CMOS 8-bit Single Chip Microcomputer

Description

The CXP884P60 is a CMOS 8-bit microcomputer which consists of A/D converter, serial interface, timer/counter, time-base timer, high precision timing pattern generation circuit, PWM output, VISS/VASS circuit, 32kHz timer/counter, remote control receiving circuit, VSYNC separator and the measurement circuit which measure signals of capstan FG and drum FG/PG and other servo systems, as well as basic configurations like 8 -bit CPU, ROM, RAM and I/O port. They are integrated into a single chip.
Also, the CXP884P60 provides sleep/stop functions which enable to lower power consumption.
This IC is the PROM-incorporated version of the CXP88460 with built-in mask ROM. This provides the additional feature of being able to write directly into the program. Thus, it is most suitable for evaluation use during system development and

Structure
Silicon gate CMOS IC for small-quantity production.

Features

- A wide instruction set (213 instructions) which covers various types of data
- 16-bit arithmetic/multiplication and division/boolean bit operation instructions
- Minimum instruction cycle 250 ns at 16 MHz operation $122 \mu \mathrm{~s}$ at 32 kHz operation 60K bytes
- Incorporated PROM capacity
- Incorporated RAM capacity
- Peripheral functions
- A/D converter
- Serial interface
- Timer
— High precision timing pattern generation circuit
- PWM/DA gate output
- Analog signal input circuit
- CTL write/rewrite circuit
- Servo input control
- VSYNC separator
- FRC capture unit
- PWM output
- VISS/VASS circuit
- Remote control receiving circuit
- Tri-state output
- High speed head switching circuit
- Interruption
- Standby mode
- Package
- Piggy/evaluation chip

8 bits, 12 channels, successive approximation system
(Conversion time of $20 \mu \mathrm{~s} / 16 \mathrm{MHz}$)
Incorporated 8-bit, 8-stage FIFO
(Auto transfer for 1 to 8 bytes), 1 channel
Incorporated buffer RAM (Auto transfer for 1 to 32 bytes), 1 channel Incorporated two-wire 8-bit and 8-stage FIFO (Auto transfer for 1 to 8 bytes), 1 channel
8 -bit timer/counter, 2 channels
19-bit time-base timer

32kHz timer/counter

PPG: Maximum of 19 pins 32 stages programmable
RTG: 5 pins, 1 channel
7-bit, 10-stage FIFO (RECCTL control/ATC control), 1 channel
12 bits, 2 channels (Repetitive frequency 62.5 kHz at 16 MHz)
DA gate pulse output: 13 bits, 2 channels
PBCTL amplifier circuit
Reel FG comparator
Recording current control circuit
Capstan FG, Drum FG/PG, CTL, Reel FG input
Incorporated 26 -bit and 8 -stage FIFO
14 bits, 1 channel
Pulse duty auto detection circuit
8 -bit pulse measurement counter, 6 -stage FIFO
PPG output 2 pins
22 factors, 15 vectors, multi-interruption possible
Sleep/stop
100-pin plastic QFP
CXP88400 100-pin ceramic PQFP

[^0]Block Diagram
ANO to AN11
 O
$\stackrel{\mathrm{O}}{\mathrm{O}}$
O
$\stackrel{1}{2}$
SYNC
<
$\sum_{\mathbb{X}}^{0}$

8 lodd
of
$00 d d$

Pin Assignment (Top View)

Note) 1. Vpp (Pin 90) is always connected to Vdd.
2. Vdd (Pins 63 and 89) are both connected to Vdd
3. Vss (Pins 41 and 88) are both connected to GND.
4. MP (Pin 39) is always connected to GND.

Pin Description

Symbol	1/O	Description		
PAO/PPOO to PA7/PPO7	Output/ Real-time output	(Port A) 8 -bit output port. Data is gated with PPO contents by OR-gate and they are output. (8 pins)		switching output.
$\begin{gathered} \text { PB0/PPO8 } \\ \text { to } \\ \text { PB7/PPO15 } \end{gathered}$	Output/ Real-time output	(Port B) 8 -bit output port. Data is gated with PPO contents by OR-gate and they are output. (8 pins)	Programmable pattern generator (PPG) output. Functions as high precision realtime pulse output port. (19 pins) PB0 and PB2 can be tri-state controlled with PPG.	
PC0/PPO16 to PC2/PPO18	I/O/ Real-time output	(Port C) 8-bit I/O port. I/O can be specified in 1 -bit units. Data is gated with PPO or RTO contents by OR-gate and they are output. (8 pins)		
$\begin{gathered} \text { PC3/RTO3 } \\ \text { to } \\ \text { PC7/RTO7 } \end{gathered}$	I/O/ Real-time output		Real-time pulse generator (RTG) output. Functions as high precision real-time pulse output port. PC3 can be tri-state controlled with RTG. (5 pins)	
$\frac{\mathrm{PDO} / \overline{\mathrm{NT} 1 /}}{\overline{\mathrm{NMI}}}$	I/O/Input/Input	(Port D) 8-bit I/O port. I/O can be specified in 1 -bit units. (8 pins)	Input pin to request external interruption and non-maskable interruption.	
PD1/RMC	I/O/Input		Remote control receiving circuit input pin.	
PD2/PWM	I/O/Output		14-bit PWM output pin.	
PD3/TO DDO/ADJ SRVO	I/O/Output/Output/ Output/Output		Timer/counter, CTL duty detector, 32kHz oscillation adjustment and servo amplifier output pin.	
PD4/ $\overline{\mathrm{CSO}}$	I/O/Input		Serial chip select (CH0) input pin.	
PD5/SCK0	1/0///O		Serial clock (CH0) I/O pin.	
PD6/SO0	I/O/Output		Serial data (CHO) output pin.	
PD7/SI0	I/O/Input		Serial data (CH0) input pin.	
PE0/SCK1	Output//O	(Port E) 8 -bit port. Bits 2, 3, 4 and 5 are for inputs; bits $0,1,6$ and 7 are for outputs. (8 pins)	Serial clock (CH1) I/O pin.	
PE1/SO1	Output/Output		Serial data (CH1) output pin.	
PE2/SI1	Input/Input		Serial data (CH1) input pin.	
PE3/SYNC	Input/Input		Composite sync signal input pin.	
PE4/EXIO	Input/Input		External input pin for FRC capture unit. (2 pins)	
PE5/EXI1	Input/Input			
PE6/PWM0/ DAAO	Output/Output		PWM output pin. (2 pins)	DA gate pulse output pin. (2 pins)
PE7/PWM1/ DAA1	Output/Output			

Description	1/O	Description		
AN0 to AN3	Input			Analog input pin to A/D converter. (12 pins)
$\begin{gathered} \text { PF0/AN4 } \\ \text { to } \\ \text { PF3/AN7 } \end{gathered}$	Input/Input	(Port F) Lower 4 bits are for inputs; upper 4 bits are for outputs. Lower 4 bits also serve as standby release input pins. (8 pins)		
$\begin{gathered} \text { PF4/AN8 } \\ \text { to } \\ \text { PF7/AN11 } \end{gathered}$	Output/Input			
PGO/CFG	Input/Input	(Port G) 4-bit input port. (4 pins)	Capstan FG input pin.	
PG1/DFG			Drum FG input pin.	
PG2/DPG			Drum PG input pin.	
$\frac{\mathrm{PG} 3 / \overline{\mathrm{EC} /}}{\mathrm{NT}^{2}}$	Input/Input/Input		External event input pin for timer/counter.	Input pin to request external interruption. Active when falling edge.
$\begin{array}{\|l} \hline \text { PH0/SCL0 } \\ \text { PH1/SCL1 } \end{array}$	I/O///O	(Port H) 8-bit I/O port. Upper four bits are for outputs. I/O can be specified in 1 -bit units for lower four bits.	Serial clock (CH2) I/O pin.	
$\begin{array}{\|l} \hline \text { PH2/SDA0 } \\ \text { PH3/SDA1 } \end{array}$			Serial data (CH2) I/O pin.	
PH4 to PH7	Output	Lower four bits are N-ch open drain outputs and which can drive 12 mA sink current. Upper four bits are for outputs; N -ch open drain output of medium drive voltage (12V) and large current (12mA). (8 pins)		
PIO/INTO	I/O/Input	(Port I) 8-bit I/O port. I/O can be Input pin to request external interruption. Active when falling edge. 		
PI1 to PI7	I/O	specified in 1-bit units. Function as standby release input can be specified in 1-bit units. (8 pins)		
RFG0, RFG1	Input	Input ports. (2 pins)	Reel FG input pin.	
ANOUT	Output	Output port. (1 pin)	Internal waveform output pin of analog circuit.	
CTLFAMPO	Output	Output port. (1 pin)	PBCTL signal 1st amplifier output pin.	
CTLSAMPI	Input	Input port. (1 pin)	PBCTL signal 2nd amplifier input pin.	
CTLAGND	Output	Output port. (1 pin)	Smoothing capacitor connecting pin.	
CTLFAMPI (-) CTLFAMPI (+)	Input	Input ports. (2 pins)	Input PBCTL signal with capacitor coupled.	
HEADL (-) HEADL (+)	Output	Output ports. (2 pins)	During playback, connect to CTLHEAD (-) and CTLHEAD (+) with internal switch.	
CTLHEAD (-) CTLHEAD (+)	I/O	I/O ports. (2 pins)	During playback, input pin of PBCTL signal; during recording, output pin of PBCTL signal.	
AMPVss		Analog signal input circuit GND pin.		
AMPVDD		Analog signal input circuit power supply pin.		

Symbol	I/O	
EXTAL	Input	Connecting pin of crystal oscillator for system clock. When supplying the external clock, input it to EXTAL pin and input the opposite phase clock to XTAL pin.
XTAL	Output	Input
TEX	Connecting pin of crystal oscillator for 32kHz timer clock. When used as event counter, input to TEX pin and leave TX pin open. (In this time, feedback resistor is not removed.)	
TX	Input	System reset pin; active at low level.
$\overline{\text { RST }}$		Positive power supply pin for incorporated PROM write. Connect this pin to VoD for normal operation.
Vpp	Input	Test mode input pin. Always connect to GND.
MP		Positive power supply pin of A/D converter.
AVDD	Reference voltage input pin of A/D converter.	
AVREF	Input	GND pin of A/D converter.
AVss		Positive power supply pin.
VDD		GND pin. Connect both Vss pins to GND.
Vss		

Input/Output Circuit Formats for Pins

Pin	Circuit format	After a reset
$\begin{aligned} & \mathrm{PDO} / \overline{\mathrm{NT} 1} / \overline{\mathrm{NMI}} \\ & \mathrm{PD} 1 / \mathrm{RMC} \\ & \text { PD4//CSO } \\ & \text { PD7/SIO } \end{aligned}$	Port D	Hi-Z
PD2/PWM PD3/SRVO/ TO/DDO/ ADJ	Port D	Hi-Z
$\begin{aligned} & \text { PD5/ } \overline{\text { SCK0 }} \\ & \text { PD6/SO0 } \end{aligned}$	Port D	Hi-Z

Pin	Circuit format	After a reset
PE0/SCK1	Port E	Hi-Z
PE1/SO1	Port E	Hi-Z
PE2/SI1 PE3/SYNC PE4/EXIO PE5/EXI1	Port E Note) For PE3/SYNC, CMOS schmitt input or TTL schmitt input can be selected with the mask option.	Hi-Z
PE6/PWM0/ DAAO PE7/PWM1/ DAA1	Port E	High level

Pin	Circuit format	After a reset
$\begin{gathered} \text { AN0 } \\ \text { to } \\ \text { AN3 } \end{gathered}$	Inout multiplexer	Hi-Z
$\begin{gathered} \text { PFO/AN4 } \\ \text { to } \\ \text { PF3/AN7 } \end{gathered}$	Port F Input multiplexer	Hi-Z
$\begin{gathered} \text { PF4/AN8 } \\ \text { to } \\ \text { PF7/AN11 } \end{gathered}$	Port F	Hi-Z
PGO/CFG PG1/DFG PG2/DPG	Port G	Hi-Z
PG3/EC/INT2	Port G	Hi-Z

Pin	Circuit format	After a reset
$\begin{aligned} & \mathrm{PH} 0 / \mathrm{SCL} 0 \\ & \mathrm{PH} 1 / \mathrm{SCL} 1 \\ & \mathrm{PH} 2 / \mathrm{SDA} 0 \\ & \mathrm{PH} 3 / \mathrm{SDA} \end{aligned}$	Port H	Hi-Z
PH4 to PH7	Port H	Hi-Z
PIO/INTO	Port I	Hi-Z

Pin	Circuit format	After a reset
Pl1 to PI7	Port I	Hi-Z
CTLFAMPI (+) CTLFAMPI (-) CTLFAMPO		1/2AMPVDD
CTLSAMPI		1/2AMPVdD

Pin	Circuit format	After a reset
CTLAGND		1/2AMPVdD
CTLHEAD (+)		Hi-Z
CTLHEAD (-)		Hi-Z
HEADL (+)		Hi-Z
HEADL (-)		Hi-Z

Pin	Circuit format	After a reset
$\begin{aligned} & \text { RFGO } \\ & \text { RFG1 } \end{aligned}$		Hi-Z
$\begin{aligned} & \text { EXTAL } \\ & \text { XTAL } \end{aligned}$		Oscillation
$\begin{aligned} & \text { TEX } \\ & \text { TX } \end{aligned}$		Oscillation
$\overline{\mathrm{RST}}$		Low level (during a reset)

Absolute Maximum Ratings
(Vss = 0V reference)

Item	Symbol	Rating	Unit	Remarks
Supply voltage	Vdd	-0.3 to +7.0	V	
	Vpp	-0.3 to +13	V	PROM incorporated version
	AVdd	AVss to $+7.0 * 1$	V	
	AVss	-0.3 to +0.3	V	
	AMPVDd	AMPVss to $+7.0 * 2$	V	
	AMPVss	-0.3 to +0.3	V	
Input voltage	VIn	-0.3 to +7.0 *3	V	
Output voltage	Vout	-0.3 to $+7.0 * 3$	V	
Medium drive output voltage	Voutp	-0.3 to +15.0	V	Port H (PH7 to PH4) pin
High level output current	IOH	-5	mA	
High level total output current	$\sum \mathrm{loH}$	-50	mA	Total of output pins
Low level output current	IoL	15	mA	Other than large current output ports (value per pin)
	IoLC	20	mA	Large current output port*4 (value per pin)
Low level total output current	Elol	130	mA	Total of output pins
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	Pd	600	mW	QFP package type

*1 AVdd should not exceed VdD + 0.3V.
*2 AMPVDD should not exceed VDD +0.3 V .
*3 Vin and Vout should not exceed VdD +0.3 V .
*4 The large current output port is port H (PH 7 to PH 4).
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should better take place under the recommended operating conditions. Exceeding those conditions may adversely affect the reliability of the LSI.

Item	Symbol	Min.	Max.	Unit	Remarks
Supply voltage	VDd	4.5	5.5	V	Guaranteed operation range for $1 / 2$ and $1 / 4$ frequency dividing clock
		3.5	5.5		Guaranteed operation range for $1 / 16$ frequency dividing clock or during sleep mode
		2.7	5.5		Guaranteed operation range by TEX clock
		2.5	5.5		Guaranteed data hold operation range during stop
	Vpp	$\mathrm{Vpp}=\mathrm{V} \mathrm{DD}$		V	*8
Analog supply voltage	AVdd	4.5	5.5	V	*1
	AMPVdd	4.5	5.5	V	*2
High level input voltage	VIH	0.7 VdD	Vdd	V	*3
	Vihs	0.8 VdD	Vdd	V	CMOS schmitt input*4
	Vihts	2.2	VdD	V	TTL schmitt input*5
	Vihex	VDD - 0.4	VDD +0.3	V	EXTAL pin*6 TEX pin*7
Low level input voltage	VIL	0	0.3 VdD	V	*3
	Vils	0	0.2VdD	V	CMOS schmitt input*4
	VILTS	0	0.8	V	TTL schmitt input*5
	Vilex	-0.3	0.4	V	EXTAL pin*6 TEX pin*7
Operating temperature	Topr	-20	+75	${ }^{\circ} \mathrm{C}$	

*1 AVdd and Vdd should be set to the same voltage.
*2 AMPVDD and VDD should be set to the same voltage.
*3 Normal input port (each pin of PC, PD2, PD3, PD6, PF0 to PF3, PI1 to PI7 and PH0 to PH3), MP pin
*4 Each pin of $\overline{\mathrm{RST}}, \mathrm{PD} 0 / \overline{\mathrm{NT}} 1 / \overline{\mathrm{NMI}}, \mathrm{PD} 1 / \mathrm{RMC}, \mathrm{PD} 4 / \overline{\mathrm{CS} 0}, \mathrm{PD} 5 / \overline{\mathrm{SCK0}}, \mathrm{PD} 7 / \mathrm{SI} 0, \mathrm{PE} 0 / \overline{\mathrm{SCK} 1}, \mathrm{PE} 2 / \mathrm{SI} 1$, PE3/SYNC, PE4/EXIO, PE5/EXI1, PI0/INT0, PG3/ $\overline{\mathrm{EC}} / \overline{\mathrm{INT2}}$ (For PE3/SYNC, when CMOS schmitt input is selected with mask option.)
*5 PE3/SYNC (when TTL schmitt input is selected with mask option.)
*6 Specifies only during external clock input.
*7 Specifies only during external event input.
*8 Vpp and VDD should be set to the same voltage.

Electrical Characteristics

DC Characteristics (VDD $=4.5$ to 5.5 V)
($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
High level output voltage	Vон	PA to PD, PE0 to PE1, PE6 to PE7, PF4 to PF7 PH (Vol only) PI	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{IOH}=-0.5 \mathrm{~mA}$	4.0			V
			$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$, $\mathrm{IOH}=-1.2 \mathrm{~mA}$	3.5			V
Low level output voltage	Vol		$\mathrm{V} D \mathrm{D}=4.5 \mathrm{~V}$, loL $=1.8 \mathrm{~mA}$			0.4	V
			$\mathrm{V} D \mathrm{DD}=4.5 \mathrm{~V}$, loL $=3.6 \mathrm{~mA}$			0.6	V
		PH	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=12.0 \mathrm{~mA}$			1.5	V
Input current	IIHE	EXTAL	$\mathrm{V} D=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{VH}=5.5 \mathrm{~V}$	0.5		40	$\mu \mathrm{A}$
	ILLE		V DD $=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$	-0.5		-40	$\mu \mathrm{A}$
	ІІт	TEX	$\mathrm{V} \mathrm{DD}=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{VH}=5.5 \mathrm{~V}$	0.1		10	$\mu \mathrm{A}$
	ILt		$\begin{aligned} & \mathrm{VdD}=5.5 \mathrm{~V}, \\ & \mathrm{VIL}=0.4 \mathrm{~V} \end{aligned}$	-0.1		-10	$\mu \mathrm{A}$
	ILLR	RST*1		-1.5		-400	$\mu \mathrm{A}$
I/O leakage current	IIz	PA to PF, PG3, PI, MP, AN0 to AN3, $\mathrm{RST}^{* 1}$	$\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=0,5.5 \mathrm{~V} \end{aligned}$			± 10	$\mu \mathrm{A}$
Open drain output leakage current ($\mathrm{N}-\mathrm{CH}$ Tr off state)	ILOH	PH4 to PH7	V DD $=5.5 \mathrm{~V}, \mathrm{VOH}=12 \mathrm{~V}$			50	$\mu \mathrm{A}$
		PH0 to PH3	$\mathrm{VDD}=5.5 \mathrm{~V}, \mathrm{VOH}=5.5 \mathrm{~V}$			10	$\mu \mathrm{A}$
Supply current*2	IDD1	Vdd, Vss	16MHz crystal oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}$) $\mathrm{VDD}=5.5 \mathrm{~V}^{* 3}$		37	50	mA
	Idos 1		Sleep mode $V_{D D}=5.5 \mathrm{~V}$		2.1	8	mA
	IDD2		32 kHz crystal oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=47 \mathrm{pF}$) $V D D=3.3 V$		58	1000	$\mu \mathrm{A}$
	Idds2		Sleep mode $V D D=3 V \pm 0.3 V$		9	35	$\mu \mathrm{A}$
	IdDS3		Stop mode (EXTAL and TEX pins oscillation stop) $V D D=5 V \pm 0.5 \mathrm{~V}$			30	$\mu \mathrm{A}$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Input capacity	Cin	PC, PD, PEO, PE2 to PE5, PF, PG, PI, CTLHEAD (+), CTLHEAD (-), CTLFAMP (+), CTLFAMPI (-), CTLSAMPI, RFG, XTAL, TEX	Clock 1MHz 0 V other than the measured pins		10	20	pF

*1 $\overline{\text { RST }}$ pin specifies the input current when the pull-up resistor is selected, and specifies leakage current when no resistor is selected.
${ }^{* 2}$ When entire output pins are left open.
${ }^{* 3}$ When setting upper 2 bits (CPU clock selection) of clock control register (CLC: 00FEh) to "00" and operating in high speed mode ($1 / 2$ frequency dividing clock).

AC Characteristics
(1) Clock timing ($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
System clock frequency	fc	XTAL EXTAL	Fig. 1, Fig. 2	1		16	MHz
System clock input pulse width	txL, txh	XTAL EXTAL	Fig. 1, Fig. 2 External clock drive	28			ns
System clock input rise and fall times	tcr, tcF	$\begin{aligned} & \text { XTAL } \\ & \text { EXTAL } \end{aligned}$	Fig. 1, Fig. 2 External clock drive			200	ns
Event count clock input pulse width	$\begin{aligned} & \text { teh, } \\ & \mathrm{t}_{\mathrm{EL}} \end{aligned}$	$\overline{\mathrm{EC}}$	Fig. 3	tsys + 200*1			ns
Event count clock input rise and fall times	ter, tef	$\overline{\mathrm{EC}}$	Fig. 3			20	ms
System clock frequency	fc	$\begin{aligned} & \text { TEX } \\ & \text { TX } \end{aligned}$	VDD $=2.7$ to 5.5 V Fig. 2 (32kHz clock applied condition)		32.768		kHz
Event count clock input pulse width	ttL, t ${ }^{\prime}$ H	TEX	Fig. 3	10			$\mu \mathrm{s}$
Event count clock input rise and fall times	tTR, tTF	TEX	Fig. 3			20	ms

*1 tsys indicates three values according to the contents of the clock control register (CLC: 00FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01"), 16000/fc (Upper 2 bits = "11")

Fig. 1. Clock timing

32 kHz clock applied condition Crystal oscillation

Fig. 2. Clock applied condition

Fig. 3. Event count clock timing
(2) Serial transfer (CHO)
$\left(\mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{D}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Max.	Unit
$\overline{\overline{\mathrm{CSO}} \downarrow \rightarrow \overline{\mathrm{SCKO}}}$ delay time	tocsk	$\overline{\text { SCKO }}$	Chip select transfer mode (SCKO = output mode)		tsys + 200	ns
$\overline{\mathrm{CSO}} \uparrow \rightarrow \overline{\mathrm{SCKO}}$ floating delay time	tocskf	$\overline{\text { SCKO }}$	Chip select transfer mode ($\overline{\text { SCKO }}=$ output mode)		tsys + 200	ns
$\begin{aligned} & \overline{\mathrm{CSO}} \downarrow \rightarrow \mathrm{SOO} \\ & \text { delay time } \end{aligned}$	tocso	SOO	Chip select transfer mode		tsys + 200	ns
$\overline{\mathrm{CSO}} \uparrow \rightarrow \mathrm{SOO}$ floating delay time	tocsof	SOO	Chip select transfer mode		tsys + 200	ns
$\overline{\mathrm{CSO}}$ high level width	twhcs	$\overline{\text { CS0 }}$	Chip select transfer mode	tsys + 200		ns
SCKO cycle time	tкcy	$\overline{\text { SCKO }}$	Input mode	2tsys +200		ns
			Output mode	16000/fc		ns
$\overline{\text { SCKO }}$ high and low level widths	$\begin{aligned} & \mathrm{t} \text { KH } \\ & \text { tKL } \end{aligned}$	$\overline{\text { SCK0 }}$	Input mode	tsys + 100		ns
			Output mode	8000/fc - 100		ns
SIO input setup time (against SCKO \uparrow)	tsik	SIO	$\overline{\text { SCKO }}$ input mode	-tsys + 100		ns
			SCKO output mode	200		ns
SIO input hold time (against $\overline{\text { SCKO } \uparrow \text {) }}$	tksı	SIO	SCK0 input mode	2tsys + 100		ns
			$\overline{\text { SCKO }}$ output mode	100		ns
$\overline{\text { SCKO }} \downarrow \rightarrow$ SO0 delay time	tkso	SO0	$\overline{\text { SCKO }}$ input mode		2tsys + 100	ns
			$\overline{\text { SCKO }}$ output mode		100	ns

Note 1) tsys indicates three values according to the contents of the clock control register (CLC: 00FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01"), 16000/fc (Upper 2 bits = "11")
Note 2) The load of $\overline{\text { SCKO }}$ output mode and SOO output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.

Fig. 4. Serial transfer timing (CHO)

Serial transfer (CH1) (SIO mode)
($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Max.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcy	SCK1	Input mode	2tsys +200		ns
			Output mode	16000/fc		ns
SCK1 high and low level widths	$\begin{aligned} & \text { tKH } \\ & \mathrm{t}_{\mathrm{KL}} \end{aligned}$	$\overline{\text { SCK1 }}$	Input mode	tsys +100		ns
			Output mode	8000/fc - 50		ns
Sl1 input setup time (for $\overline{\text { SCK1 }} \uparrow$)	tsik	SI1	SCK1 input mode	100		ns
			$\overline{\text { SCK1 }}$ output mode	200		ns
SI1 input hold time (for $\overline{\text { SCK } 1} \uparrow$)	tksı	SI1	SCK1 input mode	tsys + 200		ns
			$\overline{\text { SCK1 }}$ output mode	100		ns
$\overline{\text { SCK1 }} \downarrow \rightarrow$ SO1 delay time	tkso	SO1	SCK1 input mode		tsys +200	ns
			$\overline{\text { SCK1 }}$ output mode		100	ns

Note 1) tsys indicates three values according to the contents of the clock control register (CLC: 00FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01"), 16000/fc (Upper 2 bits = " 11 ")
Note 2) The load of $\overline{\text { SCK1 }}$ output mode and SO1 output delay time is $50 \mathrm{pF}+1$ TTL.

Fig. 5. Serial transfer CH1 timing (SIO mode)

Serial transfer (CH1) (Special mode) ($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}$, $\mathrm{VDD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
SO1 cycle time	tLCY	SO1 SI1	$* 1$		104		$\mu \mathrm{~s}$
SI1 data setup time	tLSU	SI1		2			$\mu \mathrm{~s}$
SI1 data hold time	tLHD	SI1		2			$\mu \mathrm{~s}$

*1 tıcy is specified only when serial mode register (CH1) (SIOM1: 05F2h) lower 2 bits (SO1 clock selection) are set at $104 \mu \mathrm{~s}$.
Note) The load of SO1 pin is $50 \mathrm{pF}+1 \mathrm{TTL}$.

Fig. 6. Serial transfer CH1 timing (Special mode)

Serial transfer (CH2)
$\left(\mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V} D=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Max.	Unit
SCL clock frequency	fstc	SCL			400	kHz
Bus-free time before starting transfer	tbuF	SDA, SCL		2.6		$\mu \mathrm{s}$
Hold time for starting transfer	thd; STA	SDA, SCL		1.0		$\mu \mathrm{s}$
Clock low level width	tıow	SCL		1.0		$\mu \mathrm{S}$
Clock high level width	thigh	SCL		1.0		$\mu \mathrm{s}$
Setup time for repetitive transfers	tsu; STA	SDA, SCL		1.0		$\mu \mathrm{s}$
Data hold time	thd; DAT	SDA, SCL		$0^{* 1}$		$\mu \mathrm{s}$
Data setup time	tsu; DAT	SDA, SCL		100		ns
SDA, SCL rise time	t_{R}	SDA, SCL			300	ns
SDA, SCL fall time	t_{F}	SDA, SCL			300	ns
Setup time for transfer completion	tsu; sto	SDA, SCL		1.6		$\mu \mathrm{s}$

*1 The SCL fall time (300ns Max.) is not included in the data hold time.

SDA

SCL

Fig. 7. Serial transfer CH 2 timing

Fig. 8. Device recommended circuit

- A pull-up resistor (Rp) must be connected to SDA0 (or SDA1) and SCL0 (or SCL1).
- The SDA0 (or SDA1) and SCL0 (or SCL1) series resistance (Rs $=300 \Omega$ or less) can be used to reduce the spike noise caused by CRT flashover.

(4) A / D converter characteristics

($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=\mathrm{AVdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{AV}$ ReF $=4.0$ to $\mathrm{AVdd}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Resolution						8	Bits
Linearity error			$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=\mathrm{AVD}=\mathrm{AV} \text { REF }=5.0 \mathrm{~V} \\ & \mathrm{VSS}=A V_{S S}=0 \mathrm{~V} \end{aligned}$			± 1	LSB
Absolute error						± 2	LSB
Conversion time	tconv			160/fabc* ${ }^{\text {* }}$			Hs
Sampling time	tsamp			12/fadc*1			$\mu \mathrm{s}$
Reference input voltage	Vref	AVref		AVdd - 0.5		AVdd	V
Analog input voltage	Vian	AN0 to AN7		0		AVref	V
AVref current	Iref	AVref	Operating mode		0.6	1.0	mA
			Sleep mode Stop mode 32 kHz operating mode			10	$\mu \mathrm{A}$

Fig. 9. Definitions of A/D converter terms
(4) Interruption, reset input ($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Max.	Unit
External interruption high and low level widths	$\begin{aligned} & \mathrm{t}_{\mathrm{tH}} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$	$\overline{\text { INT0 }}$ $\overline{\text { INT1 }}$ $\overline{\text { INT2 }}$ $\overline{\text { NMI }}$ PI0 to PI7		1		$\mu \mathrm{S}$
Reset input low level width	trsL	$\overline{\mathrm{RST}}$		32/fc		$\mu \mathrm{s}$

Fig. 11. Reset input timing
(5) Others $\left(\mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Max.	Unit
CFG input high and low level widths	tcFH tCFL	CFG		$24 t_{\text {FRC }}+200$		ns
DFG input high and low level widths	tDFH tDFL	DFG		$16 t_{\text {FRC }}+200$		ns
DPG minimum pulse width	tDPW	DPG		$8 t_{\text {FRC }}+200$		ns
DPG minimum removal time	trem	DPG		$16 t_{\text {FRC }}+200$		ns
EXI input high and low level widths	teIH teIL	EXIO EXI1	tsys $=2000 / \mathrm{fc}$	8tFRC $+200+$ tsys		ns

Note 1) $\mathrm{t}_{\mathrm{FRC}}=1000 / \mathrm{fc}$ [ns]
Note 2) tsys indicates three values according to the contents of the clock control register (CLC: 00FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01"), 16000/fc (Upper 2 bits = "11")

Fig. 12. Other timings

Analog Circuit Characteristics

(1) Amplifier circuit reference voltage characteristics ($\mathrm{AMPV} \mathrm{DD}=\mathrm{VDD}=5.0 \mathrm{~V}$, $\mathrm{AMPV} \mathrm{Vs}=\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}$)

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Reference level output voltage	Vor	CTLAGND		2.20	2.45	2.75	V

(2) CTL 1st amplifier characteristics $\quad\left(A M P V D D=V D D=5.0 \mathrm{~V}, A M P V s s=V s s=0 \mathrm{~V}, \mathrm{Ta}=-10\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Voltage gain*1	Avctlı	CTLFAMPI (-) CTLFAMPI (+)	CTLFAMPI (-) $=0 \mathrm{~V}$, Gain $=16 \mathrm{~dB}$	13.5	15.5	17.5	dB
			CTLFAMPI $(-)=0 \mathrm{~V}$, Gain $=34 \mathrm{~dB}$	31.8	33.8	35.8	
			CTLFAMPI (-) $=0 \mathrm{~V}$, Gain $=49 \mathrm{~dB}$	46.5	48.5	50.5	
			CTLFAMPI (-) $=0 \mathrm{~V}$, Gain $=55 \mathrm{~dB}$	52.5	54.5	56.5	
Output offset voltage	Vosctlı	CTLFAMPI (-) CTLFAMPI (+)	$\begin{aligned} & \text { CTLFAMPI (-), } \\ & \text { CTLFAMPI }(+)=\text { open, } \\ & \text { Gain }=16 \mathrm{~dB} \end{aligned}$	-25	0	+25	mV

*1 The result after monitoring CTLFAMPO pin when the electrolytic capacitor $(10 \mu \mathrm{~F})$ is connected to CTLFAMP (-) and CTLFAMP (+).
(3) CTL 2nd amplifier characteristics $\quad\left(A M P V D D=V D D=5.0 \mathrm{~V}, \mathrm{AMPVss}=\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}$)

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Voltage gain*1	Avctl2	CTLSAMPI	Gain $=5 \mathrm{~dB}$	3.5	5.5	7.5	dB
			Gain $=8 \mathrm{~dB}$	6.2	8.2	10.2	
			Gain $=11 \mathrm{~dB}$	9.0	11.0	13.0	
			Gain $=14 \mathrm{~dB}$	12.0	14.0	16.0	
			Gain $=17 \mathrm{~dB}$	15.0	17.0	19.0	
			Gain $=20 \mathrm{~dB}$	18.0	20.0	22.0	
Output offset voltage	Vosctl2	CTLSAMPI	CTLSAMPI = open, Gain $=5 \mathrm{~dB}$	-30	0	+30	mV
LPF cut-off frequency	Fcctl	CTLSAMPI	12 kHz , foc - 3dB	8	12	24	kHz
			20kHz, foc - 3dB	12	20	42	

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Comparator level*2	Vcctl	CTLSAMPI	Comparator level $=+100 \mathrm{mV} 0-\mathrm{p}$	80	110	140	mV
			Comparator level $=+150 \mathrm{mV} 0-\mathrm{p}$	110	150	190	
			Comparator level $=+200 \mathrm{mV} 0-\mathrm{p}$	160	200	240	
			Comparator level $=+250 \mathrm{mV} 0$-p	210	250	290	
			Comparator level $=+300 \mathrm{mV} 0-\mathrm{p}$	250	290	330	
			Comparator level $=+400 \mathrm{mV} 0$-p	340	380	420	
			Comparator level $=+500 \mathrm{mV} 0-\mathrm{p}$	420	470	520	
			Comparator level $=+600 \mathrm{mV} 0-\mathrm{p}$	530	570	610	
			Comparator level $=+1000 \mathrm{mV} 0-\mathrm{p}$	850	920	990	
			Comparator level $=-100 \mathrm{mV} 0-\mathrm{p}$	-90	-120	-150	
			Comparator level $=-150 \mathrm{mV} 0-\mathrm{p}$	-110	-130	-190	
			Comparator level $=-200 \mathrm{mV} 0-\mathrm{p}$	-150	-190	-230	
			Comparator level $=-250 \mathrm{mV} 0-\mathrm{p}$	-200	-240	-280	
			Comparator level $=-300 \mathrm{mV} 0-\mathrm{p}$	-240	-280	-320	
			Comparator level $=-400 \mathrm{mV} 0-\mathrm{p}$	-340	-380	-420	
			Comparator level $=-500 \mathrm{mV} 0-\mathrm{p}$	-430	-480	-530	
			Comparator level $=-600 \mathrm{mV} 0-\mathrm{p}$	-540	-580	-620	
			Comparator level $=-1000 \mathrm{mV} 0-\mathrm{p}$	-870	-970	-1070	

*1 The result after monitoring ANOUT pin when the electrolytic capacitor ($10 \mu \mathrm{~F}$) is connected to CTLSAMPI.
*2 The reference value of the comparator level is CTLAGND.
(4) CTL amplifier characteristics (CTL1stAMP + CTL2ndAMP)
$\left(\mathrm{AMPV} \mathrm{Dd}=\mathrm{VdD}=5.0 \mathrm{~V}, \mathrm{AMPVss}=\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-10\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Voltage gain*3	Avctl	CTLHEAD (-) CTLHEAD (+)	CTLHEAD (- = 0 V , Gain $=(16 \mathrm{~dB}+5 \mathrm{~dB})$	17.0	20.5	23.5	dB
			$\begin{aligned} & \text { CTLHEAD }(-)=0 \mathrm{~V} \\ & \text { Gain }=(55 \mathrm{~dB}+20 \mathrm{~dB}) \end{aligned}$	70.5	74.5	77.0	
Input sensitivity	Vsctl	CTLHEAD (-) CTLHEAD (+)	$\begin{aligned} & \text { CTLHEAD }(-)=0 \mathrm{~V}, \\ & \text { Gain }=(55 \mathrm{~dB}+20 \mathrm{~dB}) \\ & \text { Comparator }= \pm 150 \mathrm{mVo} \mathrm{p} \end{aligned}$	60	70	140	$\mu \vee p-p$

*3 The result when waveform is input from CTLHEAD (+) pin and ANOUT pin is monitored after performing coupling electrolytic capacitor ($10 \mu \mathrm{~F}$) of CTLHEAD (-) and CTLHEAD (+), and coupling electrolytic capacitor $(10 \mu \mathrm{~F})$ of HEADL (-) and HEADL (+), CTLFAMPI (-) and CTLFAMPI (+), and CTLFAMPO and CTLSAMPI. Gain is maximum -1.5 dB lowered when waveform is input from CTLHEAD (+) pin.
(5) RECCTL write circuit characteristics $\quad\left(A M P V D D=V D D=5.0 \mathrm{~V}, A M P V S s=V s s=0 \mathrm{~V}, \mathrm{Ta}=-10\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Write current*1	Iorec	CTLHEAD (-) CTLHEAD (+)	Write current $2.0 \mathrm{mAp}-\mathrm{p}$	0.8	1.8	3.6	mA
			Write current 3.0mAp-p	1.4	2.8	5.0	
			Write current 4.0mAp-p	2.0	3.8	7.0	
			Write current 5.0mAp-p	2.4	4.8	8.5	
			Write current 6.0mAp-p	3.0	6.0	10.0	
			Write current 7.0mAp-p	3.5	6.8	11.5	
			Write current $8.0 \mathrm{mAp}-\mathrm{p}$	4.5	7.8	13.0	
			Write current $9.0 \mathrm{mAp}-\mathrm{p}$	5.0	8.8	15.0	
			Write current 10.0mAp-p	5.5	7.7	17.0	

*1 The current which flows when CTLHEAD (-) and CTLHEAD (+) shorts.
(6) Auto threshold control circuit (ATC) characteristics
$\left(\mathrm{AMPVDD}=\mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{AMPVss}=\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-10\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
ATC peak hold circuit initialize voltage value*2	Vatcinit		Voltage $=-150 \mathrm{mV} 0-\mathrm{P}$	-110	-150	-190	mV
			Voltage $=-400 \mathrm{mV} 0-\mathrm{P}$	-350	-400	-450	
ATC comparator level offset voltage*3	Vatcoff		Gain $=1 / 6$ (16.7\%)		-70	-160	mV
			Gain = 1/5 (20\%)		-90	-210	
			Gain = 1/4 (25\%)		-90	-210	
			Gain = 1/3 (33.3\%)		-70	-160	
			Gain = 2/5 (40\%)		-90	-210	
			Gain = 1/2 (50\%)		-70	-160	
			Gain $=3 / 5(60 \%)$		-90	-210	

*2 Reference is CTLAGND.
*3 Reference is CTLAGND.
When comparator level is generated using ATC, actual comparator level is as follows by the offset voltage inside the ATC.

Vin \times gain + offset voltage \mid
Example: Gain $=1 / 2$

$$
\operatorname{Vin} \times 1 / 2+160
$$

(7) Schmitt characteristics
$\left(\mathrm{AMPV} \mathrm{DD}=\mathrm{V} D \mathrm{FD}=5.0 \mathrm{~V}, \mathrm{AMPV} \mathrm{Ss}=\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-10\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
RTG schmitt width	SRFG	$\begin{aligned} & \text { RFG0, } \\ & \text { RFG1 } \end{aligned}$	Schmitt width 1Vp-p	820	920	1020	mV
CFG/DFG/DPG	Scfg Sdfg SDPG	$\begin{aligned} & \text { CFG, } \\ & \text { DFG, } \\ & \text { DPG } \end{aligned}$	Schmitt width $410 \mathrm{mVp}-\mathrm{p}$	180	300	420	mV
			Schmitt width 1Vp-p	700	900	1100	

Appendix

Fig. 13. Recommended oscillation circuit

Manufacturer	Model	$\mathrm{fc}(\mathrm{MHz})$	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C}_{2}(\mathrm{pF})$	Rd (Ω)	Circuit example
RIVER ELETEC CO., LTD.	HC-49/U03	8.00	10	10	0	(i)
		10.00	5	5		
		12.00				
		16.00				
KINSEKI LTD.	HC-49/U (-S)	8.00	16 (12)	16 (12)	0	(i)
		10.00	16 (12)	16 (12)		
		12.00	12	12	0	
		16.00	12	12	0	
	P3	32.768 kHz	30	18	470k	(ii)

Mask option table

Item	Mask ROM	CXP884P60Q-1- $\square \square \square^{* 2}$
Package	100-pin plastic QFP	100-pin plastic QFP
ROM capacity	$40 \mathrm{~K} / 48 \mathrm{~K}($ (CXP88340/88348) $52 \mathrm{~K} / 60 \mathrm{~K}(\mathrm{CXP88452/88460)}$	PROM 60K bytes
Reset pin pull-up resistor	Existent/Non-existent	Existent
Input circuit format*1	CMOS schmitt/TTL schmitt	TTL schmitt

[^1]
Characteristics Curve

IdD vs. fc

100PIN QFP (PLASTIC)

+ 0.2
$0.1-0.05$
0° to 10°
DETAIL A

PACKAGE STRUCTURE

SONY CODE	QFP-100P-L01
EIAJ CODE	QFP100-P-1420
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	$42 /$ COPPER ALLOY
PACKAGE MASS	1.7 g

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

[^1]: *1 The input circuit format can be selected for PE3/SYNC pin.
 *2 OEM No.

