

High-Speed Dual SPDT Switch

UM9636 *QFN10 1.8×1.4*

General Description

The UM9636 is a high-speed, low-power dual single-pole/ double-throw (SPDT) analog switch that operates from a single +2.7V to +12V supply.

The UM9636 features 720 MHz - 3 dB bandwidth, - 67 dB Cross Talk and - 58 dB Off isolation at 10 MHz frequency. Wide bandwidth and low on resistant allow it to pass high-speed differential signal with good signal integrity. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Its high channel-to-channel crosstalk rejection results in minimal noise interference. Key applications for the UM9636 are logic level translation, pulse generator, and high speed or low noise signal switching in precision instrumentations and portable device designs.

The switch is available in Pb-free QFN10 (1.8×1.4) package.

Applications

- High-end data acquisition
- Medical instruments
- Precision instruments
- High speed communications applications
- Automated test equipment
- Sample and hold applications

Features

- Ron is Typically 83Ω at $V_{CC}=12V$
- Channel On-Capacitance: 6.5pF(Typical)
- Typically 720MHz -3dB Bandwidth (or Data Frequency)
- Low Crosstalk: Typically -67dB (10MHz)
- Low Off-isolation: Typically -58dB (10MHz)
- Low voltage, 1.65 V CMOS/TTL compatible
- Low Current Consumption: 1µA
- V_{CC} Operating Range: +2.7V to +12V
- Lead (Pb) Free QFN10 Package

Pin Configurations

Ordering Information

Part Number	Packaging Type	Marking Code	Shipping Qty
UM9636	QFN10	AJ	3000pcs/7 Inch Tape & Reel

Truth Table

Select Input		On Switches
A1	A0	UM9636
X	0	D1 to S1A
X	1	D1 to S1B
0	X	D2 to S2A
1	X	D2 to S2B

Pin Description

Pin	Name	Function
1	GND	Ground Connection
2	S1A	Data Ports
3	S1B	Data Ports
4	D1	Data Ports
5	D2	Data Ports
6	S2B	Data Ports
7	S2A	Data Ports
8	V+	Positive Supply Voltage
9	A1	Select Input
10	A0	Select Input

Absolute Maximum Ratings

Symbol	Parameter	Limit	Unit
V+	Supply Voltage	- 0.5 to + 14V	
V_{IS}	Analog Switch Input Voltage	-0.5 to $(V_{CC} + 0.3)$	V
V_{IN}	Digital Select Input Voltage	-0.5 to $(V_{CC} + 0.3)$	
I_{D}	Continuous DC Current	50	т Л
P_{P}	Peak Current, S or D (Pulsed 1 ms, 10 % Duty Cycle)	100	mA
P_{D}	Power Dissipation	0.28	W
T_{O}	Operating Temperature Range	- 40 to +85	°C
T_{STG}	Storage Temperature Range	- 65 to +150	C
	HBM	4000	
ESD	I/O to GND	2000	V
	All Pins	2000	

Electrical Characteristics

g				_	Limits (-40 to 85 °C)		°C)	
Symbol	Parameter	Test Conditions	V+ (V)	Temp	Min	Typ	Max	Unit
DC Electrica	al Characteristics							
V_{ANALOG}	Analog Signal Range			Full			12	V
I_{CC}	Quiescent Supply Current	$V_{IN} = 0 \text{ V, or V} +$	12	Room Full		0.01	0.5 1	4
I_{GND}	Ground Current	$\mathbf{v}_{\mathrm{IN}} = 0 \ \mathbf{v}, 0 \mathbf{i} \ \mathbf{v} +$	12	Room Full	-0.5 -1	-0.01		μΑ
${ m I}_{ m IH}$	Input Leakage Current, VIN High	$V_{AX} = 1.65 \text{ V}$	12	Full	-0.1	0.01	0.1	μΑ
$I_{\rm IL}$	Input Leakage Current, VIN Low	$V_{AX} = 0.5 \text{ V}$	12	Full	-0.1	0.01	0.1	μΑ
$I_{D(on)}$	Channel On Leakage Current	V+ = 12 V, $V_D = VS 11 V/1 V$	12	Room Full	-1.0	±0.01	1.0 2.0	μΑ
$I_{D(off)}$	OFF State	V+=12 V,	12	Room Full	-11.0	±0.01	11.0 15.0	μΑ
$I_{S(off)}$	Leakage Current	$V_D = 1 \text{ V}/11 \text{ V},$ $V_S = 11 \text{ V}/1 \text{ V}$	12	Room Full	-11.0	±0.01	11.0 15.0	μΑ
V_{IH}	Input High Voltage		12	Full	1.65			V
$V_{\rm IL}$	Input Low Voltage		12	Full			0.5	V
R_{ON}	On-Resistance (Note3)	$V_D = 11.3 \text{ V}$ $I_S = 1 \text{ mA}$	12	Room Full		83	110 125	Ω
$\Delta R_{\rm ON}$	On Resistance Match Between Channels (Note3,4,5)	$V_D = 11.3 \text{ V}$ $I_S = 1 \text{ mA}$	12	Room Full		2	4 6	Ω
R_{FLAT}	On Resistance Flatness (Note3,4,6)	$V_D = 0.7, 6.5, 11.3 \text{ V}$ $I_S = 1 \text{ mA}$	12	Room Full		33	45 50	Ω
AC Electrica	al Characteristics							
t_{ON}	Turn On Time	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$	12	Room Full		30	70 80	ns
t_{OFF}	Turn Off Time	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$	12	Room Full		15	55 65	ns
t_{BBM}	Break Before Make Time(Note 7)	$R_L = 300 \Omega,$ $C_L = 35 \text{ pF}$	12	Room Full	5 2	15		ns
THD	Total Harmonic Distortion	Signal = 1 V_{RMS} , 20 Hz to 20 kHz, $R_L = 600 \Omega$	12	Room		0.01		%
Charge Injection	Q_{INJ}	$C_L = 1 \text{ nF, } R_{GEN} = 0 \Omega,$ $V_{GEN} = 0 \text{ V}$	12	Room		23.5		pC
O_{IRR}	Off Isolation	$R_L=50\Omega$, $C_L=5pF$, $f=10MHz$	12	Room		-58		dB
X_{TALK}	Crosstalk	$R_L=50\Omega$, $C_L=5pF$, $f=10MHz$	12	Room		-67		dB
BW	-3 dB Bandwidth	$R_L=50\Omega$,	12	Room		720		MHz
Capacitance	•							
C _{IN}	Control Pin Input Capacitance	F=1MHz		Room		3		pF
C_{OFF}	Switch Off Capacitance	F=1MHz	12	Room		2.0		pF
C _{ON}	Switch On Capacitance	F=1MHz	12	Room		7.7		pF
				•				

^{1:}Typically values are at T_A=+25℃.

^{2.} The high OFF State Leakage Current is because of pull down resistor

^{3:} Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

^{4:} Parameter is characterized but not tested in production.

 $^{5: \}Delta R_{ON} = \ \mid \ R_{ON\,(S1A/S1B)} - R_{ON(S2A/S2B)} \ \mid \ measured \ at \ identical \ V_{CC}, \ temperature \ and \ voltage \ levels.$

^{6:} Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

^{7:} Guaranteed by Design. 8: Off Isolation = 20 log10 [V_D/V_{SA/SB}].

Electrical Characteristics

Cumbal	Down	T. 4 C. 122	TI (TI)		Limits (-40 to 85 °C)			17
Symbol	Parameter	Test Conditions	V+ (V)	Temp	Min	Typ (Note1)	Max	Unit
DC Electrica	al Characteristics							
V _{ANALOG}	Analog Signal Range			Full			5	V
I_{CC}	Quiescent Supply Current	$V_{IN} = 0 \text{ V, or V} +$	5	Room Full		0.01	0.5 1	μА
I_{GND}	Ground Current	$\mathbf{v}_{\mathrm{IN}} = 0 \ \mathbf{v}, 0 1 \ \mathbf{v} +$	3	Room Full	-0.5 -1	-0.01		μΑ
${ m I}_{ m IH}$	Input Leakage Current, VIN High	$V_{AX} = 1.4 \text{ V}$	5	Full	-0.1	0.01	0.1	μΑ
$I_{\rm IL}$	Input Leakage Current, VIN Low	$V_{AX} = 0.5 \text{ V}$	5	Full	-0.1	0.01	0.1	μΑ
$I_{D(on)}$	Channel On Leakage Current	V+ = 5.5 V, $V_D = VS 4.5 V/1 V$	5.5	Room Full	-1.0	±0.01	1.0 2.0	μΑ
$I_{D(off)}$	OFF State	V+ = 5.5 V, $V_D = 1 V/4.5 V,$	5.5	Room Full	-3.0	±0.01	3.0 5.0	μΑ
$I_{S(off)}$	Leakage Current	$V_{\rm S} = 4.5 \text{ V/1 V}$	5.5	Room Full	-3.0	±0.01	3.0 5.0	μΑ
V_{IH}	Input High Voltage		5	Full	1.4			V
V_{IL}	Input Low Voltage		5	Full			0.5	V
R_{ON}	On-Resistance (Note3)	$V_D = 4 V$ $I_S = 1 \text{ mA}$	5	Room Full		300	350 400	Ω
$\Delta R_{\rm ON}$	On Resistance Match Between Channels (Note3,4,5)	$V_D = 4V$ $I_S = 1 \text{ mA}$	5	Room Full		6	12 15	Ω
AC Electrica	al Characteristics							
t_{ON}	Turn On Time	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$	5	Room Full		55		ns
t_{OFF}	Turn Off Time	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$	5	Room Full		30		ns
$t_{\rm BBM}$	Break Before Make Time(Note 6)	$R_L = 300 \Omega,$ $C_L = 35 \text{ pF}$	5	Room Full		36		ns
THD	Total Harmonic Distortion	Signal = 1 V_{RMS} , 20 Hz to 20 kHz, $R_L = 600 \Omega$	5	Room		2.2		%
Charge Injection	Q_{INJ}	$C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega,$ $V_{GEN} = 0 V$	5	Room		10		рC
O_{IRR}	Off Isolation (Note 7)	$R_L=50\Omega$, $C_L=5pF$, $f=10MHz$	5	Room		-58		dB
X_{TALK}	Crosstalk	$R_L=50\Omega$, $C_L=5pF$, f=10MHz	5	Room		-68		dB
BW	-3 dB Bandwidth	$R_L=50\Omega$,	5	Room		610		MHz
Capacitance								
C_{IN}	Control Pin Input Capacitance	F=1MHz		Room		3		pF
C_{OFF}	Switch Off Capacitance	F=1MHz	5	Room		2.1		pF
C_{ON}	Switch On Capacitance	F=1MHz	5	Room		8.1		pF

^{1:} Typically values are at T_A=+25℃.

The high OFF State Leakage Current is because of pull down resistor
 Guaranteed by design. Resistance measurements do not include test circuit or package resistance.

^{4:} Parameter is characterized but not tested in production.

^{5:} $\Delta R_{ON} = |R_{ON (S1A/S1B)} - R_{ON(S2A/S2B)}|$ measured at identical V_{CC} , temperature and voltage levels. 6: Guaranteed by Design.

^{7:} Off Isolation = $20 \log 10 [V_D/V_{SA/SB}]$.

Electrical Characteristics

Come to -1		T. (C. Pri		Limits (-40 to 85 °C)			T1:4	
Symbol	Parameter	Test Conditions	V+ (V)	Temp	Min	Typ (Note1)	Max	Unit
DC Electrica	al Characteristics							
V_{ANALOG}	Analog Signal Range			Full			3	V
I_{CC}	Quiescent Supply Current	V = 0 V = 1 V	2	Room Full		0.01	0.5 1	4
I_{GND}	Ground Current	$V_{IN} = 0 \text{ V, or V} +$	3	Room Full	-0.5 -1	-0.01		μΑ
I_{IH}	Input Leakage Current, VIN High	$V_{AX} = 1.4 \text{ V}$	3	Full	-0.1	0.01	0.1	μΑ
$I_{\rm IL}$	Input Leakage Current, VIN Low	$V_{AX} = 0.5 \text{ V}$	3	Full	-0.1	0.01	0.1	μΑ
I _{D(on)}	Channel On Leakage Current	V+ = 3.3 V, $V_D = VS 3 V/1 V$	3.3	Room Full	-1.0	±0.01	1.0 2.0	μΑ
$I_{D(off)}$	OFF State	V+ = 3.3 V, $V_D = 1 \text{ V/3 V},$	3.3	Room Full	-1.0	±0.01	1.0 2.0	μΑ
$I_{S(\rm off)}$	Leakage Current	$V_{S} = 3 \text{ V/1 V}$	3.3	Room Full	-1.0	±0.01	1.0 2.0	μΑ
V_{IH}	Input High Voltage		3	Full	1.4			V
V_{IL}	Input Low Voltage		3	Full			0.5	V
R_{ON}	On-Resistance (Note2)	$V_D = 1.5 \text{ V}$ $I_S = 1 \text{ mA}$	3	Room Full		500	550 650	Ω
ΔR_{ON}	On Resistance Match Between Channels (Note2,3,4)	$V_D = 1.5 \text{ V}$ $I_S = 1 \text{ mA}$	3	Room Full		10	14 18	Ω
AC Electrica	al Characteristics		•			•	•	
t _{ON}	Turn On Time	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$	3	Room Full		96		ns
$t_{ m OFF}$	Turn Off Time	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$	3	Room Full		60		ns
$t_{ m BBM}$	Break Before Make Time(Note 5)	$R_L = 300 \Omega,$ $C_L = 35 \text{ pF}$	3	Room Full		77		ns
THD	Total Harmonic Distortion	Signal = 1 V_{RMS} , 20 Hz to 20 kHz, $R_L = 600 \Omega$	3	Room		2.2		%
Charge Injection	Q_{INJ}	$C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega,$ $V_{GEN} = 0 V$	3	Room		6.6		pC
O_{IRR}	Off Isolation (Note 6)	$R_L=50\Omega$, $C_L=5pF$, $f=10MHz$	3	Room		-57		dB
X_{TALK}	Crosstalk	$R_L=50\Omega$, $C_L=5pF$, f=10MHz	3	Room		-69		dB
BW	-3 dB Bandwidth	$R_L=50\Omega$,	3	Room		525		MHz
Capacitance								
C_{IN}	Control Pin Input Capacitance	F=1MHz		Room		3.1		pF
C_{OFF}	Switch Off Capacitance	F=1MHz	3	Room		2.1		pF
Con	Switch On Capacitance	F=1MHz	3	Room		8.3		pF

^{1:} Typically values are at T_A=+25℃.

^{2:} Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
3: Parameter is characterized but not tested in production.

^{4:} $\Delta R_{ON} = |R_{ON (S1A/S1B)} - R_{ON (S2A/S2B)}|$ measured at identical V_{CC} , temperature and voltage levels. 5: Guaranteed by Design. 6: Off Isolation = 20 log10 $[V_D/V_{SA/SB}]$.

Package Information

UM9636: QFN10 1.80×1.40

Outline Drawing

DIMENSIONS							
Crimbol	N	MILLIMETERS					
Symbol	MIN	TYP	MAX				
A	0.50	0.55	0.60				
A1	0.00	- 0.05					
A3		0.15REF					
D	1.35	1.40	1.45				
Е	1.75	1.80	1.85				
b	0.15	0.20 0.25					
L	0.30	0.30 0.40 0.50					
L1	0.40	0.40 0.50 0.60					
e		0.40BSC					

Land Pattern

NOTES:

- 1. Compound dimension: 1.40×1.80;
- 2. Unit: mm;
- 3.General tolerance ± 0.05 mm unless otherwise specified;
- 4. The layout is just for reference.

Tape and Reel Orientation

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc

Add: 2F, No. 3, Lane647 Songtao Road, Shanghai 201203

Tel: 021-51093966 Fax: 021-51026018

Website: www.union-ic.com