

## **Die Datasheet**

# GA01PNS100-CAL

# Silicon Carbide PiN Diode Chip

 $V_{RRM}$  = 10000 V  $I_F$  @ 25 °C = 2 A  $Q_C$  = 5 nC

#### **Features**

- 10 kV blocking
- 210 °C operating temperature
- Fast turn off characteristics
- Soft reverse recovery characteristics
- Ultra-Fast high temperature switching







Die Size = 2.4 mm x 2.4 mm



#### **Advantages**

- Industry's lowest conduction losses
- Reduced stacking
- Reduced system complexity/Increased reliability

#### **Applications**

- Voltage Multiplier
- Ignition/Trigger Circuits
- Oil/Downhole
- Lighting
- Defense

#### Maximum Ratings at $T_j$ = 210 °C, unless otherwise specified

| Parameter                         | Symbol              | Conditions              | Values     | Unit |
|-----------------------------------|---------------------|-------------------------|------------|------|
| Repetitive peak reverse voltage   | $V_{RRM}$           |                         | 10         | kV   |
| Continuous forward current        | I <sub>F</sub>      | T <sub>C</sub> ≤ 150 °C | 2          | Α    |
| RMS forward current               | I <sub>F(RMS)</sub> | T <sub>C</sub> ≤ 150 °C | 1          | Α    |
| Operating and storage temperature | $T_{j}$ , $T_{stg}$ |                         | -55 to 210 | °C   |

#### Electrical Characteristics at T<sub>j</sub> = 210 °C, unless otherwise specified

| Symbol         | Conditions -                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit                                                   |                                                        |
|----------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
|                |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | typ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | max.                                                   | Onit                                                   |
| \/_            | $I_F = 2 A, T_j = 2$                                           | 25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.8                                                    | V                                                      |
| VF             | $I_F = 2 \text{ A}, T_j = 210 ^{\circ}\text{C}$                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.5                                                    | V                                                      |
| 1              | $V_R = 10 \text{ kV}, T_j =$                                   | : 25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                      |                                                        |
| IR             | $V_R = 10 \text{ kV}, T_j = 210 \text{ °C}$                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                     | μΑ                                                     |
| Ο,,,           | le ≤ le May                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | nC                                                     |
| <b>4</b> 11    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                        |
| $t_s$          | T <sub>j</sub> = 210 °C                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | ns                                                     |
|                | V <sub>P</sub> = 1 V, f = 1 MHz                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                                        |
| С              |                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | pF                                                     |
|                |                                                                | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | •                                                      |
| Q <sub>C</sub> | V <sub>R</sub> = 1000 V, f = 1 MH                              | Iz, T <sub>j</sub> = 25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | nC                                                     |
|                | V <sub>F</sub> I <sub>R</sub> Q <sub>rr</sub> t <sub>s</sub> C | $\begin{array}{ccc} V_{F} & I_{F}=2~A,~T_{j}=2\\ I_{F}=2~A,~T_{j}=2\\ V_{R}=10~kV,~T_{j}=2\\ V_{R}=10~kV,~T_{j}=2\\ V_{R}=10~kV,~T_{j}=2\\ V_{R}=10~kV,~T_{j}=2\\ V_{R}=10~kV,~T_{j}=2\\ V_{R}=1~V,~T_{j}=2\\ V_{R}=1~V,~T_{j}=1~MHz\\ V_{R}=1000~V,~T_{j}=1~MHz\\ V_{R}=1000~V,~T_{j}=1~MHz\\$ | $\begin{array}{c} V_F & I_F = 2 \text{ A, } T_j = 25 \text{ °C} \\ I_F = 2 \text{ A, } T_j = 210 \text{ °C} \\ V_R = 10 \text{ kV, } T_j = 25 \text{ °C} \\ V_R = 10 \text{ kV, } T_j = 25 \text{ °C} \\ V_R = 10 \text{ kV, } T_j = 210 \text{ °C} \\ \end{array}$ $\begin{array}{c} Q_{rr} & I_F \leq I_{F,MAX} \\ dI_F/dt = 70 \text{ A/µs} \\ T_j = 210 \text{ °C} & I_F = 1.5 \text{ A} \\ V_R = 1000 \text{ V} \\ I_F = 1.5 \text{ A} \\ \end{array}$ $\begin{array}{c} V_R = 1000 \text{ V} \\ I_F = 1.5 \text{ A} \\ V_R = 1000 \text{ V, } f = 1 \text{ MHz, } T_j = 25 \text{ °C} \\ V_R = 1000 \text{ V, } f = 1 \text{ MHz, } T_j = 25 \text{ °C} \\ \end{array}$ | $V_{F} \qquad \begin{array}{c} I_{F}=2 \text{ A, } T_{j}=25 \text{ °C} \\ I_{F}=2 \text{ A, } T_{j}=210 \text{ °C} \\ I_{F}=2 \text{ A, } T_{j}=210 \text{ °C} \\ \end{array}$ $V_{R}=10 \text{ kV, } T_{j}=25 \text{ °C} \\ V_{R}=10 \text{ kV, } T_{j}=25 \text{ °C} \\ V_{R}=10 \text{ kV, } T_{j}=210 \text{ °C} \\ \end{array}$ $V_{R}=10 \text{ VOC} \qquad \begin{array}{c} I_{F} \leq I_{F,MAX} \\ I_{F}=1.5 \text{ A} \\ V_{R}=1000 \text{ V, } I_{F}=1.5 \text{ A} \\ \end{array}$ $V_{R}=1000 \text{ V, } I_{F}=1.5 \text{ A} \\ V_{R}=1000 \text{ V, } I_{F}=1.5 \text{ A} \\ V_{R}=1000 \text{ V, } I_{F}=1.5 \text{ A} \\ \end{array}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

#### Figures:

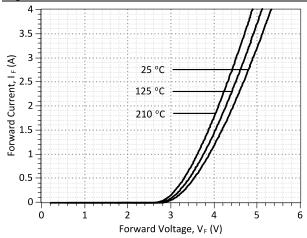



Figure 1: Typical Forward Characteristics

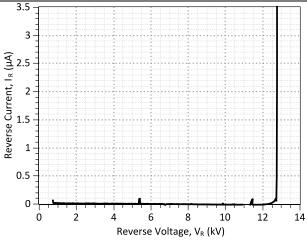



Figure 2: Typical Reverse Characteristics

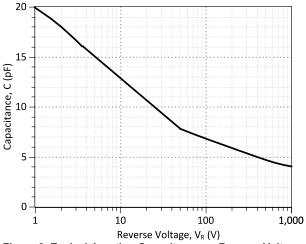



Figure 3: Typical Junction Capacitance vs Reverse Voltage Characteristics

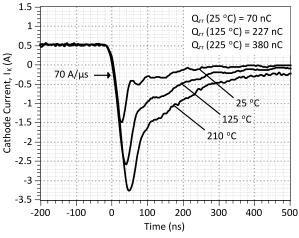



Figure 4: Typical Turn Off Characteristics at  $I_{\text{k}}$  = 0.5 A and  $V_{\text{R}}$  = 1000 V

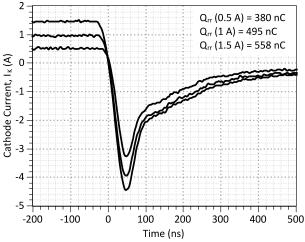



Figure 5: Typical Turn Off Characteristics at  $T_j$  = 210  $^{\circ}\text{C}$  and  $V_R$  = 1000 V

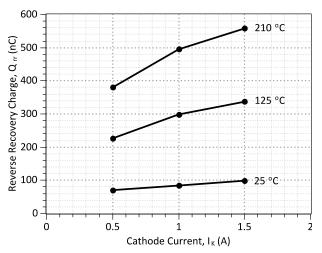
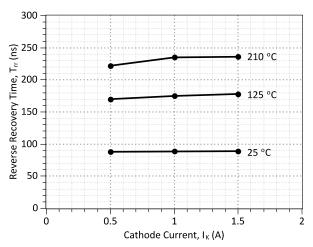
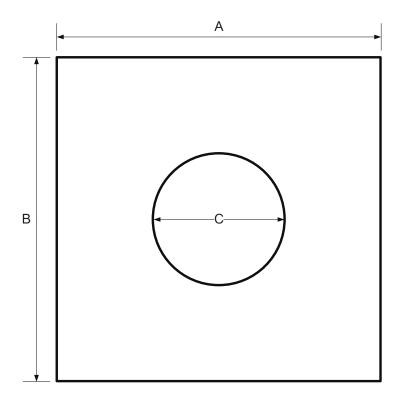



Figure 6: Reverse Recovery Charge vs Cathode Current





Figure 7: Reverse Recovery Time vs Cathode Current



### **Mechanical Parameters**

| Die Dimensions                   | 2.4 x 2.4                          | mm <sup>2</sup>                               |  |  |
|----------------------------------|------------------------------------|-----------------------------------------------|--|--|
| Anode pad size                   | Ф 0.98                             | mm                                            |  |  |
| Area total / active              | 5.76/0.75                          | mm <sup>2</sup>                               |  |  |
| Die Thickness                    | 450                                | μm                                            |  |  |
| Wafer Size                       | 76.2                               | mm                                            |  |  |
| Flat Position                    | 0                                  | deg                                           |  |  |
| Die Frontside Passivation        | Polyimide                          | Polyimide                                     |  |  |
| Anode Pad Metallization          | 4000 nm Al                         | 4000 nm Al                                    |  |  |
| Backside Cathode Metallization   | 400 nm Ni + 200 nm A               | 400 nm Ni + 200 nm Au                         |  |  |
| Die Attach                       | Electrically conductive glue o     | Electrically conductive glue or solder        |  |  |
| Wire Bond                        | Al ≤ 130 μm                        | Al ≤ 130 μm                                   |  |  |
| Reject ink dot size              | Φ ≥ 0.3 mm                         | Φ ≥ 0.3 mm                                    |  |  |
| Decemberded starges on vironment | Store in original container, in dr | Store in original container, in dry nitrogen, |  |  |
| Recommended storage environment  | < 6 months at an ambient tempera   | < 6 months at an ambient temperature of 23 °C |  |  |

# **Chip Dimensions:**



| DIE   | A<br>[mm] | 2.4  |  |
|-------|-----------|------|--|
| DIE   | B<br>[mm] | 2.4  |  |
| METAL | C<br>[mm] | 0.98 |  |



## **Die Datasheet**

# GA01PNS100-CAL

| Revision History |          |                                |            |  |  |
|------------------|----------|--------------------------------|------------|--|--|
| Date             | Revision | Comments                       | Supersedes |  |  |
| 2015/02/24       | 1        | Inserted Mechanical Parameters |            |  |  |
| 2012/08/15       | 0        | Initial release                |            |  |  |
|                  |          |                                |            |  |  |

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles. VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.



#### **SPICE Model Parameters**

This is a secure document. Please copy this code from the SPICE model PDF file on our website (http://www.genesicsemi.com/images/hit\_sic/baredie/pin/GA01PNS100-CAL\_SPICE.pdf) into LTSPICE (version 4) software for simulation of the GA01PNS100-CAL device.

```
MODEL OF GeneSiC Semiconductor Inc.
     $Revision: 1.0
     $Date: 05-SEP-2013
                                 Ś
     GeneSiC Semiconductor Inc.
     43670 Trade Center Place Ste. 155
     Dulles, VA 20166
     http://www.genesicsemi.com/index.php/hit-sic/baredie
     COPYRIGHT (C) 2013 GeneSiC Semiconductor Inc.
     ALL RIGHTS RESERVED
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
* Models accurate up to 2 times rated drain current.
 Start of GA01PNS100-CAL SPICE Model
.MODEL GA01PNS100 D
+ IS
          1.00E-25
+ RS
          0.49
          2.1612
+ N
+ IKF
          0.043903
+ EG
          3.23
+ XTI
          10
+ TRS1
          -0.00155
+ CJO
          2.28E-11
          2.304
+ VJ
          0.376
+ M
+ FC
          0.5
+ BV
          11000
          1.00E-03
+ IBV
          10000
+ VPK
+ IAVE
          1
+ TYPE
          SiC PiN
+ MFG
          GeneSiC Semi
* End of GA01PNS100-CAL SPICE Model
```