
Chapter 12.7.1: Branch trace messaging (BTM) on
page 350”).

Program trace–
Program correlation
message

6 6 Fixed TCODE number = 33 (0x21)

4 4 Fixed
Source processor identifier (multiple Nexus
configuration)

4 4 Fixed
Event correlated with program flow. Refer to
Table 214.

1 8 Variable
Number of sequential instructions executed since last
taken branch

1 32 Variable
Branch/predicate instruction history (see
Chapter 12.7.1: Branch trace messaging (BTM) on
page 350”).

Table 211. Public TCODEs supported (continued)

Message name
Minimum

Packet
Size (Bits)

Maximum
Packet

Size (Bits)

Packet
type

Packet description

Table 212. Error code encodings (TCODE = 8)

Error code

(ECODE)
Description

00000 Ownership trace overrun

00001 Program trace overrun

00010 Data trace overrun

00011 Read/write access error

00101 Invalid access opcode (Nexus register unimplemented)

00110 Watchpoint overrun

00111 Program trace or data trace and ownership trace overrun

01000 Program trace or data trace or ownership trace and watchpoint overrun

01001–10111 Reserved

11000 BTM lost due to collision with higher priority message

11001–11111 Reserved

Nexus3 module UM0434

336/391

Table 213 shows the encodings used for resource codes for certain messages.

Table 214 shows the event code encodings used for certain messages.

Table 215 shows the data trace size encodings used for certain messages.

Note: Program trace can be implemented using either branch history/predicate instruction
messages, or traditional direct/indirect branch messages, and the user can select between
the two types of program trace. The advantages of each are discussed in Chapter 12.7.1:
Branch trace messaging (BTM) on page 350.” If the branch history method is selected, the
shaded TCODES above will not be messaged out.

12.4 Nexus3 Programmer’s model
This section describes the Nexus3 programmers model. Nexus3 registers are accessed
using the JTAG/OnCE port in compliance with IEEE 1149.1. See Chapter 12.5: Nexus3
register access through JTAG/OnCE on page 348,” for details on Nexus3 register access.

Nexus3 registers and output signals are numbered using bit 0 as the least significant bit.
This bit ordering is consistent with the ordering defined by the IEEE-ISTO 5001 standard.

Table 213. Resource code encodings (TCODE = 27)

Resource code

(RCODE)
Description

0000 Program trace instruction counter reached 255 and was reset.

0001
Program trace, branch/predicate instruction history. This type of packet is
terminated by a stop bit set after the last history bit.

Table 214. Event code encodings (TCODE = 33)

Event code
(EVCODE)

Description

0000 Entry into debug mode

0001 Entry into low power mode (CPU only)

0010–1111 Reserved

1110 Entry into a VLE page from a non-VLE page

1111 Entry into a non-VLE page from a VLE page

Table 215. Data trace size encodings (TCODE = 5, 6, 13, or 14)

DTM size encoding Transfer size

000 Byte

001 Half-word (2 bytes)

010 Word (4 bytes)

011 Double-word (8 bytes)

100 String (3 bytes)

101–111 Reserved

UM0434 Nexus3 module

 337/391

Table 216 shows the register map for the Nexus3 module.

12.4.1 Client select control register (CSC)

The CSC register determines which Nexus client is under development. This register is
present at the top-level SOC Nexus3 controller to select an on-chip Nexus3 units Table 217
shows the CSC register.

Table 216. Nexus3 register map

Nexus register
Nexus
access
opcode

Read/Write
Read

address
Write

address

Client select control (CSC)(1)

1. The CSC and PCR registers are shown in this table as part of the Nexus programmer’s model. They are
only present at the top level SoC Nexus3 controller in a multiple Nexus implementation, not in the e200z3
Nexus3 module. The SoC’s CSC register is readable through Nexus3, but the PCR is shown here for
reference only.

2 PCR_INDEX is a parameter determined by the SoC. Refer to the reference manual for the device
integrating the e200z3 core for more information on how this parameter is implemented for each Nexus
module.

0x1 R 0x02 —

Port configuration register (PCR)(1) PCR_INDEX2 R/W — —

Development control1 (DC1) 0x2 R/W 0x04 0x05

Development control2 (DC2) 0x3 R/W 0x06 0x07

Development status (DS) 0x4 R 0x08 —

Read/write access control/status (RWCS) 0x7 R/W 0x0E 0x0F

Read/write access address (RWA) 0x9 R/W 0x12 0x13

Read/write access data (RWD) 0xA R/W 0x14 0x15

Watchpoint trigger (WT) 0xB R/W 0x16 0x17

Data trace control (DTC) 0xD R/W 0x1A 0x1B

Data trace start address1 (DTSA1) 0xE R/W 0x1C 0x1D

Data trace start address2 (DTSA2) 0xF R/W 0x1E 0x1F

Data trace end address1 (DTEA1) 0x12 R/W 0x24 0x25

Data trace end address2 (DTEA2) 0x13 R/W 0x26 0x27

Reserved 0x14–0x3F — 0x28–0x7E 0x29–0x7F

Table 217. Client Select Control Register

7 4 3 0

Field — CS

Reset All zeros

R/W Read only

Number 0x1

Nexus3 module UM0434

338/391

12.4.2 Port configuration register (PCR)

The port configuration register (PCR) shown in Table 219 controls the basic port functions
for all Nexus modules in a multiple Nexus environment. This includes clock control and
auxiliary port width. All bits in this register are writable only once after system reset.

Note: The CSC and PCR registers exist in a separate module at the SoC level in a multiple Nexus
environment. If the e200z3 Nexus3 module is the only Nexus module, these registers are
not implemented and the e200z3 Nexus3-defined development control register 1 (DC1) is
used to control Nexus port functionality.

Table 218. CSC field descriptions

Bits Name Description

7–4 — Reserved, should be cleared.

3–0 CSC
Client select control

0xX = Nexus client (SoC level)

Table 219. Port configuration register

31 30 29 28 26 25 0

Field OPC — MCK_EN MCK_DIV —

Reset All zeros

R/W Read/Write

Number PCR_INDEX

Table 220. PCR field descriptions

Bits Name Description

31 OPC

Output port mode control

0 Reduced port mode configuration (minimum number of nex_mdo[n:0] pins
defined by SOC)

1 Full port mode configuration (maximum number of nex_mdo[n:0] pins
defined by SOC)

30 — Reserved

29 MCK_EN
MCKO clock enable. See note below.
0 nex_mcko is disabled

1 nex_mcko is enabled

28–26 MCK_DIV

MCKO clock divide ratio

000 nex_mcko is 1x processor clock freq.

001 nex_mcko is 1/2x processor clock freq.
010 Reserved (default to 1/2x processor clock freq.)

011 nex_mcko is 1/4x processor clock freq.

100–110 Reserved (default to 1/2x processor clock freq.)
111 nex_mcko is 1/8x processor clock freq.

25–0 — Reserved

UM0434 Nexus3 module

 339/391

12.4.3 Development control register 1, 2 (DC1, DC2)

The development control registers are used to control the basic development features of the
Nexus3 module. Development control register 1 is shown in Table 221 and its fields are
described in Table 219.

Table 221. Development control register 1 (DC1)

31 30 29 28 27 26 25 24 23 8 7 5 4 3 2 0

Field OPC MCK_DIV EOC — PTM WEN — OVC EIC TM

Reset All zeros

R/W Read/Write

Number 0x2

Table 222. DC1 field descriptions

Bits Name Description

31 OPC

Output port mode control

0 Reduced port mode configuration (minimum number of nex_mdo[n:0] pins
defined by SOC)

1 Full port mode configuration (maximum number of nex_mdo[n:0] pins
defined by SOC)

30–29 MCK_DIV

MCKO clock divide ratio. See note below.
00 nex_mcko is 1x processor clock freq.

01 nex_mcko is 1/2x processor clock freq.

10 nex_mcko is 1/4x processor clock freq.
11 nex_mcko is 1/8x processor clock freq.

28–27 EOC

EVTO control
00 nex_evto_b upon occurrence of watchpoints (configured in DC2)

01 nex_evto_b upon entry into debug mode

10 nex_evto_b upon timestamping event
11 Reserved

26 — Reserved

25 PTM

Program trace method

0 Program trace uses traditional branch messages.
1 Program trace uses branch history messages.

24 WEN
Watchpoint trace enable
0 Watchpoint messaging disabled

1 Watchpoint messaging enabled

23–8 — Reserved

7–5 OVC

Overrun control
000 Generate overrun messages

001–010 Reserved

011 Delay processor for BTM/DTM/OTM overruns
1XX Reserved

Nexus3 module UM0434

340/391

Note: OPC and MCK_DIV must be modified only during system reset or debug mode to ensure
correct output port and output clock functionality. It is also recommended that all other bits of
DC1 be modified only in one of these two modes.

Development control register 2 is shown in Table 223 and its fields are described in
Table 224.

The EOC bits in DC1 must be programmed to trigger EVTO on watchpoint occurrence for
the EWC bits to have any effect.

12.4.4 Development status register (DS)

The development status registe shown in Table 225 is used to report system debug status.
When debug mode is entered or exited, or an SOC- or e200z3-defined low-power mode is

4–3 EIC

EVTI control

00nex_evti_b is used for synchronization (program trace/data trace)

01nex_evti_b is used for debug request
1XReserved

2–0 TM

Trace mode
000No trace

1XXProgram trace enabled

X1XData trace enabled
XX1Ownership trace enabled

Table 222. DC1 field descriptions (continued)

Bits Name Description

Table 223. Development control register 2 (DC2)

31 24 23 0

Field EWC —

Reset All zeros

R/W Read/Write

Number 0x3

Table 224. DC2 field descriptions

Bits Name Description

31–24 EWC

EVTO Watchpoint Configuration

00000000No watchpoints trigger nex_evto_b
1xxxxxxxWatchpoint #0 (IAC1 from Nexus1) triggers nex_evto_b
x1xxxxxxWatchpoint #1 (IAC2 from Nexus1) triggers nex_evto_b
xx1xxxxxWatchpoint #2 (IAC3 from Nexus1) triggers nex_evto_b
xxx1xxxxWatchpoint #3 (IAC4 from Nexus1) triggers nex_evto_b
xxxx1xxxWatchpoint #4 (DAC1 from Nexus1) triggers nex_evto_b
xxxxx1xxWatchpoint #5 (DAC2 from Nexus1) triggers nex_evto_b
xxxxxx1xWatchpoint #6 (DCNT1 from Nexus1) triggers nex_evto_b
xxxxxxx1Watchpoint #7 (DCNT2 from Nexus1) triggers nex_evto_b

23–0 — Reserved

UM0434 Nexus3 module

 341/391

entered, a debug status message is transmitted with DS[31–25]. The external tool can read
this register at any time.

12.4.5 Read/Write access Control/Status register (RWCS)

The read write access control/status register, shown in Table 227, provides control for
read/write access. Read/write access provides DMA-like access to memory-mapped
resources on the AHB system bus either while the processor is halted, or during runtime.
RWCS also provides read/write access status information; see Table 229.

Table 225. Development status register (DS)

31 30 282726 25 24 0

Field DBG LPC LPC CHK —

Reset All zeros

R/W Read–only

Number 0x4

Table 226. DS field descriptions

Bits Name Description

31 DBG

e200z3 CPU debug mode status

0 CPU not in debug mode

1 CPU in debug mode (jd_debug_b signal asserted)

30–28 LPS

e200z3 system low power mode status

000 Normal (run) mode

XX1 Doze mode (p_doze signal asserted)
X1X Nap mode (p_nap signal asserted)

1XX Sleep mode (p_sleep signal asserted)

27–26 LPC

e200z3 CPU low power mode status

00 Normal (run) mode

01 CPU in halted state (p_halted signal asserted)
10 CPU in stopped state (p_stopped signal asserted)

11 Reserved

25 CHK

e200z3 CPU checkstop status

0 CPU not in checkstop state

1 CPU in checkstop state (p_chkstop signal asserted)

24–0 — Reserved, should be cleared.

Table 227. Read write access control/status register (RWCS)

31 30 29 2726 242322 21 20 1615 2 1 0

Field AC RW SZ MAP PR — CNT ERR DV

Reset All zeros

R/W Read/Write

Number 0x7

Nexus3 module UM0434

342/391

Table 229 details the status bit encodings.

12.4.6 Read/Write access data register (RWD)

The read/write access data register, shown in Table 230, provides the data to/from system
bus memory-mapped locations when initiating a read or a write access.

Table 228. RWCS field descriptions

Bits Name Description

31 AC
Access control
0 End access

1 Start access

30 RW

Read/write select

0 Read access

1 Write access

29–27 SZ

Word size

000 8-bit (byte)
001 16-bit (half-word)

010 32-bit (word)

011 64-bit (double word—only in burst mode)
100–111 Reserved (default to word)

26–24 MAP

MAP select

000 Primary memory map
001–111 Reserved

23–22 PR

Read/write access priority
00 Lowest access priority

01 Reserved (default to lowest priority)

10 Reserved (default to lowest priority)
11 Highest access priority

21–16 — Reserved

15–2 CNT Access control count. Number of accesses of word size SZ

1 ERR Read/write access error. See Table 229.

0 DV Read/write access data valid. See Table 229.

Table 229. Read/Write access status bit encodings

Read action Write action ERR DV

Read access has not completed. Write access completed without error 0 0

Read access error has occurred. Write access error has occurred 1 0

Read access completed without error Write access has not completed 0 1

Not allowed Not allowed 1 1

UM0434 Nexus3 module

 343/391

Read/write accesses to the AHB require that the debug firmware properly retrieve/place the
data in the RWD. Table 231 shows the proper placement of data into the RWD. Note that
double-word transfers require two passes through RWD.

Table 232 shows the mapping of RWD bytes to byte lanes of AHB read & write data buses.

Table 230. read/write access data register

31 0

Field Read/Write Data

Reset All zeros

R/W Read/Write

Number 0x9

Table 231. RWD data placement for transfers

Transfer sizeand byte offset RWA(2–0) RWCS[SZ]
RWD

31–24 23–16 15–8 7–0

Byte x x x 0 0 0 — — — X

Half x x 0 0 0 1 — — X X

Word x 0 0 0 1 0 X X X X

Doubleword 0 0 0 0 1 1

First RWD pass (low order data) X X X X

Second RWD pass (high order data) X X X X

"X" indicates byte lanes with valid data
“—” indicates byte lanes which will contain unused data.

Table 232. RWD byte lane data placement

Transfer sizeand
byte offset

RWA(2:0)
RWD

31–24 23–16 15–8 7–0

Byte @000 0 0 0 — — — AHB[7–0]

Byte @001 0 0 1 — — — AHB[15–8]

Byte @010 0 1 0 — — — AHB[23–16]

Byte @011 0 1 1 — — — AHB[31–24]

Byte @100 1 0 0 — — — AHB[39–32]

Byte @101 1 0 1 — — — AHB[47–40]

Byte @110 1 1 0 — — — AHB[55–48]

Byte @111 1 1 1 — — — AHB[63–56]

Half @000 0 0 0 — — AHB[15–8] AHB[7–0]

Half @010 0 1 0 — — AHB[31–24] AHB[23–16]

Half @100 1 0 0 — — AHB[47–40] AHB[39–32]

Nexus3 module UM0434

344/391

12.4.7 Read/Write access address register (RWA)

The read/write access address register, shown in Table 233, provides the system bus
address to be accessed when initiating a read or a write access.

12.4.8 Watchpoint trigger register (WT)

The watchpoint trigger register, shown in Table 234, allows the watchpoints defined within
the e200z3 Nexus1 logic to trigger actions. These watchpoints can control program and/or
data trace enable and disable. The WT bits can be used to produce an address related
window for triggering trace messages.

Half @110 1 1 0 — — AHB[63–56] AHB[55–48]

Word @000 0 0 0 AHB[31–24] AHB[23–16] AHB[15–8] AHB[7–0]

Word @100 1 0 0 AHB[63–56] AHB[55–48] AHB[47–40] AHB[39–32]

Doubleword @000 0 0 0 — — — —

First RWD pass AHB[31–24] AHB[23–16] AHB[15–8] AHB[7–0]

Second RWD pass AHB[63–56] AHB[55–48] AHB[47–40] AHB[39–32]

“—” indicates byte lanes which will contain unused data.

Table 232. RWD byte lane data placement (continued)

Transfer sizeand
byte offset

RWA(2:0)
RWD

31–24 23–16 15–8 7–0

Table 233. Read/write access address register

31 0

Field Read/Write Data

Reset All zeros

R/W Read/Write

Number 0xA

Table 234. Watchpoint trigger register

31 2928 2625 2322 2019 0

Field PTS PTE DTS DTE —

Reset All zeros

R/W Read/Write

Number 0xB

UM0434 Nexus3 module

 345/391

Table 235 details the watchpoint trigger register fields.

Note: The WT bits only control program/data trace if the TM bits within DC1 have not already been
set to enable program and data trace respectively.

Table 235. WT field descriptions

Bits Name Description

31–29 PTS

Program trace start control

000 Trigger disabled

001 Use watchpoint #0 (IAC1 from Nexus1)
010 Use watchpoint #1 (IAC2 from Nexus1)

011 Use watchpoint #2 (IAC3 from Nexus1)

100 Use watchpoint #3 (IAC4 from Nexus1)
101 Use watchpoint #4 (DAC1 from Nexus1)

110 Use watchpoint #5 (DAC2 from Nexus1)

111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1)

28–26 PTE

Program trace end control

000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1)

010 Use watchpoint #1 (IAC2 from Nexus1)

011 Use watchpoint #2 (IAC3 from Nexus1)

100 Use watchpoint #3 (IAC4 from Nexus1)
101 Use watchpoint #4 (DAC1 from Nexus1)

110 Use watchpoint #5 (DAC2 from Nexus1)

111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1)

25–23 DTS

Data trace start control

000 Trigger disabled
001 Use watchpoint #0 (IAC1 from Nexus1)

010 Use watchpoint #1 (IAC2 from Nexus1)

011 Use watchpoint #2 (IAC3 from Nexus1)
100 Use watchpoint #3 (IAC4 from Nexus1)

101 Use watchpoint #4 (DAC1 from Nexus1)

110 Use watchpoint #5 (DAC2 from Nexus1)
111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1)

22–20 DTE

Data trace end control
000 Trigger disabled

001 Use watchpoint #0 (IAC1 from Nexus1)

010 Use watchpoint #1 (IAC2 from Nexus1)
011 Use watchpoint #2 (IAC3 from Nexus1)

100 Use watchpoint #3 (IAC4 from Nexus1)

101 Use watchpoint #4 (DAC1 from Nexus1)
110 Use watchpoint #5 (DAC2 from Nexus1)

111 Use watchpoint #6 or #7 (DCNT1 or DCNT2 from Nexus1)

19–0 — Reserved, should be cleared

Nexus3 module UM0434

346/391

12.4.9 Data trace control register (DTC)

The data trace control register controls whether DTM messages are restricted to reads,
writes, or both for a user programmable address range. There are two data trace channels
controlled by the DTC for the Nexus3 module. Each channel can also be programmed to
trace data accesses or instruction accesses. Table 236 shows DTC.

Table 237 details the data trace control register fields.

Table 236. Data trace control register

31 30 29 28 27 8 7 6 5 4 3 2 1 0

Field RWT1 RWT2 — RC1RC2 — DI1 —

Reset All zeros

R/W Read/Write

Numbe
r

0xD

Table 237. DTC field descriptions

Bits Name Description

31–30 RWT1

Read/write trace 1
00 No trace enabled

X1 Enable data read trace

1X Enable data write trace

29–28 RWT2

Read/write trace 2

00 No trace enabled
X1 Enable data read trace

1X Enable data write trace

27–8 — Reserved, should be cleared.

7 RC1
Range control 1
0 Condition trace on address within range

1 Condition trace on address outside of range

6 RC2

Range control 2

0 Condition trace on address within range

1 Condition trace on address outside of range

5–4 — Reserved, should be cleared.

3 DI1

Data access/instruction access trace 1

0 Condition trace on data accesses

1 Condition trace on instruction accesses

2–0 — Reserved, should be cleared.

UM0434 Nexus3 module

 347/391

12.4.10 Data trace start address 1 and 2 registers (DTSA1 and DTSA2)

The data trace start address registers, shown in Table 238, define the start addresses for
each trace channel.

12.4.11 Data trace end address registers 1 and 2 (DTEA1 and DTEA2)

The data trace end address registers, shown in Table 239, define the end addresses for
each trace channel.

Table 240 shows the range that is selected for data trace for various cases of DTSA being
less than, greater than, or equal to DTEA.

Note: DTSA must be less than DTEA to guarantee correct data write/read traces. Data trace
ranges are inclusive of the DTSA and DTEA addresses for range control settings indicating
within range, and are exclusive of the DTSA and DTEA addresses or range control settings
indicating outside of range.

Table 238. Data trace start address registers

31 0

Field Data Trace Start Address

Reset All zeros

R/W Read/Write

Number DTSA1: 0xE; DTSA2: 0xF

Table 239. Data trace end address registers

31 0

Field Data Trace End Address

Reset All zeros

R/W Read/Write

Number DTEA1: 0x12; DTEA2: 0x13

Table 240. Data Trace—Address range options

Programmed values Range control bit value Range selected

DTSA < DTEA

0
The address range lies between the values
specified by DTSA and DTEA. (DTSA -> <-
DTEA)

1
The address range lies outside the values
specified by DTSA and DTEA. (<-DTSA DTEA->)

DTSA > DTEA N/A Invalid range–No trace

DTSA = DTEA N/A Invalid range–No trace

Nexus3 module UM0434

348/391

12.5 Nexus3 register access through JTAG/OnCE
Access to Nexus3 register resources is enabled by loading a single instruction, NEXUS3-
Access, into the JTAG instruction register/OnCE OCMD register. For the Nexus3 block, the
OCMD value is 0b00_0111_1100.

Once the NEXUS3-Access instruction has been loaded, the JTAG/OnCE port allows
tool/target communications with all Nexus3 registers according to the register map in
Table 216.

Reading/writing of a Nexus3 register then requires two passes through the data-scan path
of the JTAG state machine 12 (see Chapter 12.15: IEEE 1149.1 (JTAG) RD/WR sequences
on page 379”).

1. The first pass through the DR selects the Nexus3 register to be accessed by providing
an index (see Table 216), and the direction, read/write. This is achieved by loading an
8-bit value into the JTAG data register (DR). This register has the format shown in
Table 241.

2. The second pass through the DR then shifts the data in or out of the JTAG port, least
significant bit first.

a) During a read access, data is latched from the selected Nexus register when the
JTAG state machine passes through the capture-DR state.

b) During a write access, data is latched into the selected Nexus register when the
JTAG state machine passes through the update-DR state.

12.6 Ownership trace
This section details the ownership trace features of the Nexus3 module.

12.6.1 Overview

Ownership trace provides a macroscopic view, such as task flow reconstruction, when
debugging software is written in a high-level or object-oriented language. It offers the
highest level of abstraction for tracking operating system software execution. This is
especially useful when the developer is not interested in debugging at lower levels.

Table 241. Nexus3 Register Access through JTAG/OnCE (Example)

(7 bits) (1 bit)

Nexus Register Index R/W

Reset Value: 0x00

Table 242. Nexus register example

Field Description

Nexus Register Index Selected from values in Table 216

Read/write (R/W)
0 Read

1 Write

UM0434 Nexus3 module

 349/391

12.6.2 Ownership trace messaging (OTM)

Ownership trace information is messaged by means of the auxiliary port using OTM. For
e200z3 processors, there are two distinct methods for providing task/process ID data. Some
e200 processors contain a Book E–defined process ID register within the CPU while others
may not. Within Nexus, task/process ID data is handled in one of the following two ways in
order to maintain IEEE-ISTO 5001 compliance.

1. If the process ID register exists, it is updated by the operating system software to
provide task/process ID information. The contents of this register are replicated on the
pins of the processor and connected to Nexus. The process ID register value can be
accessed using the mfspr/mtspr instructions. See Chapter 4.16.5: Process ID register
(PID0) on page 96.”

2. If the process ID register does not exist, the user base address register (UBA) is
implemented within Nexus. The UBA can be accessed by means of the JTAG/OnCE
port and contains the address of the ownership trace register (OTR). The memory-
mapped OTR is updated by the operating system software to provide task/process ID
information.

Note: The e200z3 includes a process ID register (PID0), thus the UBA functionality is not
implemented.

There are two conditions that cause an ownership trace message:

1. When new information is updated in the OTR register or process ID register by the
e200z3 processor, the data is latched within Nexus and is messaged out through the
auxiliary port, allowing development tools to trace ownership flow.

2. When the periodic OTM message counter expires after 255 queued messages without
an OTM, an OTM is sent. The data is sent from either the latched OTR data or the
latched process ID data. This allows processors using virtual memory to be regularly
updated with the latest process ID.

Ownership trace information is messaged out in the format shown in Table 243.

12.6.3 OTM error messages

An error message occurs when the message queue is full and a new message cannot be
queued. The FIFO discards incoming messages until it has completely emptied the queue.
Once the queue is emptied, an error message is queued. The error encoding indicates
which types of messages attempted to be queued while the FIFO was being emptied.

If only an OTM message attempts to enter the queue while the queue is being emptied, the
error message only incorporates the OTM error encoding 00000. If both OTM and either
BTM or DTM (that is, OTM and BTM or OTM and DTM) messages attempt to enter the
queue, the error message incorporates the OTM and program or data trace error
encoding 00111. If a watchpoint also attempts to be queued while the FIFO is being
emptied, then the error message incorporates error encoding 01000.

Table 243. Ownership trace message format

(32 bits) (4 bits) (6 bits)

Task/Process ID Tag
Source
Process

TCODE
(000010)

Fixed Length = 42 bits

Nexus3 module UM0434

350/391

Note: DC1[OVC] can be set to delay the CPU in order to alleviate, but not eliminate, potential
overrun situations.

Error information is messaged out in the format shown in Table 244.

12.6.4 OTM flow

Ownership trace messages are generated when the operating system writes to the e200z3
process ID register (PID0) or the memory-mapped ownership trace register (OTR).

The following flow describes the OTM process:

● The process ID register is a system control register. It is internal to the core processor
and can be accessed by using PPC instructions. The contents of this register are
replicated on the pins of the processor and connected to Nexus.

● Writes to the e200z3 internal process ID register will pulse a write signal to Nexus. The
data value written into the process ID register is latched and formed into the ownership
trace message that is queued to be transmitted.

● Process ID register reads do not cause ownership trace messages to be transmitted by
the Nexus 3 module.

12.7 Program trace
This section details the program trace mechanism supported by Nexus3 for the e200z3
processor. Program trace is implemented using branch trace messaging (BTM) as required
by the class 3 IEEE-ISTO 5001-2003 standard definition. Branch trace messaging for
e200z3 processors is accomplished by snooping the e200z3 virtual address bus, between
the CPU and MMU, attribute signals, and CPU status p_pstat[0:5].

12.7.1 Branch trace messaging (BTM)

Traditional branch trace messaging facilitates program trace by providing the following types
of information:

● Messaging for taken direct branches includes how many sequential instructions were
executed since the last taken branch or exception. Direct or indirect branches not taken
are counted as sequential instructions.

● Messaging for taken indirect branches and exceptions includes how many sequential
instructions were executed since the last taken branch or exception and the unique
portion of the branch target address or exception vector address.

Branch history messaging facilitates program trace by providing the following information:

● Messaging for taken indirect branches and exceptions includes how many sequential
instructions were executed since the last predicate instruction, taken indirect branch, or
exception, the unique portion of the branch target address or exception vector address,
and a branch/predicate instruction history field. Each bit in the history field represents a
direct branch or predicated instruction where a value of one indicates taken and a value

Table 244. Error message format

(5 bits) (4 bits) (6 its)

Error Code (00000, 00111, or 01000) Source Process TCODE (001000)

Fixed Length = 15 bits

UM0434 Nexus3 module

 351/391

of zero indicates not taken. Certain instructions (evsel) generate a pair of predicate bits
that are both reported as consecutive bits in the history field.

e200z3 indirect branch message instructions (Book E)

Table 245 shows the types of instructions and events that cause indirect branch messages
or branch history messages to be encoded.

e200z3 direct branch message instructions (Book E)

Table 246 shows the types of instructions that cause direct branch messages or that toggle
a bit in the instruction history buffer to be messaged out in a resource full message or
branch history message.

BTM using branch history messages

Traditional BTM can accurately track the number of sequential instructions between
branches, but cannot accurately indicate which instructions were conditionally executed and
which were not.

Branch history messaging solves this problem by providing a predicated instruction history
field in each indirect branch message. Each bit in the history represents a predicated
instruction or direct branch, or a not-taken indirect branch. A value of one indicates the
conditional instruction was executed or the direct branch was taken. A value of zero
indicates the conditional instruction was not executed or the direct branch was not taken.
Certain instructions (evsel) generate a pair of predicate bits that are both reported as
consecutive bits in the history field.

Branch history messaging facilitates program trace by providing the information described in
Chapter : e200z3 indirect branch message instructions (Book E) on page 351”:

Branch history messages solve predicated instruction tracking and save bandwidth because
only indirect branches cause messages to be queued.

BTM using traditional program trace messages

Program tracing can utilize either branch history messages (DC1[PTM] = 1) or traditional
direct/indirect branch messages (DC1[PTM] = 0).

Table 245. Indirect branch message sources

Source of indirect branch message Instructions

Taken branch relative to a register value
bcctr, bcctrl, bclr, bclrl, se_bctr,
se_bctrl, se_blr, se_blrl

System call/trap exceptions taken sc, se_sc, tw, twi

Return from interrupts/exceptions rfi, rfci, rfdi, se_rfi, se_rfci, se_rfdi

Table 246. Direct branch message sources

Source of direct branch message Instructions

Taken direct branch instructions
b, ba, bl, bla, bc, bca, bcl, bcla,
se_b. se_bc, se_bl, e_b, e_bc,
e_bl, e_bcl, isync, se_isync

Instruction synchronize isync, se_isync

Nexus3 module UM0434

352/391

Branch history saves bandwidth and keeps consistency between methods of program trace,
yet may lose temporal order between BTM messages and other types of messages. Since
direct branches are not messaged, but are instead included in the history field of the indirect
branch history message, other types of messages may enter the FIFO between branch
history messages. The development tool cannot determine the ordering of events that
occurred with respect to direct branches simply by the order in which messages are sent
out.

Traditional BTM messages maintain their temporal ordering because each event that can
cause a message to be queued enters the FIFO in the order it occurred and is messaged
out maintaining that order.

12.7.2 BTM message formats

The e200z3 Nexus3 block supports three types of traditional BTM messages: direct,
indirect, and synchronized messages. It supports two types of branch history BTM
messages: indirect branch history, and indirect branch history with synchronized messages.
Debug status messages and error messages are also supported.

Indirect branch messages (History)

Indirect branches include all taken branches whose destination is determined at run time,
interrupts, and exceptions. If DC1[PTM] is set, indirect branch information is messaged out
in the format shown in Table 247:

Indirect branch messages (Traditional)

If DC1[PTM] is cleared, indirect branch information is messaged out in the format shown in
Table 248:

Direct branch messages (Traditional)

Direct branches, conditional or unconditional, are all taken branches whose destinations are
fixed in the instruction opcode. Direct branch information is messaged out in the format
shown in Table 249:

Table 247. Indirect Branch Message (History) Format

(1–32 bits) (1–32 bits) (1–8 bits) (4 bits) (6 bits)

Branch History Relative Address
Sequence

Count

Source
Proces

s

TCODE
(011100

)

Maximum length = 82 bit; Minimum length = 13 bits

Table 248. Indirect Branch Message Format

(1–32 bits) (1–8 bits) (4 bits) (6 bits)

Relative Address Sequence Count
Source
Process

TCODE
(000100)

Maximum length = 50 bits; minimum length = 12 bits

UM0434 Nexus3 module

 353/391

Note: When DC1[PTM] is set, direct branch messages are not transmitted. Instead, each direct
branch or predicated instruction toggles a bit in the history buffer.

Resource full messages

The resource full message is used in conjunction with the branch history messages. The
resource full message is generated when the internal branch/predicate history buffer is full.
If synchronization is needed at the time this message is generated, the synchronization is
delayed until the next branch trace message that is not a resource full message.

For history buffer overflow, the resource full message transmits a resource code (RCODE)
of 0b0001 and the current contents of the history buffer, including the stop bit, are
transmitted in the resource data (RDATA) field. This history information can be concatenated
by the development tool with the branch/predicate history information from subsequent
messages to obtain the complete branch/predicate history between indirect changes of flow.

For instruction counter overflow, the resource full message transmits an RCODE of 0b0000
and a value of 0xFF is transmitted in the RDATA field, indicating that 255 sequential
instructions have been executed since the last change of flow or, if program trace is in
history mode, since the last instruction that recorded history information

Table 250 shows the RCODE encodings and RDATA information used for Resource Full
messages.

Debug status messages

Debug status messages report low-power mode and debug status. Debug status messages
are enabled when Nexus 3 is enabled. Entering/exiting debug mode as well as entering a
low-power mode triggers a debug status message, indicating the value of the most
significant byte in the development status register. Debug status information is sent out in
the format shown in Table 251:

Table 249. Direct Branch Message Format

(1–8 bits) (4 bits) (6 bits)

Sequence Count Source Process TCODE (000011)

Maximum Length = 18 bits; minimum length = 11 bits

Figure 73. Resource full message format

(1–32 bits) (4 bits) (4 bits) (6 bits)

Branch History
RCODE
(0001)

Source
Process

TCODE
(011011)

Maximum length = 46 bits; minimum length = 15 bits

Table 250. RCODE encoding

RCODE RDATA field Description

0000 0xFF
Program trace instruction counter reached 255
and was reset.

0001
Branch history. This type of packet is
terminated by a stop bit set after the
last history bit.

Program trace, branch/predicate instruction
history full.

Nexus3 module UM0434

354/391

Program correlation messages

Program correlation messages (PCMs) are used to correlate events to the program flow that
may not be associated with the instruction stream. The following events will result in a PCM
when program trace is enabled:

● When the CPU enters debug mode, a PCM is generated. The instruction count and
history information provided by the PCM can be used to determine the last sequence of
instructions executed prior to debug mode entry.

● When the CPU enters a low power mode in which instructions are no longer executed,
a PCM is generated. The instruction count and history information provided by the
PCM can be used to determine the last sequence of instructions executed prior to low-
power mode entry.

● Whenever program trace is disabled by any means, a PCM is generated. The
instruction count and history information provided by the PCM can be used to
determine the last sequence of instructions executed prior to disabling program trace. A
second PCM is generated on this event if there has been an execution mode switch into
or out of a sequence of VLE instructions. This VLE state information allows the
development tool to interpret any preceding instruction count or history information in
the proper context.

● Whenever the CPU crosses a page boundary that results in an execution mode switch
into or out of a sequence of VLE instructions, a PCM is generated. The PCM effectively
breaks up any running instruction count and history information between the two
modes of operation so that the instruction count and history information can be
processed by the development tool in the proper context.

● When using program trace in history mode, when a direct branch results in an
execution mode switch into or out of a sequence of VLE instructions, a PCM is
generated. The PCM effectively breaks up any running history information between the
two modes of operation so that the history information can be processed by the
development tool in the proper context.

Program correlation is messaged out in the format shown in Table 252:

BTM overflow error messages

An error message occurs when the message queue is full and a new message cannot be
queued. The FIFO discards incoming messages until it has completely emptied the queue.
Once emptied, an error message is queued. The error encoding indicates which types of
messages attempted to be queued while the FIFO was being emptied.

Table 251. Debug status message format

(8 bits) (4 bits) (6 bits)

31–24 Source Process TCODE (000000)

Fixed length = 18 bits

Table 252. Program correlation message format

(1–32 bits) (1–8 bits) (4 bits) (4 bits) (6 bits)

Branch History
Sequence

Count
ECOD

E
Source
Process

TCODE (1000
01)

Maximum length = 54 bits; minimum length = 16 bits

UM0434 Nexus3 module

 355/391

If only a program trace message attempts to enter the queue while it is being emptied, the
error message incorporates the program trace only error encoding, 00001. If both OTM and
program trace messages attempt to enter the queue, the error message incorporates the
OTM and program trace error encoding 00111. If a watchpoint also attempts to be queued
while the FIFO is being emptied, the error message incorporates error encoding 01000.

Note: DC1[OVC] can be set to delay the CPU in order to alleviate, but not eliminate, potential
overrun situations.

 Error information is messaged out in the format shown in Table 253:

Program trace synchronization messages

A program trace direct/indirect branch with synchronization message is messaged using the
auxiliary port, provided program trace is enabled, for the following conditions (see
Table 256):

● Initial program trace message upon the first direct/indirect branch after exit from system
reset or whenever program trace is enabled

● Upon direct/indirect branch after returning from a CPU low-power state

● Upon direct/indirect branch after returning from debug mode

● Upon direct/indirect branch after occurrence of queue overrun, which can be caused by
any trace message

● Upon direct/indirect branch after the periodic program trace counter has expired,
indicating 255 without-synchronization program trace messages have occurred since
the last with-synchronization message occurred

● Upon direct/indirect branch after assertion of the event-in (nex_evti_b) signal, if the EIC
bits within the DC1 register have enabled this feature

● Upon direct/indirect branch after the sequential instruction counter has expired,
indicating 255 instructions have occurred between branches

● Upon direct/indirect branch after a BTM message was lost due to an attempted access
to a secure memory location (for SOCs with security)

● Upon direct/indirect branch after a BTM message was lost due to a collision entering
the FIFO between the BTM message and either a watchpoint message or an
ownership trace message

If the Nexus3 module is enabled at reset, a nex_evti_b assertion initiates a program trace
direct/indirect branch with synchronization message if program trace is enabled upon the
first direct/indirect branch. The format for program trace direct/indirect branch with
synchronization messages is shown in Table 254:

Table 253. Error message format

(5 bits) (4 bits) (6 bits)

Error Code(1)

1. Must be one of 00001, 00111, or 01000.

Source Process TCODE (001000)

Fixed length = 15 bits

Nexus3 module UM0434

356/391

The formats for program trace direct/indirect branch with synchronized messages and
indirect branch history with synchronized messages are shown in Table 255:

Exceptions resulting in program trace synchronization are summarized in Table 256.

Table 254. Direct/Indirect branch with synchronization message format

(1–32 bits) (1–8 bits) (4 bits) (6 bits)

Full Target Address Sequence Count
Source
Process

TOCODE

(001011 or
001100)

Maximum length = 50 bits; minimum length = 12 bits

Table 255. Indirect branch history with synchronization message format

(1–32 bits) (1–32 bits) (1–8 bits) (4 bits) (6 bits)

Branch History Full Target Address
Sequence

Count
Source
Process

TCODE
(011101)

Maximum length = 82 bit; Minimum length = 13 bits

Table 256. Program trace exception summary

Exception
condition

Exception handling

System reset
negation

At the negation of JTAG reset, j_trst_b, queue pointers, counters, state machines,
and registers within the Nexus3 module are reset. Upon the first branch out of
system reset, if program trace is enabled, the first program trace message is a
direct/indirect branch with synchronization message.

Program trace
enabled

The first program trace message, after program trace has been enabled, is a
synchronization message.

Exit from low
power/debug

Upon exit from a low-power mode or debug mode, the next direct/indirect branch
is converted to a direct/indirect branch with synchronization message.

Queue overrun

An error message occurs when the message queue is full and a new message
cannot be queued. The FIFO discards messages until it has completely emptied
the queue. Once emptied, an error message is queued. The error encoding
indicates which types of messages attempted to be queued while the FIFO was
being emptied. The next BTM message in the queue is a direct/indirect branch
with synchronization message.

Periodic program
trace
synchronization

A forced synchronization occurs periodically after 255 program trace messages
have been queued. A direct/indirect branch with synchronization message is
queued. The periodic program trace message counter then resets.

Event in

If the Nexus module is enabled, assorting nex_evti_b initiates a direct/indirect
branch with synchronization message upon the next direct/indirect branch, if
program trace is enabled and the EIC bits of the DC1 register have enabled this
feature.

Sequential
instruction count
overflow

When the sequential instruction counter reaches its maximum count (up to 255
sequential instructions may be executed), a forced synchronization occurs. The
sequential counter then resets. A program trace direct/indirect branch with
synchronization message is queued upon execution of the next branch.

UM0434 Nexus3 module

 357/391

12.7.3 BTM operation

Enabling program trace

Both types of branch trace messaging can be enabled in one of two ways:

● Setting DC1[TM] to enable program trace

● Using WT[PTS] to enable program trace on watchpoint hits. e200z3 watchpoints are
configured within the CPU.

Relative addressing

The relative address feature is compliant with the IEEE-ISTO 5001-2003 standard
recommendations and is designed to reduce the number of bits transmitted for addresses of
indirect branch messages.

The address transmitted is relative to the target address of the instruction that triggered the
previous indirect branch or synchronized message. It is generated by XORing the new
address with the previous address and then using only the results up to the most significant
1 bit in the result. To recreate this address, an XOR of the most significant zero-padded
message address with the previously decoded address gives the current address. For the
example given in Table 257, assume the previous address (A1) = 0x0003FC01, and the new
address (A2) = 0x0003F365.

Attempted
access to secure
memory

For SOCs that implement security, any attempted branch to secure memory
locations temporarily disables program trace and causes the corresponding BTM
to be lost. The following direct/indirect branch queues a direct/indirect branch with
synchronization message. The count value within this message will be inaccurate
since the re-enable of program trace is not necessarily aligned on an instruction
boundary.

Collision priority

All messages have the following priority: WPM → OTM → BTM → DTM. A BTM
message that attempts to enter the queue at the same time as a watchpoint
message or ownership trace message is lost. An error message is sent indicating
the BTM was lost. The following direct/indirect branch queues a direct/indirect
branch with synchronization message. The count value within this message
reflects the number of sequential instructions executed after the last successful
BTM message was generated. This count includes the branch that did not
generate a message due to the collision.

Execution mode
switch

Whenever the CPU switches execution mode into or out of a sequence of VLE
instructions, the next branch trace message will be a Direct/Indirect Branch w/
Sync Message.

Table 256. Program trace exception summary (continued)

Exception
condition

Exception handling

Nexus3 module UM0434

358/391

Execution mode indication

In order for a development tool to properly interpret instruction count and history
information, it must be aware of the execution mode context of that information. VLE
instructions will be interpreted differently from non-VLE instructions.

Program trace messages provide the execution mode status in the least significant bit of the
reconstructed address field. A value of zero indicates that preceding instruction count and
history information should be interpreted in a non-VLE context. A value of one indicates that
the preceding instruction count and history information should be interpreted in a VLE
context. Note that when a branch results in an execution mode switch, the program trace
message resulting from that branch will indicate the previous execution state. The new state
will not be signaled until the next program trace message.

In some cases, a program correlation message is generated to indicate execution mode
status. Refer to Chapter : Program correlation messages on page 354,” for more information
on these cases.

Branch/Predicate instruction history (HIST)

If DC1[PTM] is set, BTM messaging uses the branch history format. The branch history
(HIST) packet in these messages provides a history of direct branch execution used for
reconstructing program flow. This packet is implemented as a left-shifting shift register. The
register is always pre-loaded with a value of one. This bit acts as a stop bit so that the
development tools can determine which bit is the end of the history information. The pre-
loaded bit itself is not part of the history but is transmitted with the packet.

A value of one is shifted into the history buffer on a taken branch, conditional or
unconditional, and on any instruction whose predicate condition executed as true. A value of
zero is shifted into the history buffer on any instruction whose predicate condition executed
as false, as well as on branches not taken. This includes indirect as well as direct branches
not taken. For the evsel instruction, two bits are shifted in, corresponding to the low element
shifted in first, and the high element shifted in second.

Sequential instruction count (I-CNT)

The I-CNT packet is present in all BTM messages. For traditional branch messages, I-CNT
represents the number of sequential instructions, or non-taken branches, in between
direct/indirect branch messages.

Table 257. Relative address generation and re-creation example

Message generation

A1 0000 0000 0000 0011 1111 1100 0000 0001

A2 0000 0000 0000 0011 1111 0011 0110 0101

A1 ⊕ A2 0000 0000 0000 0000 0000 1111 0110 0100

M1
(Address Message)

1111 0110 0100

Address Re-creation

A1 0000 0000 0000 0011 1111 1100 0000 0001

M1 0000 0000 0000 0000 0000 1111 0110 0100

A1 ⊕ M1 (A2) 0000 0000 0000 0011 1111 0011 0110 0101

UM0434 Nexus3 module

 359/391

For branch history messages, I-CNT represents the number of instructions executed since
the last taken/non-taken direct branch, predicate instruction, last taken/not-taken indirect
branch, or exception. Branch instructions that trigger message generation are included in
the I-CNT. Instructions that generate history bits are not included in the I-CNT.

The sequential instruction counter overflows when its value reaches 255 and is reset to 0.
The next BTM message (corresponding to the 256th or later instruction) is converted to a
synchronization type message.

Program trace queueing

Nexus3 implements a programmable depth queue (a minimum of 32 entries is
recommended) for queuing all messages. Messages that enter the queue are transmitted
through the auxiliary pins in the order in which they are queued.

Note: If multiple trace messages need to be queued at the same time, watchpoint messages have
the highest priority:
(WPM → OTM → BTM → DTM).

12.7.4 Program trace timing diagrams (2 MDO/1 MSEO Configuration)

Figure 74. Program trace—indirect branch message (traditional)

Figure 75. Program trace—indirect branch message (history)

00 01 00 00 00 00 00 00 10 01 01 10 10

TCODE = 4
Source processor = 0000
Number of sequential instructions = 128
Relative address = 0xA5

00

MCKO

MSEO_B

MDO[1:0]

00 11 01 00 00 00 01 01 10 10 01 01 10

TCODE = 28
Source processor = 0000
Number of sequential instructions = 0
Relative address = 0xA5
Branch history = 010100101 (w/ stop)

10 00

MCKO

MSEO_B

MDO[1:0]

Nexus3 module UM0434

360/391

Figure 76. Program trace—direct branch (traditional) and error messages

Figure 77. Program Trace—Indirect branch with synchronization message

12.8 Data trace
This section deals with the data trace mechanism supported by the Nexus3 module. Data
trace is implemented by means of data write messaging (DWM) and data read messaging
(DRM) in accordance with the IEEE-ISTO 5001-2003 standard.

12.8.1 Data trace messaging (DTM)

Data trace messaging for the e200z3 is accomplished by snooping the e200z3 virtual data
bus between the CPU and MMU, and storing the information for qualifying access, based on
enabled features and matching target addresses. The Nexus3 module traces all data
accesses that meet the selected range and attributes.

Note: Data trace is only performed on the e200z3 virtual data bus. This allows for data visibility for
e200z3 processors that incorporate a data cache. Only e200z3 CPU-initiated accesses are
traced. No DMA accesses to the AHB system bus are traced.

Data trace messaging can be enabled in one of two ways:

● Setting DC1[TM] to enable data trace.

● Using WT[DTS] to enable data trace on watchpoint hits. e200z3 watchpoints are
configured within the Nexus1 module.

Direct Branch Error

11 00 00 00 00 11 00 00 10 00 00 00 01

DBM:
TCODE = 3
Source processor = 0000
Number of sequential instructions = 3

Error:
TCODE = 8
Source processor = 0000
Error code = 1 (Queue overrun—BTM only)

00 00

MCKO

MSEO_B

MDO[1:0]

00 11 00 00 00 11 10 11 00 11 10 10 11

TCODE = 12
Source processor = 0000
Number of sequential instructions = 3
Full target address = 0xDEADFACE

11 01 11 10 10 10 11 01 11 00

MCKO

MSEO_B

MDO[1:0]

UM0434 Nexus3 module

 361/391

12.8.2 DTM message formats

The Nexus3 block supports five types of DTM messages: data write, data read, data write
synchronization, data read synchronization, and error messages.

Data write messages

The data write message contains the data write value and the address of the write access,
relative to the previous data trace message. Data write message information is messaged
out in the format shown in Table 258:

Data read messages

The data read message contains the data read value and the address of the read access,
relative to the previous data trace message. Data read message information is messaged
out in the format shown in Table 259:

Note: For e200z3-based CPUs, the double-word encoding, p_tsiz = 0, indicates a double-word
access and is sent out as a single data trace message with a single 64-bit data value.
The debug/development tool needs to distinguish between the two cases based on the
family of e200z3 processors.

DTM overflow error messages

An error message occurs when the message queue is full and a new message cannot be
queued. The FIFO discards incoming messages until it has completely emptied the queue.
Once emptied, an error message is queued. The error encoding indicates which types of
messages attempted to be queued while the FIFO was being emptied.

If only a DTM attempts to enter the queue while it is being emptied, the error message
incorporates the data trace only error encoding 00010. If both OTM and DTM attempt to
enter the queue, the error message incorporates the OTM and data trace error encoding,
00111. If a watchpoint also attempts to be queued while the FIFO is being emptied, the error
message incorporates error encoding, 01000.

Note: DC1[OVC] can be set to delay the CPU in order to alleviate, but not eliminate, potential
overrun situations.

Error information is messaged out in the format shown in Table 260:

Table 258. Data write message format

(1–64 bits) (1–32 bits)
(3

bits)
(4 bits) (6 bits)

Data Value(s) Relative Address
Data
Size

Source
Process

TCODE (000101)

Maximum length = 109 bits; minimum length = 15 bits

Table 259. Data read message format

(1–64 bits) (1–32 bits)
(3

bits)
(4 bits) (6 bits)

Data Value(s) Relative Address
Data
Size

Source
Process

TCODE (000110)

Maximum length = 109 bits; minimum length = 15 bits

Nexus3 module UM0434

362/391

Data trace synchronization messages

A data trace write/read with synchronization message is messaged through the auxiliary
port, provided data trace is enabled, for the following conditions (see Table 262):

● Initial data trace message after exit from system reset or whenever data trace is
enabled

● Upon returning from a CPU low-power state

● Upon returning from debug mode

● After occurrence of queue overrun (can be caused by any trace message), provided
data trace is enabled

● After the periodic data trace counter has expired, indicating 255 data trace messages
have occurred without synchronization since the last with-synchronization message
occurred

● Upon assertion of the event-in nex_evti_b pin, the first data trace message is a
synchronization message if the EIC bits of the DC1 register have enabled this feature.

● Upon data trace write/read after the previous DTM message was lost due to an
attempted access to a secure memory location (for SOC’s with security)

● Upon data trace write/read after the previous DTM message was lost due to a collision
entering the FIFO between the DTM message and any of the following:

– watchpoint message

– ownership trace message

– branch trace message

Data trace synchronization messages provide the full address, without leading zeros, and
ensure that development tools fully synchronize with data trace regularly. Synchronization
messages provide a reference address for subsequent DTMs, in which only the unique
portion of the data trace address is transmitted. The format for data trace write/read with
synchronization messages is as follows:

Exception conditions that result in data trace synchronization are summarized in Table 262.

Table 260. Error message format

(5 bits) (4 bits) (6 bits)

Error Code (00010/00111/01000 Source Process TCODE (001000)

Fixed length = 15 bits

Table 261. Data write/read with synchronization message format

(1–64 bits) (1–32 bits)
(3

bits)
(4 bits) (6 bits)

Data Value Full Address
Data
Size

Source
Process

TCODE
(001101 or 001110)

Maximum length = 109 bit; Minimum length = 15 bits

UM0434 Nexus3 module

 363/391

12.8.3 DTM operation

DTM queueing

Nexus3 implements a programmable depth queue (a minimum of 32 entries is
recommended) for queuing all messages. Messages that enter the queue are transmitted
through the auxiliary pins in the order in which they are queued.

Note: If multiple trace messages need to be queued simultaneously, watchpoint messages have
the highest priority:
WPM → OTM → BTM → DTM. Up to two messages may be simultaneously queued.

Table 262. Data trace exception summary

Exception condition Exception handling

System reset negation

At the negation of JTAG reset (j_trst_b), queue pointers, counters, state
machines, and registers within the Nexus3 module are reset. If data trace
is enabled, the first data trace message is a data write/read with
synchronization message.

Data trace enabled
The first data trace message (after data trace has been enabled) is a
synchronization message.

Exit from low
power/debug

Upon exit from a low-power mode or debug mode, the next data trace
message is converted to a data write/read with synchronization message.

Queue overrun

An error message occurs when a new message cannot be queued due to
the message queue being full. The FIFO discards messages until it has
completely emptied the queue. Once emptied, an error message is
queued. The error encoding indicates which type(s) of messages
attempted to be queued while the FIFO was being emptied. The next
DTM message in the queue will be a data write/read with synchronization
message.

Periodic data trace
synchronization

A forced synchronization occurs periodically after 255 data trace
messages have been queued. A data write/read with synchronization
message is queued. The periodic data trace message counter then
resets.

Event in

If the Nexus module is enabled, a nex_evti_b assertion initiates a data
trace write/read with synchronization message upon the next data
write/read (if data trace is enabled and the EIC bits of the DC1 register
have enabled this feature).

Attempted access to
secure memory

For SOCs that implement security, any attempted read or write to secure
memory locations temporarily disables data trace and causes the
corresponding DTM to be lost. A subsequent read/write queues a data
trace read/write with a synchronization message.

Collision priority

All messages have the following priority: WPM → OTM → BTM → DTM.
A DTM message that attempts to enter the queue at the same time as a
watchpoint message or ownership trace message or branch trace
message will be lost. A subsequent read/write queues a data trace
read/write with a synchronization message.

Nexus3 module UM0434

364/391

Relative addressing

The relative address feature is compliant with the IEEE-ISTO 5001-2003 standard
recommendations and is designed to reduce the number of bits transmitted for addresses of
data trace messages. Refer to Chapter : Relative addressing on page 357,” for details.

Data trace windowing

Data write/read messages are enabled by the RWT1n field in the data trace control register,
DTC, for each DTM channel. Data trace windowing is achieved through the address range
defined by the DTEA and DTSA registers and by DTC[RC1n]. All e200z3-initiated read/write
accesses that fall inside or outside these address ranges, as programmed, are candidates
to be traced.

Data Access/Instruction access data tracing

The Nexus3 module is capable of tracing both instruction access data or data access data.
Each trace window can be configured for either type of data trace by setting the DI1n field
within the data trace control register for each DTM channel.

e200z3 bus cycle special cases

Note: For a misaligned access that crosses a 64-bit boundary, the access is broken into two
accesses. If both accesses are within the data trace range, two DTMs are sent: one with a
size encoding indicating the size of the original access, that is, word, and one with a size
encoding for the portion that crossed the boundary, that is, 3 bytes See Table 109: Invalid
instruction forms on page 123 for examples of misaligned accesses.

Note: An STM (store) to the cache’s store buffer within the data trace range initiates a DTM
message. If the corresponding memory access causes an error, a checkstop condition
occurs. The debug/development tool should use this indication to invalidate the previous
DTM.

Table 263. e200z3 bus cycle cases

Special case Action

e200z3 bus cycle aborted Cycle ignored

e200z3 bus cycle with data error (TEA) Data trace message discarded

e200z3 bus cycle completed without error Cycle captured and transmitted

e200z3 (AHB) bus cycle initiated by Nexus3 Cycle ignored

e200z3 bus cycle is an instruction fetch Cycle ignored

e200z3 bus cycle accesses misaligned data (across
64-bit boundary)—both first and second transactions
within data trace range

First and second cycle captured and two
DTMs transmitted

e200z3 bus cycle accesses misaligned data (across
64-bit boundary)—first transaction within data trace
range; second transaction out of data trace range

First cycle captured and transmitted; second
cycle ignored

e200z3 bus cycle accesses misaligned data (across
64-bit boundary)—first transaction out of data trace
range; second transaction within data trace range

First cycle ignored; second cycle captured
and transmitted

UM0434 Nexus3 module

 365/391

12.8.4 Data trace timing diagrams (8 MDO/2 MSEO Configuration)

Figure 78. Data trace—data write message

Figure 79. Data trace—data read with synchronization message

Figure 80. Error message (data trace only encoded)

12.9 Watchpoint support
This section details the watchpoint features of the Nexus3 module.

12.9.1 Overview

The Nexus3 module provides watchpoint messaging by means of the auxiliary pins, as
defined by the IEEE-ISTO 5001-2003 standard.

Nexus3 is not compliant with class 4 breakpoint/watchpoint requirements defined in the
standard. The breakpoint/watchpoint control register is not implemented.

1010100000000101 00010100 11101111

11 00 00 01 00

TCODE = 5
Source processor = 0000
Data size = 010 (half word)
Relative address = 0xA5
Write data = 0xBEEF

11

10111110

MCKO

MSEO_B[1:0]

MDO[7:0]

1100000000001110 01011001 11010001

11 00

TCODE = 14
Source processor = 0000
Data size = 000 (byte)
Full access address = 0x01468ACE
Write data = 0x5C

00101000

01

00000000

11

01011100

MCKO

MSEO_B[1:0]

MDO[7:0]

0000100000001000

11 00 11

TCODE = 8
Source processor = 0000
Error code = 2 (queue overrun - DTM only)

xxxxxxxx

xx

MCKO

MSEO_B[1:0]

MDO[7:0]

Nexus3 module UM0434

366/391

12.9.2 Watchpoint messaging

Enabling watchpoint messaging is done by setting the watchpoint enable bit in the DC1
register. Setting the individual watchpoint sources is supported through the e200z3 Nexus1
module. The e200z3 Nexus1 module is capable of setting multiple address and/or data
watchpoints. Please refer to Chapter 11: Debug support on page 296,” for details on
watchpoint initialization.

When these watchpoints occur, a watchpoint event signal from the Nexus1 module causes a
message to be sent to the queue to be messaged out. This message includes the
watchpoint number indicating which watchpoint caused the message.

The occurrence of any of the e200z3-defined watchpoints can be programmed to assert the
event out, nex_evto_b, pin for one period of the output clock, nex_mcko; see Table 271 for
details on nex_evto_b.

Watchpoint information is messaged out in the format shown in Table 264:

Table 264. Watchpoint message format.

12.9.3 Watchpoint error message

An error message occurs when the message queue is full and a new message cannot be
queued. The FIFO discards messages until it has completely emptied the queue. Once
emptied, an error message is queued. The error encoding indicates which types of
messages attempted to be queued while the FIFO was being emptied.

If only a watchpoint message attempts to enter the queue while it is being emptied, the error
message incorporates the watchpoint-only error encoding, 00110. If an OTM and/or
program trace and/or data trace message also attempts to enter the queue while it is being
emptied, the error message incorporates error encoding 01000.

Note: DC1[OVC] can be set to delay the CPU in order to alleviate, but not eliminate, potential
overrun situations.

(8 bit) (4 bits) (6 bits)

Watchpoint Source Source Process TCODE (001111)

Fixed length = 18 bits

Table 265. Watchpoint source encoding

Watchpoint source (8-Bits) Watchpoint description

0000_0001 e200z3 watchpoint #0 (IAC1 from Nexus1)

0000_0010 e200z3 watchpoint #1 (IAC2 from Nexus1)

0000_0100 e200z3 watchpoint #2 (IAC3 from Nexus1)

0000_1000 e200z3 watchpoint #3 (IAC4 from Nexus1)

0001_0000 e200z3 watchpoint #4 (DAC1 from Nexus1)

0010_0000 e200z3 watchpoint #5 (DAC2 from Nexus1)

0100_0000 e200z3 watchpoint #6 (DCNT1 from Nexus1)

1000_0000 e200z3 watchpoint #7 (DCNT2 from Nexus1)

UM0434 Nexus3 module

 367/391

Error information is messaged out in the format, shown in Table 266:

12.9.4 Watchpoint timing diagram (2 MDO/1 MSEO Configuration)

Figure 81. Watchpoint message and watchpoint error message

12.10 Nexus3 Read/Write access to Memory-Mapped resources
The read/write access feature allows access to memory-mapped resources through the
JTAG/OnCE port. The read/write mechanism supports single as well as block reads and
writes to e200z3 AHB resources.

The Nexus3 module is capable of accessing resources on the e200z3 system bus, AHB,
with multiple configurable priority levels. Memory-mapped registers and other non-cached
memory can be accessed through the standard memory map settings.

All accesses are set up and initiated by the read/write access control/status register, RWCS,
as well as RWA and RWD.

Using RWCS, RWA and RWD, memory-mapped e200z3 AHB resources can be accessed
through Nexus3. The following sections describe the steps that are required to access
memory-mapped resources.

Note: Read/write access can only access memory-mapped resources when system reset is de-
asserted and clocks are running. Misaligned accesses are not supported in the e200z3
Nexus3 module.

12.10.1 Single write access

Note: In the first three steps, the registers are initialized using the access method outlined in
Chapter 12.5: Nexus3 register access through JTAG/OnCE on page 348.”

Table 266. Error message format

(5 bits) (4 bits) (6 bits)

Error Code (00110/01000 Source Process TCODE (001000)

Fixed length = 15 bits

Watchpoint Error

11 11 00 00 10 00 00 00 10 00 00 10 01

WPM:
TCODE = 15
Source processor = 00
Watchpoint number = 2

Error:
TCODE = 8
Source processor = 00
Error code = 6 (Queue overrun—WPM only)

00

p_mcko

p_mseo_b

p_mdo[1:0]

Nexus3 module UM0434

368/391

1. Initialize RWA using the Nexus register index of 0x9; see Table 216. Configure as
shown below:

– Write address = 0xnnnn_nnnn (write address)

2. Initialize RWCS using the Nexus register index of 0x7; see Table 216. Configure the
fields as shown in Table 267:

Note: Access count (CNT) of 0x0000 or 0x0001 performs a single access.
3. Initialize RWD using the Nexus register index of 0xA; see Table 216. Configure as

shown below:

– Write data = 0xnnnn_nnnn (write data)

4. The Nexus block then arbitrates for the AHB system bus and transfers the data value
from the data buffer RWD register to the memory-mapped address in RWA. When the
access has completed without error (ERR=0), Nexus asserts the nex_rdy_b signal (see
Table 271 for detail on nex_rdy_b) and clears RWCS[DV]. This indicates that the device
is ready for the next access.

Note: Only the nex_rdy_b signal and the DV and ERR fields within RWCS provide read/write
access status to the external development tool.

12.10.2 Block write access (Non-Burst Mode)

1. For a non-burst block write access, follow Steps 1, 2, and 3 outlined in Chapter 12.10.1:
Single write access on page 367,” to initialize the registers, but use a value greater than
one (0x0001) for RWCS[CNT].

2. The Nexus block then arbitrates for the AHB system bus and transfers the first data
value from the RWD register to the memory-mapped address in RWA. When the
transfer has completed without error (ERR = 0), the address from the RWA register is
incremented to the next word size (specified in RWCS[SZ]), and the number from the
CNT field is decremented. Nexus then asserts the nex_rdy_b pin. This indicates that
the device is ready for the next access.

3. Repeat step 3 in Chapter 12.10.1: Single write access on page 367,” until the internal
CNT value is zero. When this occurs, RWCS[DV] is cleared to indicate the end of the
block write access.

Table 267. Single write access field settings

Field Setting

AC (Access control) 1 (indicates start access)

MAP (Map select) 000 (primary memory map)

PR (Access priority) 00 (lowest priority)

RW (Read/write) 1 (write access)

SZ (Word size) 0nn (32-bit, 16-bit, 8-bit)

CNT (Access count) 0x0000 or 0x0001 (single access)

UM0434 Nexus3 module

 369/391

12.10.3 Block write access (Burst Mode)

1. For a burst block write access, follow steps 1 and 2 outlined in Chapter 12.10.1: Single
write access on page 367,” to initialize the registers, using a value of four (double-word)
for RWCS[CNT] and an RWCS[SZ] value of 0b011, indicating 64-bit access.

2. Initialize the burst data buffer (RWD register) through the access method outlined in
Chapter 12.5: Nexus3 register access through JTAG/OnCE on page 348,” using the
Nexus register index of 0xA; see Table 216.

3. Repeat step 2 until all double-word values are written to the buffer.

Note: The data values must be shifted in 32 bits at a time, least significant bit first (that is, double-
word write = two word writes to RWD).
4. The Nexus block then arbitrates for the AHB system bus and transfers the burst data

values from the data buffer to the AHB beginning from the memory mapped address in
RWA. For each access within the burst, the address from the RWA register is
incremented to the next double-word size (as specified in RWCS[SZ]), modulo the
length of the burst, and the number from the CNT field is decremented.

5. When the entire burst transfer has completed without error (ERR=0), Nexus3 then
asserts the nex_rdy_b pin, and RWCS[DV] is cleared to indicate the end of the block
write access.

Note: The actual RWA and RWCS[CNT] values are not changed when executing a block write
access, burst or non-burst. The original values can be read by the external development tool
at any time.

12.10.4 Single read access

1. Initialize RWA with the access method outlined in Chapter 12.5: Nexus3 register
access through JTAG/OnCE on page 348,” using the Nexus register index of 0x9; see
Table 216. Configure as shown below:

– Read address = 0xnnnn_nnnn (read address)

2. Initialize RWCS with the access method outlined in Chapter 12.5: Nexus3 register
access through JTAG/OnCE on page 348,” using the Nexus register index of 0x7; see
Table 216. Configure the bits as shown in Table 268:

Note: Access count (CNT) of 0x0000 or 0x0001 performs a single access.
3. The Nexus block then arbitrates for the AHB system bus and the read data is

transferred from the AHB to the RWD register. When the transfer is completed without
error (ERR=0), Nexus asserts the nex_rdy_b pin (see Table 271 for details on

Table 268. Single read access parameter settings

Parameter Settings

Access control (AC) 1 (to indicate start access)

Map select (MAP) 000 (primary memory map)

Access priority (PR) 00 (lowest priority)

Read/write (RW) 0 (read access)

Word size (SZ) 0nn (32-bit, 16-bit, 8-bit)

Access count (CNT) 0x0000 or 0x0001(single access)

Nexus3 module UM0434

370/391

nex_rdy_b) and sets RWCS[DV]. This indicates that the device is ready for the next
access.

4. The data can then be read from RWD with the access method outlined in Chapter 12.5:
Nexus3 register access through JTAG/OnCE on page 348,” using the Nexus register
index of 0xA; see Table 216.

Note: Only the nex_rdy_b signal and the DV and ERR bits within RWCS provide read/write access
status to the external development tool.

12.10.5 Block read access (Non-Burst Mode)

1. For a non-burst block read access, follow steps 1 and 2 outlined in Chapter 12.10.4:
Single read access on page 369,” to initialize the registers, but using a value greater
than one (0x0001) for RWCS[CNT].

2. The Nexus block then arbitrates for the AHB system bus, and the read data is
transferred from the AHB to the RWD register. When the transfer has completed
without error (ERR = 0), the address from RWA is incremented to the next word size
(specified in the SZ field), and the number from the CNT field is decremented. Nexus
then asserts the nex_rdy_b pin. This indicates that the device is ready for the next
access.

3. The data can then be read from RWD with the access method outlined in Chapter 12.5:
Nexus3 register access through JTAG/OnCE on page 348,” using the Nexus register
index of 0xA, see Table 216.

4. Repeat steps 3 and 4 in Chapter 12.10.4: Single read access on page 369,” until the
CNT value is zero. When this occurs, RWCS[DV] is set to indicate the end of the block
read access.

12.10.6 Block read access (Burst Mode)

1. For a burst block read access, follow steps 1 and 2 outlined in Chapter 12.10.4: Single
read access on page 369,” to initialize the registers, using a value of four (double-
words) for the CNT field and an SZ field indicating 64-bit access in RWCS.

2. The Nexus block then arbitrates for the AHB system bus and the burst read data is
transferred from the AHB to the data buffer (RWD register). For each access within the
burst, the address from the RWA register is incremented to the next double-word,
specified in the SZ field, and the number from the CNT field is decremented.

3. When the entire burst transfer has completed without error (ERR=0), Nexus then
asserts the nex_rdy_b pin, and RWCS[DV] is set to indicate the end of the block read
access.

4. The data can then be read from the burst data buffer (RWD register) with the access
method outlined in Chapter 12.5: Nexus3 register access through JTAG/OnCE on
page 348,” using the Nexus register index of 0xA; see Table 216.

5. Repeat step 3 until all double-word values are read from the buffer.

Note: The data values must be shifted out 32-bits at a time, least significant bit first, that is double-
word read = two word reads from RWD.

Note: The actual RWA and CNT values within RWCS are not changed when executing a block
read access, burst or non-burst. The original values can be read by the external
development tool at any time.

UM0434 Nexus3 module

 371/391

12.10.7 Error handling

The Nexus3 module handles various error conditions as described in the following sections.

AHB Read/Write error

All address and data errors that occur on read/write accesses to the e200z3 AHB system
bus return a transfer error encoding on the p_hresp[1:0] signals. If this occurs, the following
steps are taken:

1. The access is terminated without retrying, and RWCS[AC] is cleared.

2. RWCS[ERR] is set.

3. The error message is sent, TCODE = 8, indicating read/write error.

Access termination

The following cases are defined for sequences of the read/write protocol that differ from
those described in the above sections.

1. If RWCS[AC] is set to start read/write accesses and invalid values are loaded into RWD
or RWA, an AHB access error may occur. This is handled as described above.

2. If a block access is in progress, all cycles are not completed, and the RWCS register is
written. The original block access is terminated at the boundary of the nearest
completed access.

a) If RWCS[AC] is set, the next read/write access begins and the RWD can be
written to / read from.

b) If RWCS[AC] is cleared, the read/write access is terminated at the nearest
completed access. This method can be used to break block accesses or terminate
them early.

Read/Write access error message

The read/write access error message is sent out when an AHB system bus access error,
read or write, has occurred.

Error information is messaged out in the format shown in Table 269:

12.11 Nexus3 pin interface
This section details the Nexus3 pins and pin protocol.

The Nexus3 pin interface provides the function of transmitting messages from the message
queue to the external tools. It is also responsible for handshaking with the message queue.

12.11.1 Pins implemented

The Nexus3 module implements one nex_evti_b and either one nex_mseo_b or two
nex_mseo_b[1:0]. It also implements a configurable number of nex_mdo[n:0] pins,

Table 269. Error message format

(5 bits) (4 bits) (6 bits)

Error Code (00011) Source Process TCODE (001000)

Fixed length = 15 bits

Nexus3 module UM0434

372/391

nex_rdy_b pin, nex_evto_b pin, and one clock output pin, nex_mcko. The output pins are
synchronized to the Nexus3 output clock, nex_mcko.

All Nexus3 input functionality is controlled through the JTAG/OnCE port, in compliance with
IEEE 1149.1. (See Chapter 12.5: Nexus3 register access through JTAG/OnCE on
page 348,” for details.) The JTAG pins are incorporated as I/O to the e200z3 processor and
are further described in Chapter 11.5.2: JTAG/OnCE signals on page 308.”

The auxiliary pins are used to send and receive messages and are described in Table 271.

Table 270. JTAG pins for Nexus3

JTAG pin I/O Description of JTAG pins (included in e200z3 Nexus1)

j_tdo O
Test data output. j_tdo is the serial output for test instructions and data. It
is three-statable and is actively driven in the shift-IR and shift-DR
controller states. It changes on the falling edge of j_tclk.

j_tdi I
Test data input. j_tdi receives serial test instruction and data. TDI is
sampled on the rising edge of j_tclk.

j_tms I
Test mode select. Input pin used to sequence the OnCE controller state
machine. j_tms is sampled on the rising edge of j_tclk.

j_tclk I
Test clock. Input pin used to synchronize the test logic and control register
access through the JTAG/OnCE port.

j_trst_b I
Test reset. Input pin used to asynchronously initialize the JTAG/OnCE
controller.

Table 271. Nexus3 auxiliary pins

Auxiliary pin I/O Description of auxiliary pins

nex_mcko O
Message clock out. A free running output clock to development tools
for timing of nex_mdo[n:0] and nex_mseo_b[1:0] pin functions.
nex_mcko is programmable through the DC1 register.

nex_mdo[n–0] O
Message data out. Used for OTM, BTM, and DTM. External latching
of nex_mdo[n:0] occurs on the rising edge of the Nexus3 clock
(nex_mcko).

nex_mseo_b[1–0] O

Message start/end out. Indicate when a message on the
nex_mdo[n:0] pins has started, when a variable length packet has
ended, and when the message has ended. External latching of
nex_mseo_b[1–0] occurs on the rising edge of the Nexus3 clock
(nex_mcko). One- or two-pin MSEO functionality is determined at
integration time according to the SOC implementation

nex_rdy_b O

Ready. Used to indicate to the external tool that the Nexus block is
ready for the next read/write access. If Nexus is enabled, this signal is
asserted upon successful completion (without error) of an AHB
system bus transfer (Nexus read or write) and is held asserted until
the JTAG/OnCE state machine reaches the capture_dr state. Upon
exit from system reset or if Nexus is disabled, nex_rdy_b remains de-
asserted.

UM0434 Nexus3 module

 373/391

The Nexus auxiliary port arbitration pins are used when the Nexus3 module is implemented
in a multiple Nexus SoC that shares a single auxiliary output port. The arbitration is
controlled by an SoC-level Nexus port control module (NPC). Refer to Chapter 12.13:
Auxiliary port arbitration on page 376,” for details on Nexus port arbitration.

12.11.2 Pin protocol

The protocol for the e200z3 processor transmitting messages through the auxiliary pins is
accomplished with the MSEO pin function outlined in Table 273. Both single- and dual-pin
cases are shown.

nex_mseo_b[1:0] is used to signal the end of variable-length packets, and not fixed length
packets. nex_mseo_b[1:0] is sampled on the rising edge of the Nexus3 clock, nex_mcko.

nex_evto_b O

Event out. An output whose assertion indicates that one of two events
has occurred based on the bits in DC1[EOC]. nex_evto_b is held
asserted for 1 cycle of nex_mcko:

– One (or more) watchpoints has occurred (from Nexus1) and
EOC = 00

– Debug mode was entered (jd_debug_b asserted from Nexus1) and
EOC = 01

nex_evti_b I

Event in. An input whose assertion initiates one of two events based
on DC1[EIC] (if the Nexus module is enabled at reset):
– Program trace and data trace synchronization messages (provided

program trace and data trace are enabled and EIC = 00).
– Debug request to e200z3 Nexus1 module (provided EIC = 01 and

this feature is implemented).

Table 272. Nexus port arbitration signals

Nexus Port
Arbitration pins

Input/
Output

Description of arbitration pins

nex_aux_req[1:0] O

Nexus auxiliary request. Output signals indicating to an SoC level
Nexus arbiter a request for access to the shared Nexus auxiliary port in
a multiple Nexus implementation. The priority encodings are
determined by how many messages are currently in the message
queues, see Table 274).

nex_aux_busy O
Nexus auxiliary busy. An output signal to an SoC level Nexus arbiter
indicating that the Nexus3 module is currently transmitting its message
after being granted the Nexus auxiliary port.

npc_aux_grant I
Nexus auxiliary grant. An input from the SoC level Nexus port
controller (NPC) indicating that the auxiliary port has been granted to
the Nexus3 module to transmit its message.

ext_multi_nex_sel I

Multiple Nexus select. A static signal indicating that the Nexus3
module is implemented within a multiple Nexus environment. If set,
port control and arbitration is controlled by the SoC-level arbitration
module (NPC).

Table 271. Nexus3 auxiliary pins (continued)

Auxiliary pin I/O Description of auxiliary pins

Nexus3 module UM0434

374/391

Figure 82. State diagram for single pin MSEO transfers

Note that the end message state does not contain valid data on nex_mdo[n:0]. Also, it is not
possible to have two consecutive end packet messages. This implies the minimum packet
size for a variable length packet is 2x the number of nex_mdo[n:0] pins. This ensures that a
false end-of-message state is not entered by emitting two consecutive 1s on nex_mseo_b
before the actual end of message.

Figure 83 shows the state diagram for dual-pin MSEO transfers.

Table 273. MSEO Pin(s) protocol

nex_mseo_b function
Single nex_mseo_b data

(serial)
Dual nex_mseo_b[1:0] data

Start of message 1–1–0 11–00

End of message 0–1–1–(more ones) 00 (or 01)–11–(more ones)

End of variable length packet 0–1–0 00–01

Message transmission 0s 00s

Idle (no message) 1s 11s

Normal

Transfer

nex_mseo_b=1

nex_mseo_b=1

nex_mseo_b=0

nex_mseo_b=0

nex_mseo_b=1

nex_mseo_b=1

nex_mseo_b=0

nex_mseo_b=0

nex_mseo_b=0nex_mseo_b=1

Not Allowed

End

Packet

Idle

MDO: Invalid

Stage

Message

End

Message
MDO: Invalid

UM0434 Nexus3 module

 375/391

Figure 83. Dual-Pin MSEO transfers

The dual-pin MSEO option is more robust than the single-pin option. Termination of the
current message may immediately be followed by the start of the next message on
consecutive clocks. An extra clock to end the message is not necessary as with the one
MSEO pin option. The dual-pin option also allows for consecutive end packet states. This
can be an advantage when small, variable sized packets are transferred.

Note: The end message state may also indicate the end of a variable-length packet as well as the
end of the message when using the dual-pin option.

12.12 Rules for output messages
e200z3-based class 3–compliant embedded processors must provide messages through
the auxiliary port in a consistent manner as described below:

● A variable-length packet within a message must end on a port boundary.

● A variable-length packet may start within a port boundary only when following a fixed-
length packet. If two variable-length packets end and start on the same clock, it is
impossible to know which bit is from the last packet and which bit is from the next
packet.

● Whenever a variable-length packet is sized such that it does not end on a port
boundary, it is necessary to extend and zero-fill the remaining bits after the highest
order bit so that it can end on a port boundary.

Normal

Transfer

End

Message

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=01

nex_mseo_b[1:0]=01

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=01

End

Packet

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=10

Start

Message

nex_mseo_b[1:0]=10

nex_mseo_b[1:0]=10

nex_mseo_b[1:0]=01

nex_mseo_b[1:0]=01

Idle

MDO: Invalid

Nexus3 module UM0434

376/391

For example, if the nex_mdo[n:0] port is 2 bits wide and the unique portion of an indirect
address TCODE is 5 bits, the remaining 1 bit of nex_mdo[n:0] must be packed with a zero.

12.13 Auxiliary port arbitration
In a multiple Nexus environment, the Nexus3 module must arbitrate for the shared Nexus
port at the SoC level.The request scheme is implemented as a 2-bit request with various
levels of priority. The priority levels are defined in Table 274 below. The Nexus3 module
receives a 1-bit grant signal (npc_aux_grant) from the SoC level arbiter. When a grant is
received, the Nexus3 module begins transmitting its message following the protocol outlined
in Chapter 12.11.2: Pin protocol on page 373.” The Nexus3 module maintains control of the
port, by asserting the nex_aux_busy signal, until the MSEO state machine reaches the end
message state.

12.14 Examples
The following are examples of program trace and data trace messages.

Table 275 shows an example of an indirect branch message with 2 MDO/1 MSEO
configuration. Table 276 shows the same example with an 8 MDO/2 MSEO configuration.

Note: During clock 12, the nex_mdo[n:0] pins are ignored in the single MSEO case.

Table 274. MDO request encodings

Request level
MDO request

Encoding(nex_aux_req[1:0])
Condition of queue

No request 00 No message to send

Low priority 01 Message queue less than half full

— 10 Reserved

High priority 11 Message queue at least half full

UM0434 Nexus3 module

 377/391

T0 and S0 are the least significant bits, where Tx = TCODE number (fixed); Sx = source processor (fixed); Ix =
number of instructions (variable); Ax = unique portion of the address (variable).

T0 and S0 are the least significant bits, where Tx = TCODE number (fixed); Sx = source processor (fixed); Ix =
number of instructions (variable); Ax = unique portion of the address (variable).

Table 278 shows examples of direct branch messages: one with 2 MDO/1 MSEO, and one
with 8 MDO/2 MSEO.

Table 275. Indirect branch message example (2 MDO/1 MSEO)

Clock nex_mdo[1:0] nex_mseo_b State

0 X X 1 Idle (or end of last message)

1 T1 T0 0 Start message

2 T3 T2 0 Normal transfer

3 T5 T4 0 Normal transfer

4 S1 S0 0 Normal transfer

5 S3 S2 0 Normal transfer

6 I1 I0 0 Normal transfer

7 I3 I2 0 Normal transfer

8 I5 I4 1 End packet

9 A1 A0 0 Normal transfer

10 A3 A2 0 Normal transfer

11 A5 A4 0 Normal transfer

12 A7 A6 1
End packet

During clock 12, the nex_mdo[n:0] pins are
ignored in the single-MSEO case.

13 0 0 1 End message

14 T1 T0 0 Start message

Table 276. Indirect branch message example (8 MDO/2 MSEO)

Clock nex_mdo[7:0] nex_mseo_b[1:0] State

0 X X X X X X X X 1 1
Idle (or end of last
message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start message

2 I5 I4 I3 I2 I1 I0 S3 S2 0 1 End packet

3 A7 A6 A5 A4 A3 A2 A1 A0 1 1 End packet/end message

4 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start message

Nexus3 module UM0434

378/391

T0, A0 and S0 are the least significant bits, where Tx = TCODE number (fixed); Sx = source processor (fixed); Zx = data size
(fixed); Ax = unique portion of address (variable); Dx = Write data (variable-8,16 or 32-bit).

T0 and S0 are the least significant bits, where Tx = TCODE number (fixed); Sx = source processor (fixed); Ix = number of
instructions (variable); Ax = unique portion of the address (variable).

Table 279 shows an example of a data write message with 8 MDO/1 MSEO configuration, and Table 280
shows the same DWM with 8 MDO/2 MSEO configuration.

T0, A0 and S0 are the least significant bits, where Tx = TCODE number (fixed); Sx = source processor (fixed); Zx = data size
(fixed); Ax = unique portion of address (variable); Dx = Write data (variable-8,16 or 32-bit).

Table 277. Direct branch message example (2 MDO/1 MSEO)

Clock nex_mdo[1:0] nex_mseo_b State

0 X X 1 Idle (or end of last message)

1 T1 T0 0 Start message

2 T3 T2 0 Normal transfer

3 T5 T4 0 Normal transfer

4 S1 S0 0 Normal transfer

5 S3 S2 0 Normal transfer

6 I1 I0 1 End packet

7 0 0 1 End message

Table 278. Direct branch message example (8 MDO / 2 MSEO)

Clock nex_mdo[7:0] nex_mseo_b[1:0] State

0 X X X X X X X X 1 1 Idle (or end of last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start message

2 0 0 0 0 I1 I0 S3 S2 1 1 End packet/end message

3 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start message

Table 279. Data write message example (8 MDO/1 MSEO)

Clock nex_mdo[7:0] nex_mseo_b State

0 X X X X X X X X 1 Idle (or end of last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 Start message

2 A2 A1 A0 Z2 Z1 Z0 S3 S2 1 End packet

3 D7 D6 D5 D4 D3 D2 D1 D0 0 Normal transfer

4 0 0 0 0 0 0 0 0 1 End packet

5 0 0 0 0 0 0 0 0 1 End message

Table 280. Data write message example (8 MDO/2 MSEO)

Clock nex_mdo[7:0] nex_mseo_b[1:0] State

0 X X X X X X X X 1 1 Idle (or end of last message)

UM0434 Nexus3 module

 379/391

T0, A0 and S0 are the least significant bits, where Tx = TCODE number (fixed); Sx = source processor (fixed); Zx = data size
(fixed); Ax = unique portion of address (variable); Dx = Write data (variable-8,16 or 32-bit).

12.15 IEEE 1149.1 (JTAG) RD/WR sequences
This section contains examples of JTAG/OnCE sequences used to access resources.

12.15.1 JTAG sequence for accessing internal nexus registers

Table 281 shows the JTAG/OnCE sequence for accessing internal Nexus3 registers.

12.15.2 JTAG sequence for read access of Memory-Mapped resources

Table 282 shows the JTAG sequence for read-accessing memory-mapped resources.

1 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start message

2 A2 A1 A0 Z2 Z1 Z0 S3 S2 0 1 End packet

3 D7 D6 D5 D4 D3 D2 D1 D0 1 1 End packet/end message

Table 280. Data write message example (8 MDO/2 MSEO) (continued)

Clock nex_mdo[7:0] nex_mseo_b[1:0] State

Table 281. Accessing internal Nexus3 registers through JTAG/OnCE

Step TMS pin Description

1 1 IDLE—SELECT–DR_SCAN

2 0 SELECT–DR_SCAN—CAPTURE-DR (Nexus command register value loaded in shifter)

3 0 CAPTURE-DR—SHIFT-DR

4 0
(7) TCK clocks issued to shift in direction (RD/WR) bit and first 6 bits of Nexus register
address

5 1 SHIFT-DR—EXIT1–DR (7th bit of Nexus reg. shifted in)

6 1 EXIT1-DR—UPDATE-DR (Nexus shifter is transferred to Nexus command register)

7 1 UPDATE-DR—SELECT-DR_SCAN

8 0 SELECT-DR_SCAN—CAPTURE-DR (Register value is transferred to Nexus shifter)

9 0 CAPTURE-DR—SHIFT-DR

10 0 (31) TCK clocks issued to transfer register value to TDO pin while shifting in TDI value

11 1 SHIFT-DR—EXIT1–DR (MSB of value is shifted in/out of shifter)

12 1 EXIT1-DR—UPDATE–DR (if access is write, shifter is transferred to register)

13 0
UPDATE-DR—RUN-TEST/IDLE (transfer complete–Nexus controller to register select
state)

Table 282. Accessing memory-mapped resources (reads)

Step TCLK clocks Description

1 13 Nexus command = write to read/write access address register (RWA)

2 37 Write RWA (initialize starting read address–data input on TDI)

Nexus3 module UM0434

380/391

12.15.3 JTAG sequence for write access of Memory-Mapped resources

Table 283 shows the JTAG sequence for write-accessing memory-mapped resources.

3 13 Nexus command = write to read/write control/status register (RWCS)

4 37 Write RWCS (initialize read access mode and CNT value–data input on TDI)

5 — Wait for falling edge of nex_rdy_b pin

6 13 Nexus command = read read/write access data register (RWD)

7 37 Read RWD (data output on TDO)

8 — If CNT > 0, go back to Step 5

Table 282. Accessing memory-mapped resources (reads) (continued)

Step TCLK clocks Description

Table 283. Accessing memory-mapped resources (writes)

Step TCLK clocks Description

1 13 Nexus command = write to read/write access control/status register (RWCS)

2 37 Write RWCS (initialize write access mode and CNT value–data input on TDI)

3 13 Nexus command = write to read/write address register (RWA)

4 37 Write RWA (initialize starting write address–data input on TDI)

5 13 Nexus command = read read/write access data register (RWD)

6 37 Write RWD (data output on TDO)

7 — Wait for falling edge of nex_rdy_b pin

8 — If CNT > 0, go back to Step #5

UM0434 Glossary

 381/391

13 Glossary

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted from IEEE
Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

A
Architecture. A detailed specification of requirements for a processor or computer system.
It does not specify details of how the processor or computer system must be implemented;
instead it provides a template for a family of compatible implementations.

Asynchronous interrupt.

interrupts that are caused by events external to the processor’s execution. In this document,
the term asynchronous interrupt is used interchangeably with the word interrupt.

Atomic access. A bus access that attempts to be part of a read-write operation to the
same address uninterrupted by any other access to that address (the term refers to the fact
that the transactions are indivisible). The PowerPC architecture implements atomic
accesses through the lwarx/stwcx. instruction pair.

B
Biased exponent. An exponent whose range of values is shifted by a constant (bias).
Typically a bias is provided to allow a range of positive values to express a range that
includes both positive and negative values.

Big-endian. A byte-ordering method in memory where the address n of a word
corresponds to the most-significant byte. In an addressed memory word, the bytes are
ordered (left to right) 0, 1, 2, 3, with 0 being the most-significant byte. See Little-endian.

Boundedly undefined. A characteristic of certain operation results that are not rigidly
prescribed by the PowerPC architecture. Boundedly- undefined results for a given operation
may vary among implementations and between execution attempts in the same
implementation.

Although the architecture does not prescribe the exact behavior for when results are allowed
to be boundedly undefined, the results of executing instructions in contexts where results
are allowed to be boundedly undefined are constrained to ones that could have been
achieved by executing an arbitrary sequence of defined instructions, in valid form, starting in
the state the machine was in before attempting to execute the given instruction.

Branch prediction. The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term ‘predicted’ as it is used here does not imply
that the prediction is correct (successful). The PowerPC architecture defines a means for
static branch prediction as part of the instruction encoding.

Branch resolution. The determination of whether a branch is taken or not taken. A branch
is said to be resolved when the processor can determine which instruction path to take. If
the branch is resolved as predicted, the instructions following the predicted branch that may
have been speculatively executed can complete (see Completion). If the branch is not
resolved as predicted, instructions on the mispredicted path, and any results of speculative
execution, are purged from the pipeline and fetching continues from the nonpredicted path.

Glossary UM0434

382/391

C
Cache. High-speed memory containing recently accessed data or instructions (subset of
main memory).

Cache block. A small region of contiguous memory that is copied from memory into a
cache. The size of a cache block may vary among processors; the maximum block size is
one page. In PowerPC processors, cache coherency is maintained on a cache-block basis.
Note that the term cache block is often used interchangeably with ‘cache line.’

Cache coherency. An attribute wherein an accurate and common view of memory is
provided to all devices that share the same memory system. Caches are coherent if a
processor performing a read from its cache is supplied with data corresponding to the most
recent value written to memory or to another processor’s cache.

Cache flush. An operation that removes from a cache any data from a specified address
range. This operation ensures that any modified data within the specified address range is
written back to main memory. This operation is generated typically by a Data Cache Block
Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which the cache is bypassed and the load
or store is performed to or from main memory.

Cast out. A cache block that must be written to memory when a cache miss causes a
cache block to be replaced.

Changed bit. One of two page history bits found in each page table entry (PTE). The
processor sets the changed bit if any store is performed into the page. See also Page
access history bits and Referenced bit.

Clean. An operation that causes a cache block to be written to memory, if modified, and
then left in a valid, unmodified state in the cache.

Clear. To cause a bit or bit field to register a value of zero. See also Set.

Completion. Completion occurs when an instruction has finished executing, written back
any results, and is removed from the completion queue (CQ). When an instruction
completes, it is guaranteed that this instruction and all previous instructions can cause no
interrupts.

Context synchronization. An operation that ensures that all instructions in execution
complete past the point where they can produce an interrupt, that all instructions in
execution complete in the context in which they began execution, and that all subsequent
instructions are fetched and executed in the new context. Context synchronization may
result from executing specific instructions (such as isync or rfi) or when certain events
occur (such as an interrupt).

Copy-back operation. A cache operation in which a cache line is copied back to memory
to enforce cache coherency. Copy-back operations consist of snoop push-out operations
and cache cast-out operations.

D
Denormalized number. A nonzero floating-point number whose exponent has a reserved
value, usually the format's minimum, and whose explicit or implicit leading significand bit is
zero.

UM0434 Glossary

 383/391

E
Effective address (EA). The 32-bit address specified for a load, store, or an instruction
fetch. This address is then submitted to the MMU for translation to either a physical memory
address or an I/O address.

Exception. A condition that, if enabled, generates an interrupt.

Execution synchronization. A mechanism by which all instructions in execution are
architecturally complete before beginning execution (appearing to begin execution) of the
next instruction. Similar to context synchronization but doesn't force the contents of the
instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a floating-point number, the exponent is the
component that normally signifies the integer power to which the value two is raised in
determining the value of the represented number. See also Biased exponent.

F
Fall-through (branch fall-through). A not-taken branch.

Fetch. Retrieving instructions from either the cache or main memory and placing them into
the instruction queue.

Finish. Finishing occurs in the last cycle of execution. In this cycle, the CQ entry is updated
to indicate that the instruction has finished executing.

Flush. An operation that causes a cache block to be invalidated and the data, if modified, to
be written to memory.

Fraction. In the binary representation of a floating-point number, the field of the significand
that lies to the right of its implied binary point.

G
General-purpose register (GPR). Any of the 32 registers in the general-purpose register
file. These registers provide the source operands and destination results for all integer data
manipulation instructions. Integer load instructions move data from memory to GPRs and
store instructions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a page is
designated as guarded, instructions and data cannot be accessed out-of-order.

H
Harvard architecture. An architectural model featuring separate caches and other memory
management resources for instructions and data.

Hashing. An algorithm used in the page table search process.

I
IEEE 754. A standard written by the Institute of Electrical and Electronics Engineers that
defines operations and representations of binary floating-point numbers.

Illegal instructions. A class of instructions that are not implemented for a particular
PowerPC processor. These include instructions not defined by the PowerPC architecture. In

Glossary UM0434

384/391

addition, for 32-bit implementations, instructions that are defined only for 64-bit
implementations are considered to be illegal instructions. For 64-bit implementations
instructions that are defined only for 32-bit implementations are considered to be illegal
instructions.

Implementation. A particular processor that conforms to the PowerPC architecture, but
may differ from other architecture-compliant implementations for example in design, feature
set, and implementation of optional features. The PowerPC architecture has many different
implementations.

Imprecise interrupt. A type of synchronous interrupt that is allowed not to adhere to the
precise interrupt model (see Precise interrupt). The PowerPC architecture allows only
floating-point exceptions to be handled imprecisely.

Instruction queue. A holding place for instructions fetched from the current instruction
stream.

Integer unit. The functional unit in the processor responsible for executing all integer
instructions.

In-order. An aspect of an operation that adheres to a sequential model. An operation is
said to be performed in-order if, at the time that it is performed, it is known to be required by
the sequential execution model. See Out-of-order.

Instruction latency. The total number of clock cycles necessary to execute an instruction
and make ready the results of that instruction.

Interrupt. A condition encountered by the processor that requires special, supervisor-level
processing.

Interrupt handler. A software routine that executes when an interrupt is taken. Normally,
the interrupt handler corrects the condition that caused the interrupt, or performs some other
meaningful task (that may include aborting the program that caused the interrupt).

K
Kill. An operation that causes a cache block to be invalidated without writing any modified
data to memory.

L
Latency. The number of clock cycles necessary to execute an instruction and make ready
the results of that execution for a subsequent instruction.

L2 cache. See Secondary cache.

Least-significant bit (lsb). The bit of least value in an address, register, field, data
element, or instruction encoding.

Least-significant byte (LSB). The byte of least value in an address, register, data element,
or instruction encoding.

Little-endian. A byte-ordering method in memory where the address n of a word
corresponds to the least-significant byte. In an addressed memory word, the bytes are
ordered (left to right) 3, 2, 1, 0, with 3 being the most-significant byte. See Big-endian.

UM0434 Glossary

 385/391

M
Mantissa. The decimal part of a logarithm.

Memory access ordering. The specific order in which the processor performs load and
store memory accesses and the order in which those accesses complete.

Memory-mapped accesses. Accesses whose addresses use the page or block address
translation mechanisms provided by the MMU and that occur externally with the bus
protocol defined for memory.

Memory coherency. An aspect of caching in which it is ensured that an accurate view of
memory is provided to all devices that share system memory.

Memory consistency. Refers to agreement of levels of memory with respect to a single
processor and system memory (for example, on-chip cache, secondary cache, and system
memory).

Memory management unit (MMU). The functional unit that is capable of translating an
effective (logical) address to a physical address, providing protection mechanisms, and
defining caching methods.

Most-significant bit (msb). The highest-order bit in an address, registers, data element, or
instruction encoding.

Most-significant byte (MSB). The highest-order byte in an address, registers, data
element, or instruction encoding.

N
NaN. An abbreviation for not a number; a symbolic entity encoded in floating-point format.
There are two types of NaNs—signaling NaNs and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect registers or generate bus
activity.

Normalization. A process by which a floating-point value is manipulated such that it can be
represented in the format for the appropriate precision (single- or double-precision). For a
floating-point value to be representable in the single- or double-precision format, the leading
implied bit must be a 1.

O
Optional. A feature, such as an instruction, a register, or an interrupt, that is defined by the
PowerPC architecture but not required to be implemented.

Out-of-order. An aspect of an operation that allows it to be performed ahead of one that
may have preceded it in the sequential model, for example, speculative operations. An
operation is said to be performed out-of-order if, at the time that it is performed, it is not
known to be required by the sequential execution model. See In-order.

Out-of-order execution. A technique that allows instructions to be issued and completed
in an order that differs from their sequence in the instruction stream.

Overflow. An condition that occurs during arithmetic operations when the result cannot be
stored accurately in the destination register(s). For example, if two 32-bit numbers are
multiplied, the result may not be representable in 32 bits. Because 32-bit registers cannot
represent this sum, an overflow condition occurs.

Glossary UM0434

386/391

P
Page. A region in memory. The OEA defines a page as a 4-Kbyte area of memory, aligned
on a 4-Kbyte boundary.

Page access history bits. The changed and referenced bits in the PTE keep track of the
access history within the page. The referenced bit is set by the MMU whenever the page is
accessed for a read or write operation. The changed bit is set when the page is stored into.
See Changed bit and Referenced bit.

Page fault. A page fault is a condition that occurs when the processor attempts to access a
memory location that does not reside within a page not currently resident in physical
memory. On PowerPC processors, a page fault interrupt condition occurs when a matching,
valid page table entry (PTE[V] = 1) cannot be located.

Page table. A table in memory is comprised of page table entries, or PTEs. It is further
organized into eight PTEs per PTEG (page table entry group). The number of PTEGs in the
page table depends on the size of the page table (as specified in the SDR1 register).

Physical memory. Actual memory that can be accessed through system memory bus.

Pipelining. A technique that breaks operations, such as instruction processing or bus
transactions, into smaller distinct stages or tenures (respectively) so that a subsequent
operation can begin before the previous one has completed.

Precise interrupts. A category of interrupt for which the pipeline can be stopped so
instructions that preceded the faulting instruction can complete and subsequent instructions
can be flushed and redispatched after interrupt handling has completed. See Imprecise
interrupts.

Primary opcode. The most-significant 6 bits (bits 0–5) of the instruction encoding that
identifies the type of instruction.

Program order. The order of instructions in an executing program. More specifically, this
term is used to refer to the original order in which program instructions are fetched into the
instruction queue from the cache.

Protection boundary. A boundary between protection domains.

Q
Quiesce. To come to rest. The processor is said to quiesce when an interrupt is taken or a
sync instruction is executed. The instruction stream is stopped at the decode stage and
executing instructions are allowed to complete to create a controlled context for instructions
that may be affected by out-of-order, parallel execution. See Context synchronization.

Quiet NaN. A type of NaN that can propagate through most arithmetic operations without
signaling interrupts. A quiet NaN is used to represent the results of certain invalid
operations, such as invalid arithmetic operations on infinities or on NaNs, when invalid. See
Signaling NaN.

R
Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set, updates the
condition register (CR) to reflect the result of the operation.

UM0434 Glossary

 387/391

Referenced bit. One of two page history bits found in each page table entry. The processor
sets the referenced bit whenever the page is accessed for a read or write. See also Page
access history bits.

Register indirect addressing. A form of addressing that specifies one GPR that contains
the address for the load or store.

Register indirect with immediate index addressing. A form of addressing that specifies
an immediate value to be added to the contents of a specified GPR to form the target
address for the load or store.

Register indirect with index addressing. A form of addressing that specifies that the
contents of two GPRs be added together to yield the target address for the load or store.

Rename register. Temporary buffers used by instructions that have finished execution but
have not completed.

Reservation. The processor establishes a reservation on a cache block of memory space
when it executes an lwarx instruction to read a memory semaphore into a GPR.

Reservation station. A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the results of instructions on which the dispatched
instruction may depend are not available.

Retirement. Removal of the completed instruction from the CQ.

RISC (reduced instruction set computing). An architecture characterized by fixed-length
instructions with nonoverlapping functionality and by a separate set of load and store
instructions that perform memory accesses.

S
Secondary cache. A cache memory that is typically larger and has a longer access time
than the primary cache. A secondary cache may be shared by multiple devices. Also
referred to as L2, or level-2, cache.

Set (v). To write a nonzero value to a bit or bit field; the opposite of clear. The term ‘set’ may
also be used to generally describe the updating of a bit or bit field.

Set (n). A subdivision of a cache. Cacheable data can be stored in a given location in one of
the sets, typically corresponding to its lower-order address bits. Because several memory
locations can map to the same location, cached data is typically placed in the set whose
cache block corresponding to that address was used least recently. See Set-associative.

Set-associative. Aspect of cache organization in which the cache space is divided into
sections, called sets. The cache controller associates a particular main memory address
with the contents of a particular set, or region, within the cache.

Shadowing. Shadowing allows a register to be updated by instructions that are executed
out of order without destroying machine state information.

Signaling NaN. A type of NaN that generates an invalid operation program interrupt when it
is specified as arithmetic operands. See Quiet NaN.

Significand. The component of a binary floating-point number that consists of an explicit or
implicit leading bit to the left of its implied binary point and a fraction field to the right.

Simplified mnemonics. Assembler mnemonics that represent a more complex form of a
common operation.

Glossary UM0434

388/391

Snooping. Monitoring addresses driven by a bus master to detect the need for coherency
actions.

Snoop push. Response to a snooped transaction that hits a modified cache block. The
cache block is written to memory and made available to the snooping device.

Split-transaction. A transaction with independent request and response tenures.

Split-transaction bus. A bus that allows address and data transactions from different
processors to occur independently.

Stage. The term stage is used in two different senses, depending on whether the pipeline is
being discussed as a physical entity or a sequence of events. In the latter case, a stage is an
element in the pipeline during which certain actions are performed, such as decoding the
instruction, performing an arithmetic operation, or writing back the results. Typically, the
latency of a stage is one processor clock cycle. Some events, such as dispatch, write-back,
and completion, happen instantaneously and may be thought to occur at the end of a stage.
An instruction can spend multiple cycles in one stage. An integer multiply, for example, takes
multiple cycles in the execute stage. When this occurs, subsequent instructions may stall.
An instruction may also occupy more than one stage simultaneously, especially in the sense
that a stage can be seen as a physical resource—for example, when instructions are
dispatched they are assigned a place in the CQ at the same time they are passed to the
execute stage. They can be said to occupy both the complete and execute stages in the
same clock cycle.

Stall. An occurrence when an instruction cannot proceed to the next stage.

Static branch prediction. Mechanism by which software (for example, compilers) can hint
to the machine hardware about the direction a branch is likely to take.

Store Queue. Holds store operations that have not been committed to memory, resulting
from completed or retired instructions.

Superscalar. A superscalar processor is one that can dispatch multiple instructions
concurrently from a conventional linear instruction stream. In a superscalar implementation,
multiple instructions can be in the same stage at the same time.

Supervisor mode. The privileged operation state of a processor. In supervisor mode,
software, typically the operating system, can access all control registers and can access the
supervisor memory space, among other privileged operations.

Synchronization. A process to ensure that operations occur strictly in order. See Context
synchronization and Execution synchronization.

Synchronous interrupt. An interrupt that is generated by the execution of a particular
instruction or instruction sequence. There are two types of synchronous interrupts, precise
and imprecise.

System memory. The physical memory available to a processor.

T
TLB (translation lookaside buffer). A cache that holds recently-used page table entries.

Throughput. The number of instructions that are processed per clock cycle.

UM0434 Glossary

 389/391

U
Underflow. A condition that occurs during arithmetic operations when the result cannot be
represented accurately in the destination register. For example, underflow can happen if two
floating-point fractions are multiplied and the result requires a smaller exponent and/or
mantissa than the single-precision format can provide. In other words, the result is too small
to be represented accurately.

User mode. The operating state of a processor used typically by application software. In
user mode, software can access only certain control registers and can access only user
memory space. No privileged operations can be performed. Also referred to as problem
state.

V
VEA (virtual environment architecture). The level of the architecture that describes the
memory model for an environment in which multiple devices can access memory, defines
aspects of the cache model, defines cache control instructions, and defines the time-base
facility from a user-level perspective. Implementations that conform to the PowerPC VEA
also adhere to the UISA, but may not necessarily adhere to the OEA.

Virtual address. An intermediate address used in the translation of an effective address to
a physical address.

Virtual memory. The address space created using the memory management facilities of
the processor. Program access to virtual memory is possible only when it coincides with
physical memory.

W
Way. A location in the cache that holds a cache block, its tags and status bits.

Word. A 32-bit data element.

Write-back. A cache memory update policy in which processor write cycles are directly
written only to the cache. External memory is updated only indirectly, for example, when a
modified cache block is cast out to make room for newer data.

Write-through. A cache memory update policy in which all processor write cycles are
written to both the cache and memory.

Revision history UM0434

390/391

14 Revision history

Table 284. Document revision history

Date Revision Changes

25-May-2007 1 Initial release.

29-Nov-2013 2 Updated Disclaimer.

DocID13527 Rev 2 391/391

UM0434

1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

