DN8646FBP

4×8-bit Shift Register Latch Driver IC

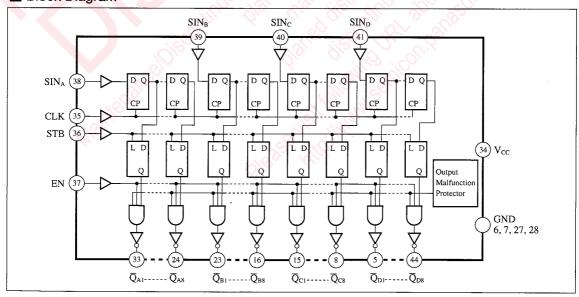
Overview

The DN8646FBP is an IC which incorporates a 4×8 -bit shift register and a latch driver to meet high-speed operation, low power consumption and high-density printout of the thermal printers for the work processors, and so on. It employs the Bi-CMOS process in which the 4-circuit serial-in and 8-bit parallel-out functions are incorporated, the 4×8 -step shift register block and latch block are composed of CMOS, and the 4×8 -step parallel driver block is bipolar.

Features

- · 4-circuit serial-in and parallel-out
- Provided with clock (CLK), enable (EN), and strobe (STB) input pins common to the 4-circuit
- Built-in output malfunctioning preventive circuit
- Low current consumption at standby I_{CC}≤100 μA
- High-breakdown, large current drive type output steps
 Breakdown : 30V

Output current: 120mA (per pin)


 Surface mountable 44-pin flat package (pin pitch: 0.8mm)

Applications

- Driving of the thermal heads
- · Driving of the relays, LEDs, solenoids, etc.

Block Diagram

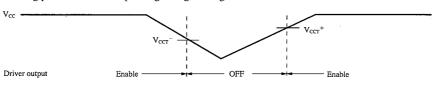
Absolute Maximum Ratings $(Ta=25^{\circ}C)$

Parameter	Symbol	Rating	Unit		
Supply voltage	V _{cc}	0 to 7	V		
Output voltage	Vo	0 to 30	V		
Output current	Io	120 (Per one pin)	mA		
Power dissipation	P _D	1.8 *	W		
Operating ambient temperature	T _{opr}	-20 to +75	ొ		
Storage temperature	T _{stg}	-55 to +125	°C		

^{*} When mounting onto the PCB, power dissipation is reduced at a rate of $15 \text{mW}/^{\circ}\text{C}$ from $Ta = 25 ^{\circ}\text{C}$.

■ Recommended Operating Range $(Ta=25^{\circ}C)$

Parameter		Symbol	Range					
Operating supply voltage	range	V _{cc}	4 to 6V					
Output voltage		Vo	below 30V					
Output current		Io	below 100mA *1					
Clock frequency		f_{CLK}	below 10MHz *2					
Input pulse width	CLK		40ns and over					
input puise width	STB	t _w	40ns and over					
Setup time	SIN		30ns and over					
Setup time	STB	t_{su}	40ns and over					
Hold time	SIN		20ns and over					
Hold time	STB	t _h	Ons and over					
Clock pulse rise time		ŧ _r	below 500ns					
Clock pulse fall time		t _f	below 500ns					


^{*1} An sllowable value changes depends on the number of simultaneously turned-on circuits and the duty. Use with power dissipation taken into full account.

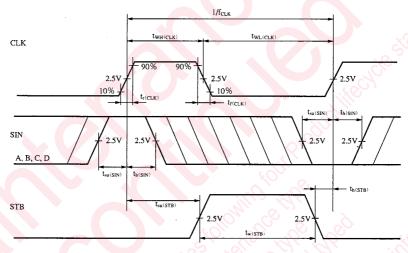
■ Electrical Characteristics (Ta=25°C)

Parameter	Symbol	Condition	min	typ	max	Unit
Input voltage	V_{IH}	$V_{CC}=4 \text{ to } 6V$	0.7V _{CC}	<u>(</u>	V _{CC}	V
input voltage	V_{IL}	V _{CC} -4106V	0		0.3V _{CC}	V
Input current	I_{IH}	V _{IH} =5V	<i>D</i> :		25	μ A
input current	$I_{\rm IL}$	V _{IL} =0V			-25	μΑ
Output saturation voltage (Qn)	V _{CE(sat)1}	I _{OL} =100mA		_	0.4	V
Output saturation voltage (Qn)	$V_{\text{CE}(\text{sat})_2}$	I _{OL} =80mA	_		0.35	V
Output leak current	I _{OLK1}	Vo=30V (Output OFF)			50	μΑ
Output leak cultent	I_{OLK2}	Vo=15V (Output OFF)			25	μΑ
Supply current	I _{CC1}	Total driver output OFF	_		100	μΑ
Suppry current	I_{CC2}	Driver output 1 circuit ON	_		5	mA
Output malfunctioning	V _{CCT} ⁺	*	2.9		3.9	V
preventive circuit operating voltage	V _{CCT} -	*	2.6	_	3.6	V

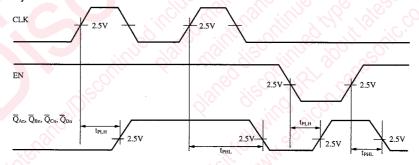
Note) $V_{CC}=5V$ unless otherwise specified

^{*} Output malfunctioning preventive circuit operating voltage timing chart.

^{*2} Input duty: 40 to 60%


Switching Characteristics $(Ta=25^{\circ}C)$

Parameter	Symbol	Input	Output	Condition	min	typ	max	Unit
Maximum clock frequency	f_{max}	CLK			10			MHz
1977	t _{PLH}	CLK	Qn	$V_{cc}=5V$		-	2	μs
Propagation delay time	t _{PHL}			$R_L = 100 \Omega$			0.5	μs
Tropagation delay time	t _{PLH}	- EN	Qn	$C_L = 15pF$	_		2	μs
	t _{PHL}			CL 13pr	_		0.5	μs


■ Supplementary Descriptions

• Timing Chart

1. Input Timing

2. Propagation Delay Time


■ Supplementary Descriptions (cont.)

• Functions Table

Input					Driver output									
CLK	EN	STB	SINA	SIN _B	SIN _C	SIN_D	$\widetilde{Q}_{\text{Al}}$	\overline{Q}_{An}	\overline{Q}_{Bl}	\overline{Q}_{Bn}	\overline{Q}_{Cl}	$\overline{\overline{Q}}_{Cn}$	\overline{Q}_{Dl}	\overline{Q}_{Dn}
1	L	×	×	×	×	×	Н	Н	H	Н	Н	Н	Н	Н
+	L	×	×	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
1	Н	L	×	×	×	×	nc	nc	nc	nc	nc	nc	nc	nc
1	Н	Н	L	L	L	L	Н	\overline{Q}_{An-1}	Н	\overline{Q}_{Bn-1}	Н	\overline{Q}_{Cn-1}	Н	\overline{Q}_{Dn-1}
↑	Н	Н	Н	Н	Н	Н	L	\overline{Q}_{An-1}	L	\overline{Q}_{Bn-1}	L	\overline{Q}_{Cn-1}	L	\overline{Q}_{Dn-1}
	Н	Н	×	×	×	×	nc	nc	nc	nc	nc	nc	nc	nc

Note) H=High level, L=Low level, ×=Either "H" or "L" will do, ↑=Transition from "H" to "L", ↓=Transition from "H" to "L", ↓=T

• Pin Assignments

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20080805