BGB550

Mirror Biased Transistor

Wireless Silicon Discretes

Edition 2001-07-31
Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München
© Infineon Technologies AG 2000.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

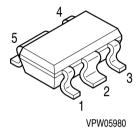
BGB550 Prelimina Revision	ry data shee History:	et 2001-07-31	Preliminary			
Previous Version:		2001-01-19				
Page	Subjects (ubjects (major changes since last revision)				
all pages	Change from word to FrameMaker - complete reworked					
-						

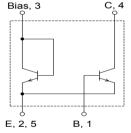
For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com

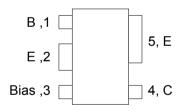
We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com




Mirror Biased Transistor


BGB550

Features

- · Ideal for driver appliciations
- Small SCT595 package
- · Open collector output
- Typical supply voltage: 1.4-4.3V
- · Current easy adjustable by an external resistor
- SIEGET®-45 technology

Description

The BGB 550 is a silicon mirror biased RF transistor. The RF transistor is biased simply by adding an external resistor to the bias pin and an inductor as RF choke. There is no voltage drop at the collector. The mirror transistors are matched with a ratio of 1:14. If a higher degree of current stabilisation over supply voltage is needed a current source can be added without voltage drop at the collector.

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Package	Marking	Chip
BGB550	SCT595	MDs	T0529

Maximum Ratings

Parameter	Symbol	Value	Unit
Maximum collector-emitter voltage	V_{CE}	4.5	V
Maximum collector current	I _C	350	mA
Maximum bias current	I _{Bias}	25	mA
Maximum emitter-base voltage	V_{EB}	1.5	V
Maximum base current	I _B	40	mA
Total power dissipation, T _S < 75 °C ¹⁾	P _{tot}	1000	mW
Junction temperature	Tj	150	°C
Operating temperature range	T _{OP}	-65 + 150	°C
Storage temperature range	T _{STG}	-65 + 150	°C
Thermal resistance: junction-soldering point	R _{th JS}	75	K/W

Notes:

For detailed symbol description refer to figure 1.

 $^{^{1)}}$ T_S is measured on the emitter lead at the soldering point to the PCB

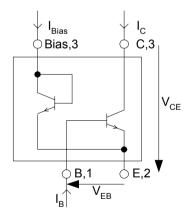


Fig. 1: Symbol definition

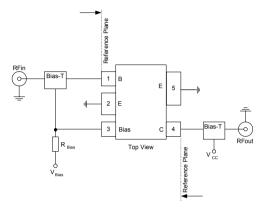
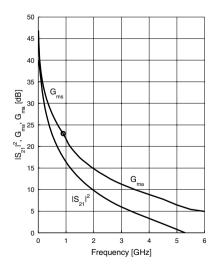
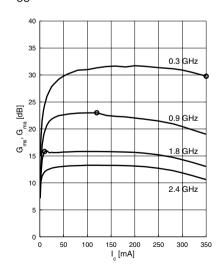


Fig. 2: Test circuit for electrical characteristics and S-parameter

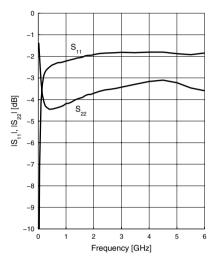
Electrical Characteristics at T_A =25°C (measured in test circuit specified in fig. 2)


Parameter		Symbol	min.	typ.	max.	Unit
Maximum stable power gain V _{CC} =2V, I _c =100mA	f=0.9GHz f=1.8GHz	G _{ms}		22 16		dB
Insertion power gain V _{CC} =2V, I _c =100mA	f=0.9GHz f=1.8GHz	$ S_{21} ^2$		17 11		dB
Insertion loss V _{CC} =2V, I _c =0mA	f=0.9GHz f=1.8GHz	IL		-12.5 -13		dB
Noise figure (Z _S =Z _{Sopt}) V _{CC} =2V, f=1.8GHz	I _c =10mA I _c =50mA	F _{opt}		1.2 1.5		dB
Output power at 1dB gain cor V _{CC} =2V, I _c =100mA, f=1.8GHz	•	P _{-1dB}		19 15		dBm
Output third order intercept po V _{CC} =2V, I _c =100mA, f=1.8GHz		OIP ₃		28 25		dBm
Collector-base capacitance V _{CB} =2V, f=1MHz		C _{CB}		0.6		pF
Current Ratio $I_C/(I_{Bias} + I_B)$ $I_{Bias} + I_B = 5mA, V_{CC} = 2V$		CR	10	14	17	

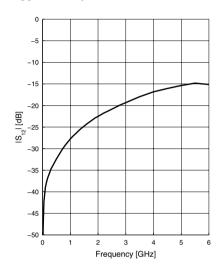

S-Parameter T_A =25°C, V_{CE} =2V, I_C =100mA (measured in test circuit specified in fig. 2)

f	S11	S11	S21	S21	S12	S12	S22	S22
[GHz]	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
0.1	0.6217	-150.7	57.9230	123.0	0.0112	50.7	0.6959	-97.7
0.2	0.7181	-166.6	33.3990	104.4	0.0150	48.1	0.6248	-134.5
0.4	0.7497	-179.3	17.2680	89.4	0.0210	52.6	0.5988	-161.2
0.6	0.7630	173.3	11.4480	81.0	0.0272	55.7	0.6018	-173.1
0.8	0.7682	167.3	8.4390	74.4	0.0342	56.3	0.6070	179.0
1.0	0.7747	162.3	6.6270	69.1	0.0410	55.4	0.6171	172.8
1.2	0.7807	157.9	5.4350	64.3	0.0473	54.6	0.6223	167.7
1.4	0.7874	153.7	4.5780	59.9	0.0545	52.6	0.6323	163.0
1.6	0.7912	150.0	3.9570	55.7	0.0613	50.3	0.6383	159.0
1.8	0.7985	146.2	3.4780	51.6	0.0682	47.9	0.6482	155.0
2.0	0.8017	142.8	3.0980	47.6	0.0747	45.7	0.6523	151.6
2.4	0.8079	136.3	2.5350	40.0	0.0875	40.5	0.6638	145.0
3.0	0.8117	126.7	1.9930	28.9	0.1081	32.3	0.6738	135.2
4.0	0.8124	109.0	1.4660	8.8	0.1440	14.8	0.6947	118.2
5.0	0.8059	90.9	1.0920	-11.8	0.1708	-7.0	0.6902	99.5
6.0	0.8087	79.2	0.7820	-31.9	0.1750	-37.8	0.6612	89.0

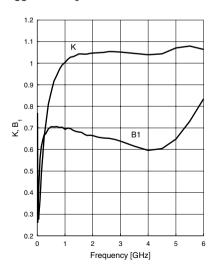
Power Gain
$$|S_{21}|^2$$
, G_{ms} , $G_{ma} = f(f)$
 $V_{CC} = 2.0V$; $I_c = 0.10A$



Power Gain
$$G_{ms}$$
, $G_{ma} = f(I_c)$
 $V_{CC} = 2.0V$

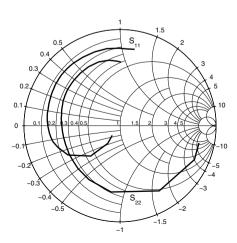


$$\begin{aligned} & \textbf{Matching} \ |S_{11}|, \ |S_{22}| = f(f) \\ & V_{CC} = 2.0V; \ I_{c} = 0.10A \end{aligned}$$



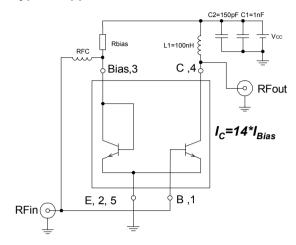
Reverse Isolation
$$|S_{12}| = f(f)$$

 $V_{CC} = 2.0V; I_{c} = 0.10A$



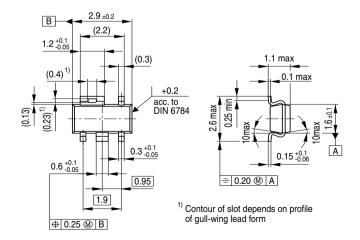
Stability K, B₁ = f(f)

$$V_{CC} = 2.0V$$
; $I_{c} = 0.10A$



$$\begin{aligned} & \textbf{Matching} \ | \textbf{S}_{11} \textbf{I}, \ | \textbf{S}_{22} \textbf{I} = \textbf{f(f)} \\ \textbf{V}_{CC} &= 2.0 \textbf{V}; \ \textbf{I}_{c} = 0.10 \textbf{A} \\ \textbf{f} &= 0.01 \textbf{GHz} - 6 \textbf{GHz} \end{aligned}$$

Typical Application



This proposal demonstrates how to use the BGB550 as a self-biased transistor. As for a discrete transistor matching circuits have to be applied.

The RFC circuit (e.g. an inductor) can be used to improve the input match.

Fig. 3: Typical application circuit

Package Outline

