STF7LN80K5

N-channel 800 V, 0.95 Ω typ., 5 A MDmesh™ K5 Power MOSFET in a TO-220FP package

Datasheet - production data

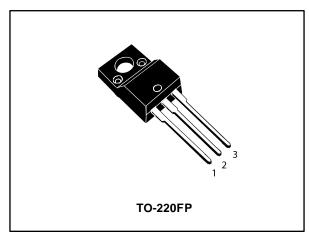
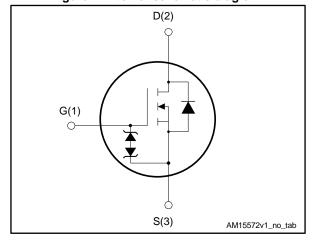



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STF7LN80K5	800 V	1.15 Ω	5 A

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STF7LN80K5	7LN80K5	TO-220FP	Tube

Contents STF7LN80K5

Contents

1	Electric	cal ratings	3
	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	8
4	Packag	e information	9
	4.1	TO-220FP package information	10
5	Revisio	on history	12

STF7LN80K5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 30	V
$I_D^{(1)}$	Drain current (continuous) at T _C = 25 °C	5	Α
$I_D^{(1)}$	Drain current (continuous) at T _C = 100 °C	3.4	Α
I _D ⁽²⁾	Drain current (pulsed)	20	Α
P _{TOT}	Total dissipation at $T_C = 25$ °C	25	W
V _{ISO}	Insulation with stand voltage (RMS) from all three leads to external heat sink (t=1 s; $T_{\rm C}$ =25 °C)	2500	V
dv/dt (3)	Peak diode recovery voltage slope	4.5	\
dv/dt (4)	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
TJ	Operating junction temperature	- 55 10 150	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	R _{thj-case} Thermal resistance junction-case		°C/W
R _{thj-amb} Thermal resistance junction-ambient		62.5	°C/W

Table 4: Avalanche characteristics

	Symbol Parameter		Value	Unit
	$I_{AR} \qquad \text{Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})} \\ E_{AS} \qquad \text{Single pulse avalanche energy (starting $T_{j} = 25 ^{\circ}\text{C}$, $I_{D} = I_{AR}$,} \\ V_{DD} = 50 \text{V})}$		1.5	А
			200	mJ

⁽¹⁾Limited by maximum junction temperature

⁽²⁾Pulse width limited by safe operating area

 $^{^{(3)}}I_{SD} \le 5$ A, di/dt 100 A/µs; V_{DS} peak < V_{(BR)DSS},V_{DD}= 640 V

 $^{^{(4)}}V_{DS} \le 640 \text{ V}$

Electrical characteristics STF7LN80K5

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_{D} = 1 \text{ mA}$	800			V
		$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V}$			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 800 \text{ V}$ $T_{C} = 125 \text{ °C}$			50	μΑ
I _{GSS}	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}$		0.95	1.15	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	270	-	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$	-	22	-	pF
C _{rss}	Reverse transfer capacitance	VG3 - 0 V	-	0.5	-	pF
C _{o(er)} ⁽¹⁾	Equivalent capacitance energy related	V _{DS} = 0 to 640 V,	-	17	-	nC
$C_{o(tr)}^{(2)}$	Equivalent capacitance time related	$V_{GS} = 0 V$	-	48		nC
R_g	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D=0 \text{ A}$	-	7.5	-	Ω
Q_g	Total gate charge	$V_{DD} = 640 \text{ V}, I_{D} = 5 \text{ A}$	-	12	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	2.6	-	nC
Q_{gd}	Gate-drain charge	See (Figure 15: "Test circuit for gate charge behavior")	-	8.6	-	nC

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 400 V, I_D =2.5 A, R_G = 4.7 Ω	-	9.3	ı	ns
t _r	Rise time	V _{GS} = 10 V	-	6.7	-	ns
t _{d(off)}	Turn-off delay time	See (Figure 14: "Test circuit for resistive load switching times" and		23.6	-	ns
t _f	Fall time	Figure 19: "Switching time waveform")	-	17.4	1	ns

 $^{^{(1)}}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{^{(2)}}$ Time related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 8: Source-drain diode

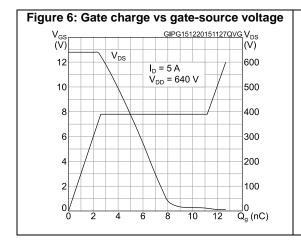
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		5	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		20	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 5 A, V _{GS} = 0 V	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 5 A, di/dt = 100 A/μs, V _{DD} = 60 V See Figure 16: "Test circuit for inductive load switching and diode recovery times"	-	276		ns
Q _{rr}	Reverse recovery charge		-	2.13		μC
I _{RRM}	Reverse recovery current		-	15.4		Α
t _{rr}	Reverse recovery time	I _{SD} = 5 A, di/dt = 100 A/μs	-	402		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C See Figure 16: "Test circuit for inductive load switching and diode recovery times"	-	2.79		μC
I _{RRM}	Reverse recovery current		-	13.9		Α

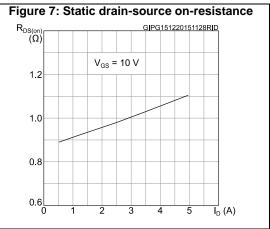
Notes:

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	I_{GS} = ± 1mA, I_{D} = 0 A	30	-	-	V

The built-in back-to-back Zener diodes have been specifically designed to enhance the ESD capability of the device. The Zener voltage is appropriate for efficient and cost-effective intervention to protect the device integrity. These integrated Zener diodes thus eliminate the need for external components.


⁽¹⁾Pulse width limited by safe operating area


 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.2 Electrical characteristics (curves)

Figure 2: Safe operating area GIPG151215VK8GFSOA $\begin{array}{c} \text{I}_{\text{D}} \\ \text{(A)} \\ \hline \text{Operation in this area is} \\ \\ \text{limited by } R_{\text{DS(on)}} \\ \end{array}$ 10 t _p=10 μs 10⁰ t =100 µs t p=1 ms t ₀=10 ms 10⁻ T_i≤150 °C T_c= 25°C single pulse 10-2 10° 10¹ 10³ $\overline{V}_{DS}(V)$

Figure 3: Thermal impedance K GC20530 δ =0.5 δ =0.2 δ =0.1 δ =0.05 δ =0.02 δ =0.01 δ =0.02 δ =0.01 Single pulse δ =0.10 δ =0.02 δ =0.01 δ =0.02 δ =0.01 δ =0.01 δ =0.02 δ =0.01 δ =0.02 δ =0.01 δ =0.02 δ =0.03 δ =0.02 δ =0.03 δ =0.04 δ =0.05 δ =0.

STF7LN80K5 Electrical characteristics

Figure 8: Capacitance variations

C
(pF)

10³

10²

10¹

f = 1 MHz

Coss
CRSS

10⁻¹

10⁻¹

10⁻¹

10⁻¹

10⁰

10¹

10²

Vos (V)

Figure 10: Normalized V_{(BR)DSS} vs temperature

V_{(BR)DSS} (norm.)

1.12

I_D = 1 mA

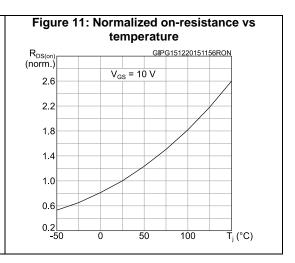
1.08

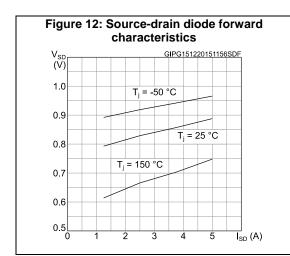
1.04

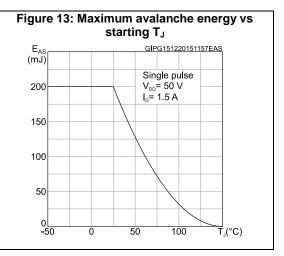
1.00

0.96

0.92


0.88


-50


0 50

100

T_j (°C)

Test circuits STF7LN80K5

3 **Test circuits**

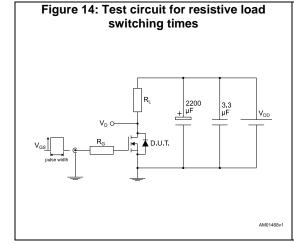


Figure 15: Test circuit for gate charge behavior 1 kΩ ⊥ 100 nF I_G= CONST 2.7 kΩ 47 kΩ

Figure 16: Test circuit for inductive load switching and diode recovery times

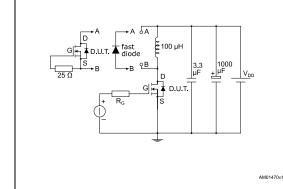
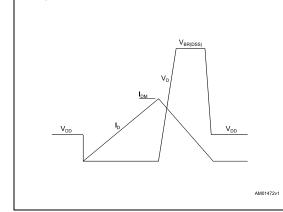
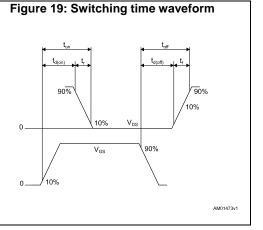




Figure 17: Unclamped inductive load test circuit

Figure 18: Unclamped inductive waveform

AM01471v1

STF7LN80K5 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP package information

Figure 20: TO-220FP package outline

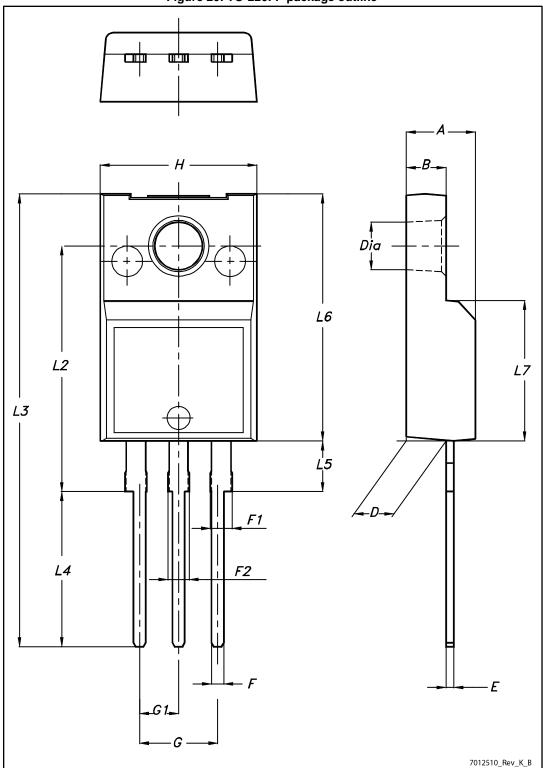


Table 10: TO-220FP package mechanical data

Di	mm			
Dim.	Min.	Тур.	Max.	
А	4.4		4.6	
В	2.5		2.7	
D	2.5		2.75	
Е	0.45		0.7	
F	0.75		1	
F1	1.15		1.70	
F2	1.15		1.70	
G	4.95		5.2	
G1	2.4		2.7	
Н	10		10.4	
L2		16		
L3	28.6		30.6	
L4	9.8		10.6	
L5	2.9		3.6	
L6	15.9		16.4	
L7	9		9.3	
Dia	3		3.2	

Revision history STF7LN80K5

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
15-Dec-2015	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

