N-Channel Power MOSFET 600 V, 8.5 Ω

Features

- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ABSOLUTE I	MAXIMUM RAT	TINGS (TJ	= 25°C un	less othe	erwise no	oted)

Parameter	Symbol	NDD	NDT	Unit
Drain-to-Source Voltage	V _{DSS}	60	00	V
Continuous Drain Current $R_{\theta JC}$ Steady State, $T_C = 25^{\circ}C$ (Note 1)	Ι _D	1.5	0.4	А
Continuous Drain Current $R_{\theta JC}$ Steady State, $T_C = 100^{\circ}C$ (Note 1)	۱ _D	1.0	0.25	A
Pulsed Drain Current, $t_p = 10 \ \mu s$	I _{DM}	6.0	1.5	А
Power Dissipation – $R_{\theta JC}$ Steady State, $T_C = 25^{\circ}C$	P _D	46	2.5	W
Gate-to-Source Voltage	V _{GS}	±30 V		V
Single Pulse Drain-to-Source Avalanche Energy (I _{PK} = 1.0 A)	EAS	13 mJ		mJ
Peak Diode Recovery (Note 2)	dv/dt	4.5		V/ns
Source Current (Body Diode)	۱ _S	1.5	0.4	А
Lead Temperature for Soldering Leads	ΤL	26	60	°C
Operating Junction and Storage Temperature	T _J , T _{STG}	–55 to +150 °C		°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

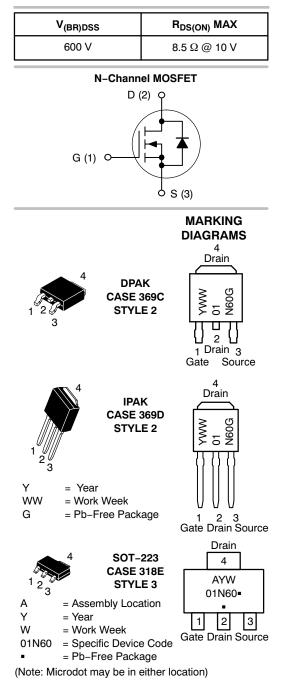
1. Limited by maximum junction temperature

2. I_S = 1.5 A, di/dt \leq 100 A/µs, V_{DD} \leq BV_{DSS}

THERMAL RESISTANCE

Paramete	Symbol	Value	Unit	
Junction-to-Case (Drain)	$R_{\theta JC}$	2.7	°C/W	
(No	Note 4) NDD01N60 te 3) NDD01N60-1 Note 4) NDT01N60 Note 5) NDT01N60	R _{θJA}	38 96 58 141	°C/W

3. Insertion mounted.


4. Surface-mounted on FR4 board using 1" sq. pad size (Cu area = 1.127" sq. [2 oz] including traces).

 Surface-mounted on FR4 board using minimum recommended pad size (Cu area = 0.026" sq. [2 oz]).

ON Semiconductor®

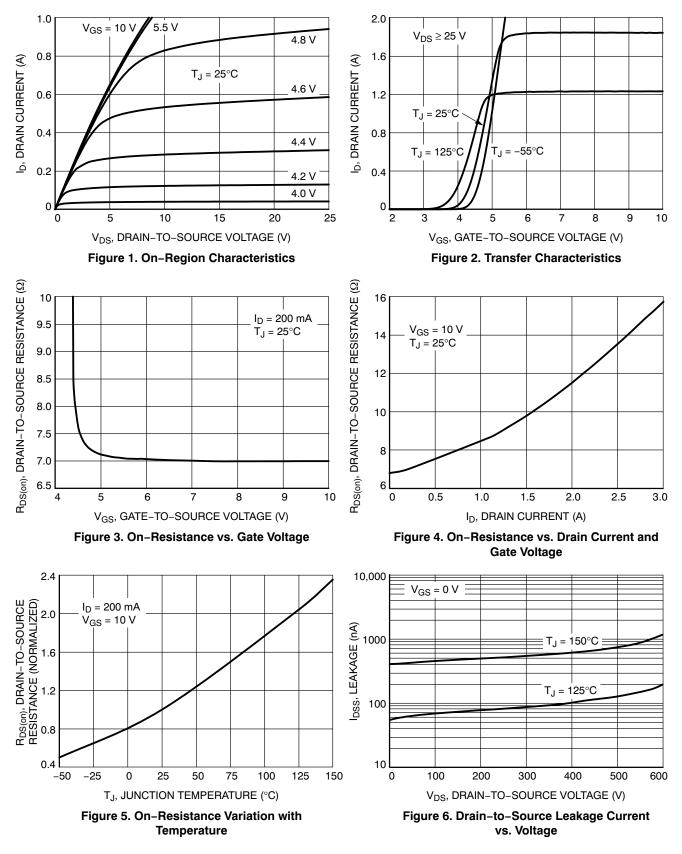
http://onsemi.com

ORDERING INFORMATION

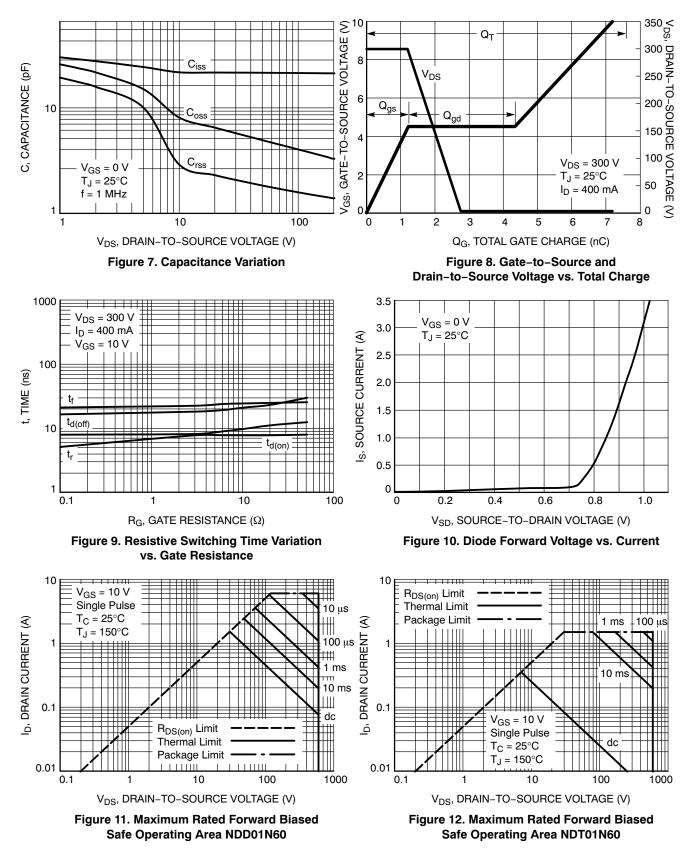
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (1	$T_J = 25^{\circ}C$ unless otherwise noted)
-------------------------------	---

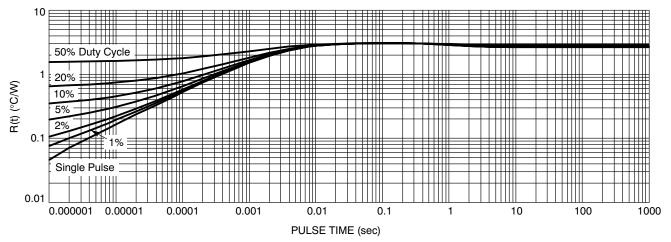
Characteristic	Symbol	Test Condition	IS	Min	Тур	Max	Unit
OFF CHARACTERISTICS					-	-	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1	mA	600			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	Reference to 25°C, I _D	= 1 mA		660		mV/°C
Drain-to-Source Leakage Current	I _{DSS}	V_{DS} = 600 V, V_{GS} = 0 V	T _J = 25°C			1	μΑ
			T _J = 125°C			50	
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = ±20 V				±100	nA
ON CHARACTERISTICS (Note 6)					-	-	
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}, I_D = 5$	0 μΑ	2.2	3.3	3.7	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				7.0		mV/°C
Static Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 0	.2 A		8.0	8.5	Ω
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D = 0	.2 A		0.9		S
CHARGES, CAPACITANCES & GATE R	ESISTANCES					-	
Input Capacitance (Note 7)	C _{iss}				160		pF
Output Capacitance (Note 7)	C _{oss}	V _{DS} = 25 V, V _{GS} = 0 V,	f = 1 MHz		22		
Reverse Transfer Capacitance (Note 7)	C _{rss}						
Total Gate Charge (Note 7)	Qg				7.2		nC
Gate-to-Source Charge (Note 7)	Q _{gs}				1.2		
Gate-to-Drain Charge (Note 7)	Q _{gd}	V _{DS} = 300 V, I _D = 0.4 A, V _{GS} = 10 V			3.1		
Plateau Voltage	V _{GP}				4.5		V
Gate Resistance	Rg				6.7		Ω
SWITCHING CHARACTERISTICS (Note	8)					-	
Turn-on Delay Time	t _{d(on)}				8.0		ns
Rise Time	t _r	V _D = 300 V, I _D = 0	.4 A,		5.1		
Turn-off Delay Time	t _{d(off)}	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 0$ $V_{GS} = 10 \text{ V}, \text{ R}_{G} =$	0Ω ⁰		16.5		
Fall Time	t _f				21.3		
DRAIN-SOURCE DIODE CHARACTERI	STICS						
Diode Forward Voltage	V _{SD}		T _J = 25°C		0.78	1.6	V
		I _S = 0.4 A, V _{GS} = 0 V	T _J = 125°C		0.63		
Reverse Recovery Time	t _{rr}				179		ns
Charge Time	ta	V _{GS} = 0 V, V _{DD} = 5	30 V		37		
Discharge Time	t _b	$I_{\rm S} = 1.0 \text{ A}, d_i/d_t = 100 \text{ A}/\mu \text{s}$			141		
Reverse Recovery Charge	Q _{rr}			288		nC	


Guaranteed by design.
Switching characteristics are independent of operating junction temperatures.

ORDERING INFORMATION


Device	Package	Shipping [†]		
NDD01N60-1G	IPAK (Pb-Free, Halogen-Free)	75 Units / Rail		
NDD01N60T4G	DPAK (Pb-Free, Halogen-Free)	2500 / Tape & Reel		
NDT01N60T1G	SOT-223 (Pb-Free, Halogen-Free)	1000 / Tape & Reel		

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

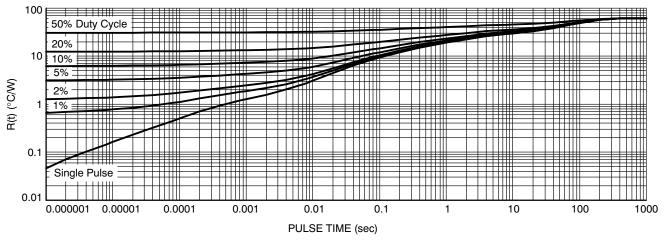
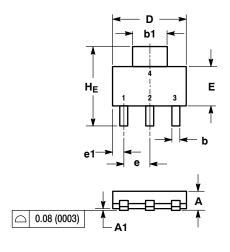
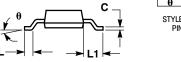
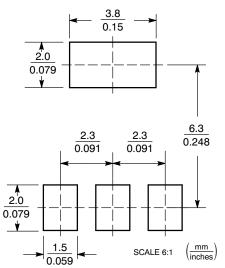



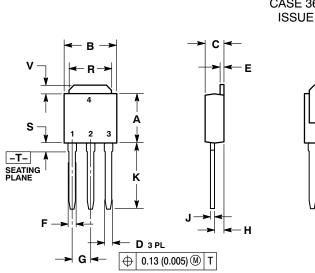
Figure 14. Thermal Impedance (Junction-to-Ambient) for NDT01N60


PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE N


NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCH.

	м	ILLIMETE	RS	INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20		-	0.008		_
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	-	10°	0°	-	10°


Style 3: Pin 1. gate 2. drain 3. source 4. drain

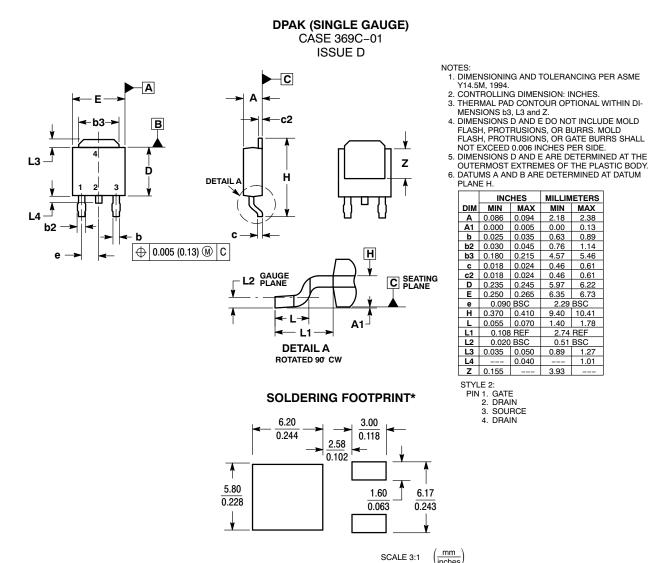
SOLDERING FOOTPRINT

PACKAGE DIMENSIONS

IPAK

CASE 369D ISSUE C

۲


z

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES MILLIN			IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
в	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	BSC	2.29	BSC	
н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
к	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
V	0.035	0.050	0.89	1.27	
Z	0.155		3.93		
STYLE 2: PIN 1. GATE					

1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture

of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Mounting Techniques Reference Manual, SOLDERRM/D.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

2.38

0.13

0.89

1.14

5.46

0.61

0.61

6.22

6.73

1.78

1.27

1.01

BSC

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative