

0.70

SOT-23 Formed SMD Package

BCW60A BCW60B BCW60C BCW60D

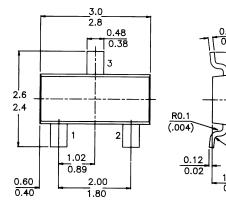
SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N silicon transistors

Marking

BCW60A = AA BCW60B = ABBCW60C = AC

BCW60D = AD


PACKAGE OUTLINE DETAILS
ALL DIMENSIONS IN mm

Pin configuration

1 = BASE 2 = EMITTER

3 = COLLECTOR

ABSOLUTE MAXIMUM RATINGS

Collector-emitter voltage ($V_{BE} = 0$)	$V_{C\!E\!S}$	max.	32 V
Collector-emitter voltage (open base)	V_{CE0}	max.	32 V
Collector current (d.c.)	I_C	max.	200 mA
Total power dissipation	P_{tot}	max.	<i>250</i> mW
Junction temperature	T_{j}	max.	150 ° C
Transition frequency at $f = 100 \text{ MHz}$	J		
$V_{CE} = 5 V$; $I_C = 10 mA$	f_T	typ.	250 MHz
Noise figure at $f = 1 \text{ kHz}$			
$V_{CE} = 5V$; $I_{C} = 200 \text{ mA}$; $B = 200 \text{Hz}$	$\boldsymbol{\mathit{F}}$	typ.	2 dB

BCW60A BCW60B BCW60C BCW60D

RATINGS (at $T_A = 25^{\circ}C$ unless otherw	vise spec	ified)					
Limiting values							
Collector-emitter voltage ($V_{BE} = 0$)				$V_{C\!E\!S}$	max.	32	V
Collector-emitter voltage (open base)				V_{CE0}	max.	32	V
Emitter-base voltage (open collector)				V_{EB0}	max.	5	V
Collector current (d.c.)				I_C	max.	200	mΑ
Base current				I_B	max.	50	mΑ
Total power dissipation up to T_{amb} : 25	$^{\circ}C$			P_{tot}	max.	250	
Storage temperature				T_{stg}	−55 to	o +150	
Junction temperature				T_j	max.	150	° C
THERMAL RESISTANCE							
From junction to ambient*				$R_{th j-a}$	=	<i>500</i>	KW
CHARACTERISTICS				· ·			
$T_{amb} = 25$ °C unless otherwise specifie	d						
Collector-emitter cut-off current	u						
$V_{BE} = 0$; $V_{CE} = 32 \text{ V}$				ICES	<	20	nΑ
$V_{BE} = 0$, $V_{CE} = 32V$; $T_{amb} = 150^{\circ}C$	7			I _{CES}	<		mA
Emitter-base cut-off current				1CES		20	1112 1
$I_C = 0$; $V_{EB} = 4 V$				I_{EBO}	<	20	пA
Saturation voltages				*EDU		20	12.1
at $I_C = 10 \text{ mA}$; $I_B = 0.25 \text{ mA}$				VCEcat	0,05 t	o 0.35	V
at 10 111 2, 1 _B 0,20 1111				V _{BEsat}		0,85	
				• DESai	0,0 10	, 0,00	•
at $I_C = 50 \text{ mA}$; $I_B = 1,25 \text{ mA}$				V_{CEsat}	0,1 to	0,55	V
2				V _{BEsat}		1,05	
Transition frequency at $f = 100 \text{ MHz}$.					>	125	MHz
$I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V}$				f_T	typ.	250	MHz
Collector capacitance at $f = 1$ MHz							
$I_E = I_e = 0; \ V_{CB} = 10V$				C_c	typ.	2,5	рF
Emitter capacitance at $f = 1$ MHz							
$I_C = I_C = 0; \ V_{EB} = 0.5 \ V$				C_{e}	typ.		рF
Noise figure at $R_S = 2 \text{ kW}$					typ.		dΒ
$I_C = 200 \text{ m.m}A; \ V_{CE} = 5 \ V; \ f: 1 \ kHz;$	B = 200) Hz		F	<	6	dΒ
			BCW60A	60B	60C	60D	
D.C. current gain				1 1			
$V_{CE} = 5 V; I_{C} = 10 \text{ mA}$	h_{FE}	>	_	20	40	100	
$V_{CE} = 5 V; I_{C:} 2 mA$	h_{FE}	>	120	180	250	380	
V CE - J V, IC: 2 IIIA	11FE	<	220	310	460	630	
$V_{CE} = 1 V; I_{C:} 50 mA$	h_{FE}	>	<i>50</i>	70	90	100	
Input impedance	,		. ~		, .		,
$V_{CE} = 5 V$; $I_C = 2 mA$, $f = 1 kHz$	h_{ie}	typ.	2,7	3,6	4,5	7,5	₩

			\boldsymbol{A}	В	C	D	
Reverse voltage transfer ratio		_					
$V_{CE} = 5 V$; $I_{C} = 2 mA$; f : $1 kHz$	h_{re}	typ.	1,5	2	2	3	10^{4}
Small-signal current gain							
$V_{CE} = 5 V$; $I_C = 2 mA$; $f = 1 kHz$	$h_{f\!e}$	min.	125	175	250	350	
		max.	250	350	500	700	
Output admittance							
$V_{CE} = 5 V$; $I_C = 2 mA$; $f = 1 kHz$	h_{oe}	typ.	<u>18</u>	24	30	50	m <i>s</i>
Base-emitter voltage							
$V_{CE} = 5 V; I_{C:} 2 mA$			0,55 to 0,75			õ	V
		typ.		0	,65		V
V_{CE} = 5 V ; I_{C} = 10 m A	V_{BE}	typ.		0,52			V
$V_{CE} = 1 V; I_C = 50 mA$	V_{BE}	typ.	0,78				V

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-579 6150 Fax + 91-11-579 9569, 579 5290
e-mail sales@cdil.com www.cdil.com