High-Speed Dual SPDT Switch

UM9636 QFN10 1.8×1.4

General Description

The UM9636 is a high-speed, low-power dual single-pole/ double-throw (SPDT) analog switch that operates from a single +2.7 V to +12 V supply.
The UM9636 features $720 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth, -67 dB Cross Talk and -58 dB Off isolation at 10 MHz frequency. Wide bandwidth and low on resistant allow it to pass high-speed differential signal with good signal integrity. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Its high channel-to-channel crosstalk rejection results in minimal noise interference. Key applications for the UM9636 are logic level translation, pulse generator, and high speed or low noise signal switching in precision instrumentations and portable device designs.
The switch is available in Pb-free QFN10 (1.8×1.4)package.

Applications

- High-end data acquisition
- Medical instruments
- Precision instruments
- High speed communications applications
- Automated test equipment
- Sample and hold applications

Features

- Ron is Typically 83Ω at $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$
- Channel On-Capacitance: 6.5 pF (Typical)
- Typically $720 \mathrm{MHz}-3 \mathrm{~dB}$ Bandwidth (or Data Frequency)
- Low Crosstalk: Typically $-67 \mathrm{~dB}(10 \mathrm{MHz})$
- Low Off-isolation: Typically $-58 \mathrm{~dB}(10 \mathrm{MHz})$
- Low voltage, 1.65 V CMOS/TTL compatible
- Low Current Consumption: $1 \mu \mathrm{~A}$
- V_{CC} Operating Range: +2.7 V to +12 V
- Lead (Pb) Free QFN10 Package

Pin Configurations

Ordering Information

Part Number	Packaging Type	Marking Code	Shipping Qty
UM9636	QFN10	AJ	$3000 \mathrm{pcs} / 7$ Inch Tape \& Reel

UM9636

Truth Table

Select Input	A0	On Switches
A1	0	UM9636
X	1	D1 to S1A
X	X	D1 to S1B
0	X	D2 to S2A
1	X	D2 to S2B

Pin Description

Pin	Name	Function
1	GND	Ground Connection
2	S1A	Data Ports
3	S1B	Data Ports
4	D1	Data Ports
5	D2	Data Ports
6	S2B	Data Ports
7	S2A	Data Ports
8	V+	Positive Supply Voltage
9	A1	Select Input
10	A0	Select Input

Absolute Maximum Ratings

Symbol	Parameter	Limit	Unit
V+	Supply Voltage	-0.5 to +14 V	V
$\mathrm{V}_{\text {IS }}$	Analog Switch Input Voltage	-0.5 to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right)$	
$\mathrm{V}_{\text {IN }}$	Digital Select Input Voltage	-0.5 to ($\mathrm{V}_{\mathrm{CC}}+0.3$)	
I_{D}	Continuous DC Current	50	mA
P_{P}	Peak Current, S or D (Pulsed $1 \mathrm{~ms}, 10$ \% Duty Cycle)	100	
P_{D}	Power Dissipation	0.28	W
T_{O}	Operating Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	- 65 to +150	
ESD	HBM I/O to GND All Pins	$\begin{aligned} & 4000 \\ & 2000 \end{aligned}$	V

UM9636

Electrical Characteristics

Symbol	Parameter	Test Conditions	V+(V)	Temp	Limits (-40 to $85{ }^{\circ} \mathrm{C}$)			Unit
					Min	$\underset{\text { (Note1) }}{\text { Typ }}$	Max	
DC Electrical Characteristics								
$\mathrm{V}_{\text {analog }}$	Analog Signal Range			Full			12	V
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, or $\mathrm{V}+$	12	Room Full		0.01	$\begin{gathered} \hline 0.5 \\ 1 \\ \hline \end{gathered}$	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{GND}}$	Ground Current			Room Full	$\begin{gathered} \hline-0.5 \\ -1 \\ \hline \end{gathered}$	-0.01		
I_{IH}	Input Leakage Current, VIN High	$\mathrm{V}_{\mathrm{AX}}=1.65 \mathrm{~V}$	12	Full	-0.1	0.01	0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Leakage Current, VIN Low	$\mathrm{V}_{\mathrm{AX}}=0.5 \mathrm{~V}$	12	Full	-0.1	0.01	0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{D}(\text { (on) }}$	Channel On Leakage Current	$\begin{gathered} \mathrm{V}+=12 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{D}}=\mathrm{VS} 11 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	12	Room Full	-1.0	± 0.01	$\begin{aligned} & \hline 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{D} \text { (off) }}$	OFF State Leakage Current (Note2)	$\begin{gathered} \mathrm{V}+=12 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 11 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{S}}=11 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	12	Room Full	-11.0	± 0.01	$\begin{aligned} & \hline 11.0 \\ & 15.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(off) }}$			12	Room Full	-11.0	± 0.01	$\begin{aligned} & 11.0 \\ & 15.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage		12	Full	1.65			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		12	Full			0.5	V
$\mathrm{R}_{\text {ON }}$	On-Resistance (Note3)	$\begin{gathered} \mathrm{V}_{\mathrm{D}}=11.3 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ \hline \end{gathered}$	12	Room Full		83	$\begin{aligned} & 110 \\ & 125 \\ & \hline \end{aligned}$	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Match Between Channels (Note3,4,5)	$\begin{aligned} \mathrm{V}_{\mathrm{D}} & =11.3 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}} & =1 \mathrm{~mA} \end{aligned}$	12	Room Full		2	4	Ω
$\mathrm{R}_{\text {FLAT }}$	On Resistance Flatness (Note3,4,6)	$\begin{gathered} \mathrm{V}_{\mathrm{D}}=0.7,6.5,11.3 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{gathered}$	12	Room Full		33	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	Ω
AC Electrical Characteristics								
$\mathrm{t}_{\text {ON }}$	Turn On Time	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	12	Room Full		30	$\begin{aligned} & \hline 70 \\ & 80 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {OFF }}$	Turn Off Time	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	12	Room Full		15	$\begin{aligned} & 55 \\ & 65 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {BBM }}$	Break Before Make Time(Note 7)	$\begin{aligned} \mathrm{R}_{\mathrm{L}} & =300 \Omega, \\ \mathrm{C}_{\mathrm{L}} & =35 \mathrm{pF} \end{aligned}$	12	Room Full	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	15		ns
THD	Total Harmonic Distortion	Signal $=1 \mathrm{~V}_{\text {RMS }}$, 20 Hz to 20 kHz , $\mathrm{R}_{\mathrm{L}}=600 \Omega$	12	Room		0.01		\%
Charge Injection	$\mathrm{Q}_{\text {INJ }}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \\ \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \end{gathered}$	12	Room		23.5		pC
$\mathrm{O}_{\text {IRR }}$	Off Isolation (Note 8)	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ \mathrm{f}=10 \mathrm{MHz} \end{gathered}$	12	Room		-58		dB
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ \mathrm{f}=10 \mathrm{MHz} \end{gathered}$	12	Room		-67		dB
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	12	Room		720		MHz

Capacitance

$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	$\mathrm{F}=1 \mathrm{MHz}$	Room	3	pF		
$\mathrm{C}_{\text {OFF }}$	Switch Off Capacitance	$\mathrm{F}=1 \mathrm{MHz}$	12	Room		2.0	pF
C_{ON}	Switch On Capacitance	$\mathrm{F}=1 \mathrm{MHz}$	12	Room	7.7	pF	

1:Typically values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. The high OFF State Leakage Current is because of pull down resistor

3: Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
4: Parameter is characterized but not tested in production.
5: $\Delta \mathrm{R}_{\mathrm{ON}}=\left|\mathrm{R}_{\mathrm{ON}(\mathrm{S} 1 \mathrm{~A} / \mathrm{S} 1 \mathrm{~B})}-\mathrm{R}_{\mathrm{ON(S2A/S2B)}}\right|$ measured at identical V_{CC}, temperature and voltage levels.
6: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.
7: Guaranteed by Design.
8: Off Isolation $=20 \log 10\left[\mathrm{~V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{SA} / \mathrm{SB}}\right]$.

UM9636

Electrical Characteristics

Symbol	Parameter	Test Conditions	V+(V)	Temp	Limits (-40 to 85 ${ }^{\circ} \mathrm{C}$)			Unit
					Min	$\underset{\text { (Note1) }}{\text { Typ }}$	Max	
DC Electrical Characteristics								
$\mathrm{V}_{\text {analog }}$	Analog Signal Range			Full			5	V
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, or $\mathrm{V}+$	5	Room Full		0.01	$\begin{gathered} \hline 0.5 \\ 1 \\ \hline \end{gathered}$	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{GND}}$	Ground Current			Room Full	$\begin{gathered} \hline-0.5 \\ -1 \end{gathered}$	-0.01		
I_{IH}	Input Leakage Current, VIN High	$\mathrm{V}_{\mathrm{AX}}=1.4 \mathrm{~V}$	5	Full	-0.1	0.01	0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Leakage Current, VIN Low	$\mathrm{V}_{\mathrm{AX}}=0.5 \mathrm{~V}$	5	Full	-0.1	0.01	0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{D} \text { (on) }}$	Channel On Leakage Current	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{D}}=\mathrm{VS} 4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	5.5	Room Full	-1.0	± 0.01	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{D} \text { (off) }}$	OFF State Leakage Current (Note2)	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	5.5	Room Full	-3.0	± 0.01	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(off) }}$			5.5	Room Full	-3.0	± 0.01	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage		5	Full	1.4			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		5	Full			0.5	V
$\mathrm{R}_{\text {ON }}$	$\underset{\substack{\text { (Note3) }}}{\text { On-Resistance }}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{D}}=4 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \hline \end{aligned}$	5	Room Full		300	$\begin{aligned} & \hline 350 \\ & 400 \\ & \hline \end{aligned}$	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Match Between Channels (Note3,4,5)	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=4 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$	5	$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		6	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	Ω

AC Electrical Characteristics

$\mathrm{t}_{\text {ON }}$	Turn On Time	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	5	Room Full	55	ns
$\mathrm{t}_{\text {OFF }}$	Turn Off Time	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	5	Room Full	30	ns
$\mathrm{t}_{\text {BBM }}$	Break Before Make Time(Note 6)	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	5	Room Full	36	ns
THD	Total Harmonic Distortion	$\begin{gathered} \text { Signal }=1 \mathrm{~V}_{\mathrm{RMS}}, \\ 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ \mathrm{R}_{\mathrm{L}}=600 \Omega \\ \hline \end{gathered}$	5	Room	2.2	\%
Charge Injection	$\mathrm{Q}_{\text {INJ }}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \\ \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \end{gathered}$	5	Room	10	pC
$\mathrm{O}_{\text {IRR }}$	Off Isolation (Note 7)	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ \mathrm{f}=10 \mathrm{MHz} \end{gathered}$	5	Room	-58	dB
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ \mathrm{f}=10 \mathrm{MHz} \end{gathered}$	5	Room	-68	dB
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	5	Room	610	MHz

Capacitance

C_{IN}	Control Pin Input Capacitance	$\mathrm{F}=1 \mathrm{MHz}$		Room	3	pF	
$\mathrm{C}_{\text {OFF }}$	Switch Off Capacitance	$\mathrm{F}=1 \mathrm{MHz}$	5	Room		2.1	pF
C_{ON}	Switch On Capacitance	$\mathrm{F}=1 \mathrm{MHz}$	5	Room	8.1	pF	

1: Typically values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2: The high OFF State Leakage Current is because of pull down resistor
3: Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
4: Parameter is characterized but not tested in production.
5: $\Delta \mathrm{R}_{\mathrm{ON}}=\left|\mathrm{R}_{\mathrm{ON}(\mathrm{S} 1 \mathrm{~A} / 1 \mathrm{~B} 1 \mathrm{~B})}-\mathrm{R}_{\mathrm{ON(S2A/S2B)}}\right|$ measured at identical V_{CC}, temperature and voltage levels
6: Guaranteed by Design.
7: Off Isolation $=20 \log 10\left[\mathrm{~V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{SA} / \mathrm{SB}}\right]$.

UM9636

Electrical Characteristics

Symbol	Parameter	Test Conditions	V+(V)	Temp	Limits (-40 to $85{ }^{\circ} \mathrm{C}$)			Unit
					Min	$\underset{\text { (Note1) }}{\text { Typ }}$	Max	
DC Electrical Characteristics								
$\mathrm{V}_{\text {analog }}$	Analog Signal Range			Full			3	V
I_{CC}	Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, or $\mathrm{V}+$	3	Room Full		0.01	$\begin{gathered} \hline 0.5 \\ 1 \\ \hline \end{gathered}$	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{GND}}$	Ground Current			Room Full	$\begin{gathered} \hline-0.5 \\ -1 \\ \hline \end{gathered}$	-0.01		
I_{IH}	Input Leakage Current, VIN High	$\mathrm{V}_{\mathrm{AX}}=1.4 \mathrm{~V}$	3	Full	-0.1	0.01	0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Leakage Current, VIN Low	$\mathrm{V}_{\mathrm{AX}}=0.5 \mathrm{~V}$	3	Full	-0.1	0.01	0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{D} \text { (on) }}$	Channel On Leakage Current	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{D}}=\mathrm{VS} 3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	3.3	Room Full Full	-1.0	± 0.01	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{D} \text { (off) }}$	OFF State Leakage Current	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	3.3	Room Full	-1.0	± 0.01	$\begin{aligned} & \hline 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(off) }}$			3.3	Room Full	-1.0	± 0.01	$\begin{aligned} & \hline 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	Input High Voltage		3	Full	1.4			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		3	Full			0.5	V
$\mathrm{R}_{\text {ON }}$	On-Resistance (Note2)	$\begin{gathered} \hline \mathrm{V}_{\mathrm{D}}=1.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ \hline \end{gathered}$	3	Room Full		500	$\begin{aligned} & \hline 550 \\ & 650 \end{aligned}$	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Match Between Channels (Note2,3,4)	$\begin{gathered} \mathrm{V}_{\mathrm{D}}=1.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{gathered}$	3	$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		10	$\begin{aligned} & 14 \\ & 18 \end{aligned}$	Ω

AC Electrical Characteristics

$\mathrm{t}_{\text {ON }}$	Turn On Time	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	3	$\begin{gathered} \hline \text { Room } \\ \text { Full } \\ \hline \end{gathered}$	96	ns
$\mathrm{t}_{\text {OFF }}$	Turn Off Time	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	3	Room Full	60	ns
$\mathrm{t}_{\text {BBM }}$	Break Before Make Time(Note 5)	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	3	Room Full	77	ns
THD	Total Harmonic Distortion	$\begin{gathered} \text { Signal }=1 \mathrm{~V}_{\mathrm{RMS}}, \\ 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ \mathrm{R}_{\mathrm{L}}=600 \Omega \\ \hline \end{gathered}$	3	Room	2.2	\%
Charge Injection	$Q_{\text {INJ }}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \\ \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \end{gathered}$	3	Room	6.6	pC
$\mathrm{O}_{\text {IRR }}$	Off Isolation (Note 6)	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ \mathrm{f}=10 \mathrm{MHz} \end{gathered}$	3	Room	-57	dB
$\mathrm{X}_{\text {TALK }}$	Crosstalk	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ \mathrm{f}=10 \mathrm{MHz} \end{gathered}$	3	Room	-69	dB
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	3	Room	525	MHz

Capacitance

C_{IN}	Control Pin Input Capacitance	$\mathrm{F}=1 \mathrm{MHz}$		Room	3.1	pF	
$\mathrm{C}_{\text {OFF }}$	Switch Off Capacitance	$\mathrm{F}=1 \mathrm{MHz}$	3	Room		2.1	pF
C_{ON}	Switch On Capacitance	$\mathrm{F}=1 \mathrm{MHz}$	3	Room	8.3	pF	

1: Typically values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2: Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
3: Parameter is characterized but not tested in production.
4: $\Delta \mathrm{R}_{\mathrm{ON}}=\left|\mathrm{R}_{\mathrm{ON}(\mathrm{S} 1 \mathrm{~A} / \mathrm{S} 1 \mathrm{~B})}-\mathrm{R}_{\mathrm{ON}(\mathrm{S} 2 \mathrm{~A} / 22 \mathrm{~B})}\right|$ measured at identical V_{CC}, temperature and voltage levels.
5: Guaranteed by Design.
6: Off Isolation $=20 \log 10\left[\mathrm{~V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{SA} / \mathrm{SB}}\right]$.

Package Information

UM9636: QFN10 1.80×1.40
Outline Drawing

Land Pattern

Tape and Reel Orientation

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc
Add: 2F, No. 3, Lane647 Songtao Road, Shanghai 201203
Tel: 021-51093966
Fax: 021-51026018
Website: www.union-ic.com

