

Dolby Pro-Logic Surround Matrix Decoder

SSM-2125/SSM-2126

FEATURES

Noise Generator and Autobalance Circuits are Contained On-Chip

Autobalance On/Off Control

4-Channel Pro-Logic and Dolby 3 (Surround Channel Defeat) Modes Available

Selectable Center Channel Modes – Normal, Wideband, Phantom, Off

Direct Path Bypass (Normal 2-Channel Stereo Mode)

Wide Channel Separation

Center to Left, Right Channels - 35 dB min

(S\$M-2125)

Any Charine to Another -25 dB min (SSM-2126)

Wide Dynamie Range 103 dB typ

Low Total Harmonic Distortion - 0.02%

Available in a 48-Pin Plastic DIP

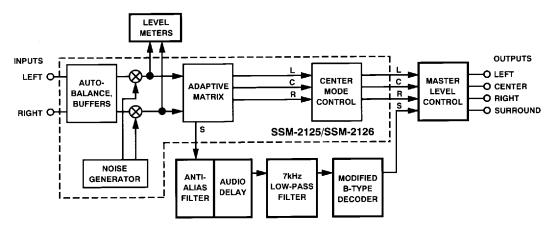
CMOS and ITL Compatible Control Logi

APPLICATIONS

Direct View and Projection TV
Integrated A/V Amplifiers
Laserdisc and CD-V Players
Video Cassette Recorders
Stand-Alone Surround Decoders
Home Satellite Receiver/Descramblers

GENERAL DESCRIPTION

The SSM-2125 and SSM-2126 are Dolby* Pro-Logic Surround Decoders developed to provide multichannel outputs from Dolby Surround encoded stereo sources.


Over 2000 major films and an increasing number of broadcasts are available in Dolby Surround. Surround encoding is preserved in the stereo audio tracks of normal video discs, video cassettes, and television broadcasts, permitting the decoding to multichannel audio in the home.

Major design considerations of the SSM-2125/SSM-2126 are excellent audio performance and a high level of integration. In addition to the Adaptive Matrix and Center Mode Control, also included on-chip are the Automatic Balance Control and Noise Generator functions. A complete Pro-Logic system can be realized using the SSM-2125/SSM-2126 and few external components. Using SSM's extensive experience in the design of professional audio integrated circuits, the SSM-2125/SSM-2126 offers typical 103 dB dynamic range and 0.025% THD. A direct path bypass mode allows normal stereo operation with high fidelity without the need for external switching or parallel signal paths.

The SSM-2125 is a premium grade that is selected to a minimum channel separation specification of 35 dB for the center to left and right channels, and 25 dB for the remaining channels. The standard grade, the SSM-2126, provides minimum channel separation of 25 dB from any channel to another.

The SSM-2125/SSM-2126/is available/only to licensees of Dolby Licensing Corporation, San Francisco, California, from whom licensing and application information must be obtained.

FUNCTIONAL BLOCK DIAGRAM

*Dolby is a registered trademark of Dolby Laboratories Licensing Corporation, San Francisco, California.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700 Fax: 617/326-8703 Twx: 710/394-6577
Telex: 924491 Cable: ANALOG NORWOODMASS

SSM-2125/SSM-2126 — SPECIFICATIONS $(V_s = \pm 6 \text{ V}, T_A = +25^{\circ}\text{C}, V_{IN} = 0 \text{ dBd at 1 kHz},^1)$ Center Mode Control: Wide, unless otherwise noted.)

CHANNEL SEPARATION Center C Input; R, L Outputs 35 48 25 35 dB C Input; S Output 25 35 25 35 dB C Input; L, C, S Output 25 35 25 35 dB C Input; L, C, S Output 25 35 25 35 dB C Input; L, C, S Output 25 35 25 35 dB C Input; L, C, S Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output; L, R, C, S					SSM-2125			SSM-2126		
Center C Input; R, L Outputs 35 48 25 35 dB C Input; S Output 25 35 25 35 dB dB C Input; L, C, S Output 25 35 25 35 dB dB C Input; L, C, R, S Output 25 35 25 35 dB C Input; L, C, R, S Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB C Input; L, R, C Output 25 35 25 35 dB Input; L, R, C Output; L, R, R, C, S Output 25 35 C 25 35 dB Input; L, R, R, C, S Output; L, R, R, S S S S S S S S S S	Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Units
Right Right Ripht; L. C. S Outputs 25 35 25 35 dB	CHANNEL SEPARATION									
Right Left R Input; L, C, S Outputs 25 35 25 35 dB Left L Input; C, R, S Outputs 25 35 25 35 dB Surround S Input; L, R, C Outputs 25 35 25 35 dB CHANNEL OUTPUT LEVEL V _{IN} = 0 dB; L, R, C, S Output ±0.5 ±0.5 dBd TOTAL HARMONIC DISTORTION THD All Channels 0.02 0.1 0.02 0.1 w SIGNAL-TO-NOISE RATIO SNR V _{IN} = 0 V, CCIR2K/ARM All Channels -83 -87 -80 -87 dBd HEADROOM HR Clipping = 3% THD All Channels 15 16 15 16 dBd BYFASS MODE DYNAMIC RANGE Clipping to Noise Floor 104 104 dB NOISE SOURCE OUTPUT LEVEL All Channels -13.5 -13.5 dBd NOISE SOURCE OUTPUT LEVEL All Channels 1 1 dB AUTOBALANCE CAPTURE RANGE ±3 ±3.8 ±6 ±3/8 dB LOGIC THRESHOLD HI LO LO COPERATING SUPPLY Voltage V _S Single Supply ±6 ±6 ±6 Voltage E6 Voltage V _S Single Supply ±6 ±6 Voltage V _S Single Supply ±6 ±6 Voltage V _S No Input Signal 40 50 40 50 mA INPUT IMPEDANCE Z _{IN} L, R Inputs 5 5 KΩ	Center		C Input; R, L Outputs							
Left Surround S Input; C, R, S Outputs 25 35 25 35 35 dB dB				1						
Surround Sinpur; L, R, C Outputs 25 35 25 35 dB	Right				1					
Channel Output Level Vin = 0 dB; L, R, C, S Output ±0.5 ±0.5 dBd	Left			1						
TOTAL HARMONIC DISTORTION THD All Channels V _{IN} = 0 V, CCIR2K/ARM All Channels V _{IN} = 0 V, CCIR2K/ARM All Channels FRATIO SNR V _{IN} = 0 V, CCIR2K/ARM All Channels FRATIO All Channels FRATIO SNR V _{IN} = 0 V, CCIR2K/ARM All Channels FRATIO FRATIO SNR FRATIO SNR V _{IN} = 0 V, CCIR2K/ARM All Channels FRATIO FRATIO FRATIO FRATIO SNR FRATIO SNR FRATIO FRATI	Surround		S Input; L, R, C Outputs	25	35		25	35		dB
DISTORTION	CHANNEL OUTPUT LEVEL		$V_{IN} = 0 dB; L, R, C, S Output$			±0.5			±0.5	dBd
SIGNAL-TO-NOISE RATIO SNR VIN = 0 V, CCIR2K/ARM All Channels -83 -87 -80 -87 dBd	TOTAL HARMONIC									
All Channels	DISTORTION	THD	All Channels		0.02	0.1		0.02	0.1	%
All Channels	SIGNAL-TO-NOISE RATIO	SNR	$V_{IN} = 0 \text{ V, CCIR2K/ARM}$							
All Channels 15 16 15 16 dBd BYPASS MODE DYNAMIC RANGE Clipping to Noise Floor 104 104 dB NOISE SOURCE OUTPUT LEVEL All Channels -13.5 -13.5 dBd NOISE SOURCE OUTPUT LEVEL MATCHING ANY Channel to Another 1 1 dB AUTOBALANCE CAPTURE RANGE LOGIC THRESHOLD HI LO OPERATING SUPPLY VOLTAGE V_S Single Supply V_S Supply V_S Single Supply V_S Supply V_S Single Supply V_S				-83	-87		-80	-87		dBd
All Channels 15 16 15 16 dBd BYPASS MODE DYNAMIC RANGE Clipping to Noise Floor 104 104 dB Noise Source Output Level All Channels 15 16 dBd Noise Source Output Level Matching Any Channel to Another 1 1 dB Autobalance Capture Range Logic Threshold HI LO OPERATING SUPPLY VOLTAGE V_S Single Supply Dual Supply v_S Single Supply v_S Supply v_S Single Supply v_S Supply Supply v_S Supply	HEADROOM	HR	Clipping = 3% THD							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				15	16		15	16		dBd
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BYPASS MODE									
OUTPUT LEVEL All Channels -13.5 -13.5 dBd NOISE SOURCE OUTPUT LEVEL MATCHING Any Channel to Another 1 1 dB AUTOBALANCE CAPTURE RANGE ± 3 ± 3.8 ± 6 ± 3.8 ± 4 ± 3.8 ± 6 ± 3.8 ± 4 ± 3.8 ± 4	\ dynami¢ range \	I) (,	Clipping to Noise Floor		104			104		dB
OUTPUT LEVEL All Channels -13.5 -13.5 dBd NOISE SOURCE OUTPUT LEVEL MATCHING Any Channel to Another 1 1 dB AUTOBALANCE CAPTURE RANGE ± 3 ± 3.8 ± 6 ± 3.8 ± 4 ± 3.8 ± 6 ± 3.8 ± 4 ± 3.8 ± 4	NOISE SOURCE									
LEVEL MATCHING Any Channel to Another Any Channel to Another 1 1 dB AUTOBALANCE CAPTURE RANGE LOGIC THRESHOLD HI LO OPERATING SUPPLY VOLTAGE V_S Single Supply Dual Supply v_S SUPPLY CURRENT v_S No Input Signal v_S v_S No Input Signal v_S) _ \	All Channels	-	-13.5			-13.5		dBd
LEVEL MATCHING Any Channel to Another Any Channel to Another 1 1 dB AUTOBALANCE CAPTURE RANGE LOGIC THRESHOLD HI LO OPERATING SUPPLY VOLTAGE V_S Single Supply Dual Supply v_S SUPPLY CURRENT v_S No Input Signal v_S v_S No Input Signal v_S	NOISE SOURCE OUTPUT			/	_		-			
CAPTURE RANGE LOGIC THRESHOLD HI LO OPERATING SUPPLY VOLTAGE V_S Single Supply Dual Supply v_S SUPPLY CURRENT v_S No Input Signal v_S v_S No Input Signal v_S			Any Channel to Another	V	1 /		<u> </u>	1		dB
CAPTURE RANGE LOGIC THRESHOLD HI LO OPERATING SUPPLY VOLTAGE V_S Single Supply Dual Supply v_S SUPPLY CURRENT v_S No Input Signal v_S v_S No Input Signal v_S	AUTORAL ANCE				<i> </i>		1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				±3	±/3.8_	±6~		7±3 /8 ~	IJ /_	dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I OGIC THRESHOLD HI		Relative to I	+74	<i> </i>		+24	/ / 	 	W
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Relative to L _{REF}			±0.8	`~/	1 /	fo.st	Ų –
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OPERATING SUPPLY							/	/ /-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		V _e	Single Supply		+12			J ₊₁₂	/ /	v
INPUT IMPEDANCE Z_{IN} L, R Inputs 5 5 $k\Omega$		3			±6			±6	_	*
INPUT IMPEDANCE Z_{IN} L, R Inputs 5 5 $k\Omega$	SUPPLY CURRENT	I _{SY}	No Input Signal		40	50		40	50	mA
	INPUT IMPEDANCE		L, R Inputs		5			5		kΩ
	OUTPUT IMPEDANCE	Z _{OUT}	L, R, C, S Outputs		600			600	-	Ω

NOTE

ABSOLUTE MAXIMUM RATINGS

Supply Voltage +16 V or ±8 V
Logic Inputs
Storage Temperature Range55°C to +125°C
Operating Temperature Range20°C to +70°C
Junction Temperature +150°C
Lead Temperature Range (Soldering, 60 sec) +300°C
Thermal Resistance ¹
θ _{IA}
θ _{JC}
NOTE

 $^{^1\}theta_{1A}$ is specified for worst case mounting conditions, i.e., device in socket.

ORDERING GUIDE

Model	Temperature Range	Package Option	
SSM2125XXXP*	-20°C to +70°C	48-Pin P-DIP	
SSM2126XXXP*	-20°C to +70°C	48-Pin P-DIP	

NOTE

 $^{^{10}}$ dBd = 500 mV rms Dolby level output at any channel; Left and Right inputs: 500 mV rms (0 dBd); Center input: L = R = 354 mV rms (-3 dBd); Surround input: L = -R = 354 mV rms (-3 dBd).

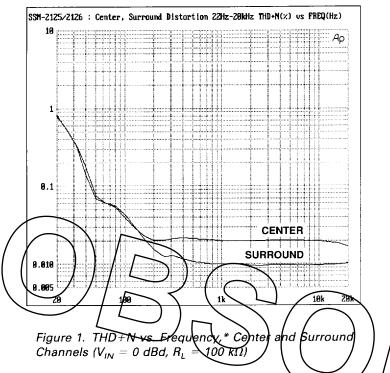
^{*}The SSM-2125/SSM-2126 is available only to licensees of Dolby Laboratories. Each customer will be assigned a special part number for ordering purposes. Contact local ADI sales office for further details.

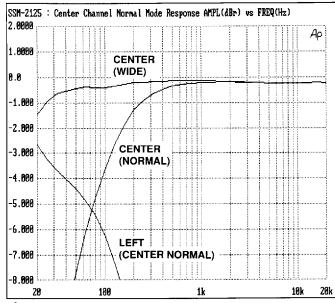
Table I. External Component List

PIN CONNECTIONS

			Comment (Noncritical				
Component	Value	Tolerance*	Unless Otherwise Noted)	CT5	1		48 CT2
			,	CIS	빌		
C1 C2	0.1 μF			CT1	2		47 CT3
C2 C3	0.1 μF 680 pF			V _{REF}	3		46 CT6
C3 C4	0.1 μF				=		
C5	0.1 μΓ 0.1 μF			V+	4		
C6	680 pF			CT4	5		44 CFWL
C7	4.7 μF	20%	Standard Electrolytic	САВ	6		43 CFWC
C8	$0.22 \mu F$	2070	Startaira Electrory tie	RT	=		
C9	0.22 μF				=		
C10	0.33 μF		Film	LT	8		41 BPLIN
CII	0.33 μF		Film	L _{IN}	9		40 ACL2
CH2	0.33 p.F.		Film		\exists		
$/$ $\langle C_{13} \rangle$	0.3/3 μE		Film	R _{IN}	10		39 ACL1
(C14)	22/nF/		Film	N _{IN}	11	SSM-2125/	38 V _{REF}
C15 / /	22 nF	\cup) (Film	NC	12	SSM-2126	37 BPR _{IN}
\ \bullet	/2 n .F ∽	\downarrow $<$ (Film		\equiv	TOP VIEW (Not to Scale)	
C17	/22 n/F	D / /	Film	V-	=	(NOT to Scale)	36 ACR2
C18	$\sqrt{0.1 \mu F}$	P / \square	\sim \ / / \ \ \ \	/ / N _{ou<u>t</u>}	14		35 ACR1
C19	4.7 µF	20% \	Standard Electrolytic	/ / VR/EF	15	_	34 ACC2
C20	0.22 μF		\mathcal{C}		\square	7	
C21	0.22 μF			// D/M1	•		33 ACC1
C22	10 μF	20%	Standard Electrolytic	/ [/bM2	17	<u> </u>	32 ACS2
C23	_	_	Not Needed	DMB	18	~	31 Acs
C24	10 nF			\sim \sim \sim		. //	
C25	10 nF			DM4	19	7	30 S _{OUT}
C26	10 nF	100 5	0 1 151 1 1	CM1	20	~ []	29/ CO1
C27	100 μF	≥100 µF	Standard Electrolytic	CM2	21	7	28 CC2
C28	0.1 μF	- 100 F	Co. 1 1 Elementorio		=		
C29**	100 μF	≥100 µF	Standard Electrolytic	L _{REF}	22		27 V-
C30**	0.1 μF	> 100 E	Considered Elementoria	VRO	23		26 R _{OUT}
C31	100 μF	≥100 µF	Standard Electrolytic	L _{оит}	24		25 C _{OUT}
C32	0.1 μF	5%		-001			720 0001
R1 R2	15 kΩ 47 kΩ	5%			ı	NC = NO CONNECT	
R2 R3	15 kΩ	5%					
R3 R4	47 kΩ	5%					
R5	$7.5 \text{ k}\Omega$	5%					
R6	$7.5 \text{ k}\Omega$	5%					
R7		J 70 _	Not Needed				
R8	_		Not Needed				
R9	22 kΩ	5%	11011100000				
R10	22 kΩ	5%					
R11	10 MΩ	5%					
R12	22 kΩ	5%					
NOTES		1 - 7 -					

NOTES


^{*10%} unless otherwise indicated.


^{**}Used only in Dual Supply Application Circuit.

PIN DESCRIPTION

Pin #	Name	Function	Pin #	Name	Function
1	CT5	Long Time Constant, C/S	39	ACL1	Left Channel Steering Signal AC Coupling
2	CT1	Short Time Constant, L/R Comparators	40	ACL2	and High-Pass Filter
	$ m V_{REF}$	Reference Voltage: Ground or Pseudoground	Left Channel Steering Signal AC Coupling		
	V+	Positive Supply			and High-Pass Filter
	CT4	Short Time Constant, C/S Comparators	41	BPL_{IN}	Filtered Left Channel Input to Steering
	CAB	Autobalance Time Constant			Signal Generator
,	RT	Buffered, Autobalanced Right Channel Signal	4 2	CFWS	Surround Channel Full-Wave Rectifier
	LT	Buffered, Autobalanced Left Channel Signal			Low-Pass Filter
ı	L_{IN}	Left Channel Input	43	CFWC	Center Channel Full-Wave Rectifier
0	R_{IN}	Right Channel Input			Low-Pass Filter
1	N_{IN}	Filtered Noise Input	44	CFWL	Left Channel Full-Wave Rectifier
2 /	NG_	Do Not Connect			Low-Pass Filter
3/	<u>/</u> _ `	Negative Supply (Ground in Single Supply)	45	CFWR	Right Channel Full-Wave Rectifier
4 /	N _{OUT}	Noise Output			Low-Pass Filter
5 /	V_{REF}	Reference Voltage: Ground or Pseudoground	46	CT6	Short Time Constant, C/S
.6 (DM1/	Digital Operating-Mode Control Input	47	CT3	Short Time Constant, L/R
√ √	DM2	Digital Operating-Mode Control Input	48	CT2	Long Time Constant, L/R
.8	DM3/	Digital Operating-Mode Control Input		_	
9 `	DM4	Digital Operating-Mode Control Input	\ \	\bigcap	
0	CM1	Digital Center-Mode Control Input	1 1 /	' /	
1	CM2	Digital Center-Mode Control Input]	1	
22	L_{REF}	Logic Reference Voltage	' / /	/	
		$(Threshold = L_{REF} + 1.4 \text{ V})$	/	/	
23	VRO	V _{REF} Out—Pseudoground Output	_		
24	L_{OUT}	Left Channel Output	_		
25	C_{OUT}	Center Channel Output		\sim	
26	R _{OUT}	Right Channel Output			
:7	V-	Negative Supply (Ground in Single Supply)			
8	CC2	Center Normal-Mode Filter Input ($Z = 15 \text{ k}\Omega$)			
9	CC1	Center Normal-Mode Filter Output			
0	S_{OUT}	Surround Channel Output			7
1	ACS1	Surround Channel Steering Signal			
		AC Coupling and High-Pass Filter			
2	ACS2	Surround Channel Steering Signal			
		AC Coupling and High-Pass Filter			
3	ACC1	Center Channel Steering Signal			
		AC Coupling and High-Pass Filter			
4	ACC2	Center Channel Steering Signal			
		AC Coupling and High-Pass Filter			
5	ACR1	Right Channel Steering Signal			
-		AC Coupling and High-Pass Filter			
36	ACR2	Right Channel Steering Signal			
-		AC Coupling and High-Pass Filter			
37	BPR_{IN}	Filtered Right Channel Input to Steering			
•	DI NIN	Signal Generator			
8	V	Reference Voltage: Ground or Pseudoground			
U	V_{REF}	Reference voltage. Ground of 1 seudoground			

-4- REV. 0

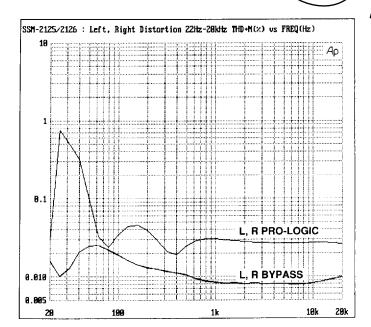


Figure 3. Bass-Splitting Filter Response (Center Channel Normal and Wide Modes)

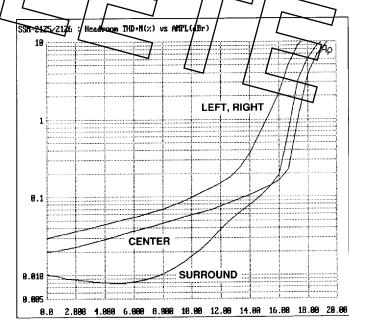


Figure 2. THD+N vs. Frequency,* Left and Right Channels ($V_{IN}=0$ dBd, $R_{L}=100$ k Ω)

Figure 4. Headroom THD+N vs. Amplitude (0 dBr = 0 dBd = 500 mV rms)

^{*80} kHz low-pass filter used for Figures 1 and 2.

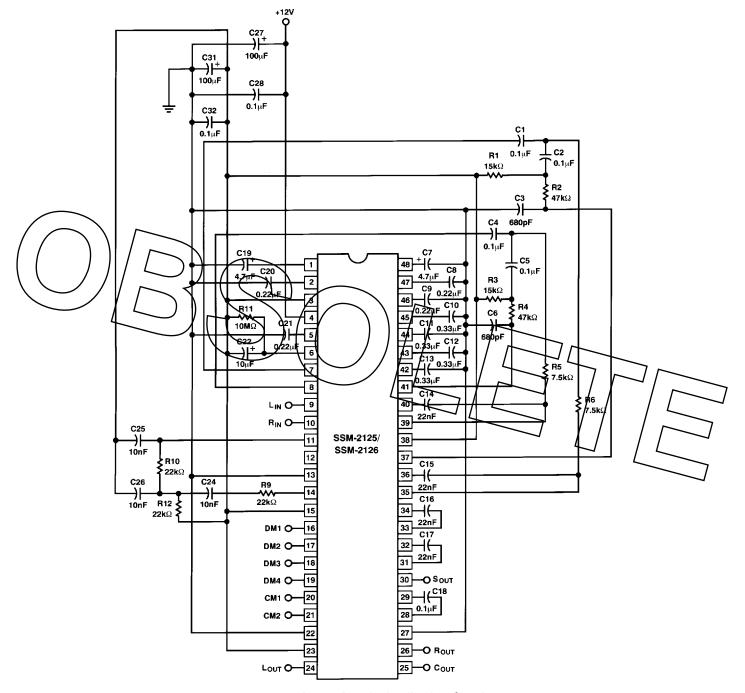


Figure 5. Single Supply Application Circuit

-6-

REV. (

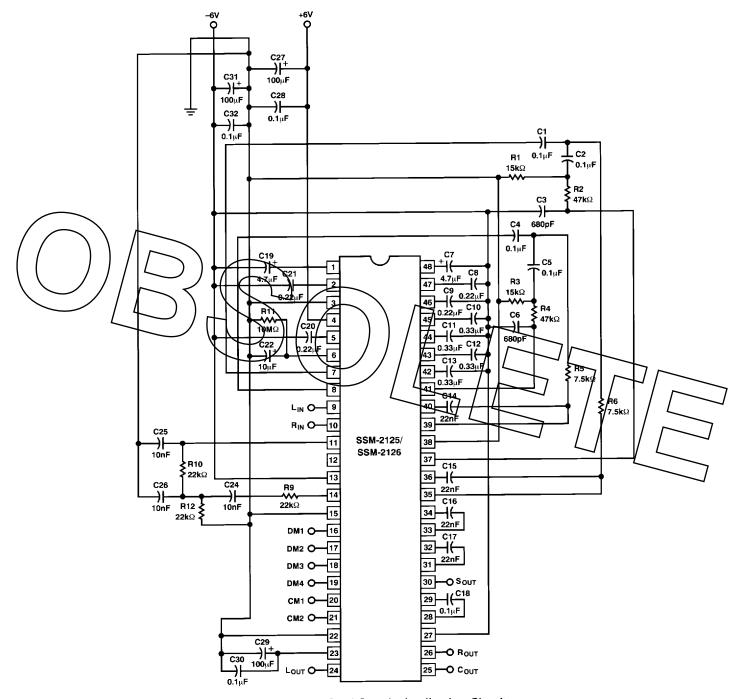
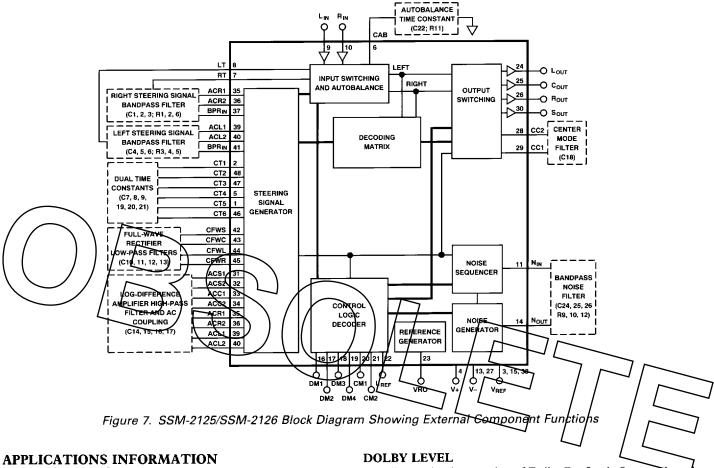



Figure 6. Dual Supply Application Circuit

POWER SUPPLIES

The SSM-2125/SSM-2126 is designed to use either a dual ± 6 V or single +12 V supply, with a tolerance of $\pm 10\%$. Internal reference points on the IC and a 6 V reference, generated on-chip, are brought to external pins. When operated in dual supply mode, the reference inputs (labeled V_{REF}) are connected to the external ground. In single supply mode, the internal 6 V reference (labeled VRO) is wired to the V_{REF} pins, providing a pseudoground reference. In either mode, the internal reference VRO should be decoupled with a 100 µF electrolytic capacitor in parallel with a 0.1 µF ceramic capacitor.

Dual supply mode offers the highest fidelity operation and eliminates the necessity for input and output decoupling capacitors. All signals are ground referenced in dual supply mode, allowing dc coupling of the inputs and outputs. Additionally, the power on settling time is reduced when operating with dual supplies.

In single supply mode, decoupling capacitors are required, as the signals are referenced to the +6 V pseudoground reference. Any noise introduced onto the V_{REF} line will appear at the output, so careful decoupling of the reference is required to maintain excellent noise and distortion performance. The 100 µF V_{REF} decoupling capacitors should be placed close to the VRO pin (Pin 23), and 0.1 μ F capacitors close to each V_{REF} pin.

The discrete implementation of Dolby Pro-Logic Surround uses a Dolby level of 500 mV. To maintain high audio quality and excellent signal-to-noise ratio, the SSM-2125/SSM-2126 was designed to operate with a 500 mV Dolby level. With this level, the SSM-2125/SSM-2126 provides 87 dBd SNR (CCIR2K/ARM) and 16 dB of headroom. In addition, the SSM-2125/SSM-2126 is capable of operation to the Pro-Logic specification at a Dolby level of 300 mV, with the result of reduced SNR and increased headroom. At the 300 mV level, SNR is typically 83 dBd with 20 dB of headroom. Either way, total dynamic range of the device is 103 dB (0 dBd = 500 mV).

AUTOBALANCE

Left and right signals with an imbalance less than ±3.8 dB will activate the autobalance circuitry when DM3 = 1. Once activated, the circuit will correct up to 4 dB of balance error. Autobalance is available in both the Pro-Logic and stereo bypass modes. When autobalance is OFF, the autobalance VCAs are bypassed.

NOISE GENERATOR AND SEQUENCING

The SSM-2125/SSM-2126 noise source is best described as white noise passed through a 0.2 Hz comb filter and a 10 kHz lowpass filter. Thus, the noise is comprised of separate equalamplitude peaks spaced at 0.2 Hz apart, as shown in Figure 8. Figure 9 shows overall frequency response of the filtered noise source.

REV. 0 -8-

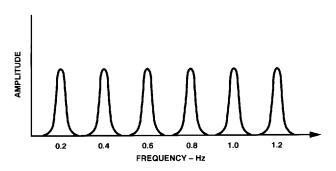


Figure 8. Comb-Filtered Noise Source Characteristics

NC = NO CONNECT

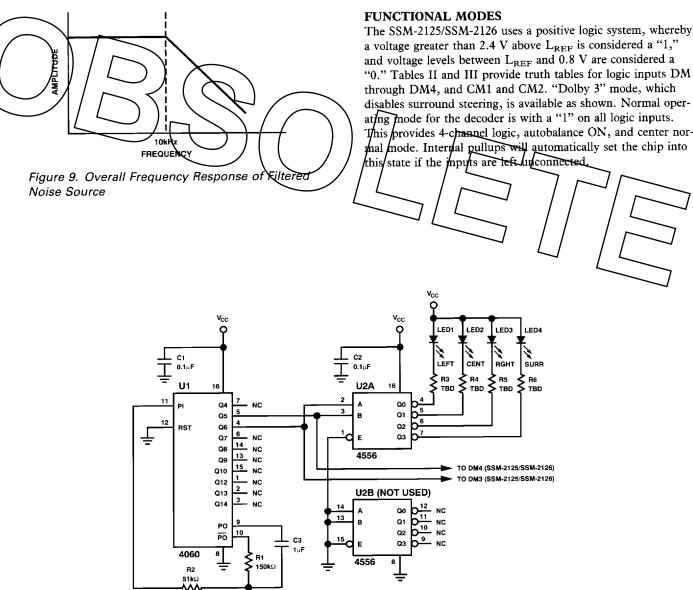
For systems that are not microprocessor controlled, Figure 10 suggests one option to implement automatic noise sequencing using standard logic. The CD4060 (or equivalent), although only partially used, was selected since it contains a clock and 2-bit binary counter on-chip. The timing interval is set by:

$$f = \frac{1}{2.2 R_1 C_3}$$

where $2R_1 < R_2 < 10R_1$.

The values shown in Figure 10 will provide a frequency of 2.9 Hz. One half of a CD4556 can be used to drive LED panel indicators if desired, as shown.

a voltage greater than 2.4 V above L_{REF} is considered a "1," and voltage levels between L_{REF} and 0.8 V are considered a "0." Tables II and III provide truth tables for logic inputs DM1 through DM4, and CM1 and CM2. "Dolby 3" mode, which disables surround steering, is available as shown. Normal operating mode for the decoder is with a "1" on all logic inputs. This provides 4-channel logic, autobalance ON, and center normal mode. Internal pullups will automatically set the chip into



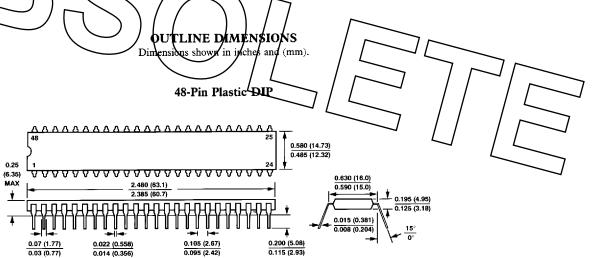
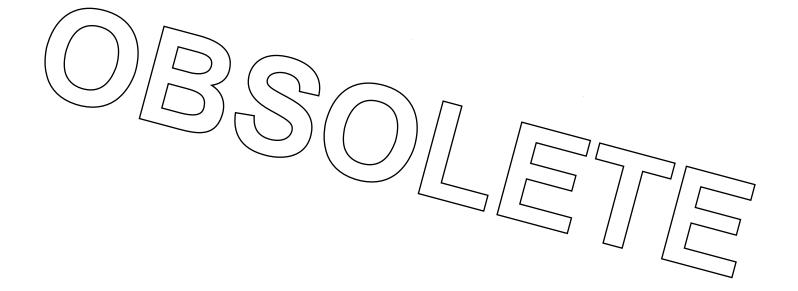

Figure 10. Automatic Noise Sequencing Circuit

Table II. Control States for DM1-DM4

DM1	DM2	DM3	DM4	Operating State
1	1	1	1	Dolby 4-Channel ("Pro-Logic"), Autobalance On
1	1	0	1	Dolby 4-Channel ("Pro-Logic"), Autobalance Off
1	0	1	1	Dolby 3-Channel ("Dolby 3"), Autobalance On
1	0	0	1	Dolby 3-Channel ("Dolby 3"), Autobalance Off
0	1	1	1	Surround Channel Noise
0	1	1	0	Right Channel Noise
0 /	1	0	1	Center Channel Noise
9//		Q 1	0_	Left Channel Noise
/b	0	🖈 /	}~	Mute
0 (0	1/ /	<u>b</u>	Stereo Dypass, Autobalance On
b /	0 /	<i>b</i> /	ر ک	Stereo Bypass, Autobalance Off


Table III. Center Channel Functional Modes

CM1	CM2	Mode
0	0	Center Channel Off
0	1	Center Channel Wideband
1	0	Phantom Center Channel
1	1	Normal Center Mode

-10-

