COMBO CODEC The KT3064 (μ -law), is monolithic PCM CODEC/FILTERS utilizing the A/D and D/A conversion, a serial PCM interface. The devices are fabricated using double-poly CMOS process. The device feature an additional receive power amplifier to provide push-pull balanced output drive capability. The receive gain can be adjusted by means of two external resistors for an output level of up to ± 6.6 V across a balanced 600 Ω load. The Analog Loopback switch and $\overline{\text{TS}}_{x}$ output is also included. ### **FEATURES** - μ-law compatible - Meets or exceeds all D3/D4 and CCITT specifications - ±5V operation - · Low operating power: typically 70mW - · Active RC noise filters - · Power-down standby mode: typically 3mW - Automatic power-down - · Transmit high-pass and low-pass filtering - · Internal precision voltage reference - · Serial I/O interface - · Internal auto-zero circuitry - . TTL or CMOS compatible digital interface - . Maximizes line interface card circuit density ## **BLOCK DIAGRAM** ## **ABSOLUTE MAXIMUM RATINGS** | Characteristic | Symbol | Value | Unit | |--|-----------------|-------------------------------------|------| | V _{cc} to GNDA | V _{cc} | 7 | V | | V _{BB} to GNDA | V _{BB} | - 7 | ٧ | | Voltage at Any Analog Input or Output | Analoge I/O | $V_{CC} + 0.3$ to $V_{BB} - 0.3$ | v | | Voltage at Any Digital Input or Output | Digital I/O | V _{cc} + 0.3 to GNDA - 0.3 | ٧ | | Operating Temperature Range | Ta | - 25 ~ + 125 | °C | | Storage Temperature Range | Ts | − 65 ~ + 150 | °C | | Lead Temperature Soldering, 10 secs) | TL | 300 | °C | ## **ELECTRICAL CHARACTERISTICS** (Unless otherwise noted: $V_{CC}=5.0V\pm5\%$, $V_{BB}=-5V\pm5\%$, GNDA = 0V, $Ta=0^{\circ}C$ to $70^{\circ}C$; typical characteristics specified at $V_{CC}=5.0V$, $Ta=25^{\circ}C$; all signals are referenced to GNDA) | Characteristic | Symbol | Test Condition | Min | Тур | Max | Unit | |--|-------------------|--|------------|------|-------------------|------| | Power Dissipation | · | | | | | | | Active Current | l _{cc} 1 | Power amplifiers active, VPI = 0V | | 7.0 | 10.0 | mA | | Active Current | I _{BB} 1 | Power amplifiers active, VPI = 0V | | 7.0 | 10.0 | mA | | Power-Down Current | Icco | | | 0.5 | 1.5 | mA | | Power-Down Current | I _{BBO} | | | 0.05 | 0.3 | mA | | Digital Interface | | | | | | | | Input Low Current | lıL | GNDA≤V _{IN} ≤V _{IL} , All digital inputs | - 10 | - | 10 | μА | | Input High Current | I _H | $V_{iH} \leq V_{iN} \leq V_{CC}$ | - 10 | | 10 | μΑ | | Output Current in High Impedance State (TRI-STATE) | loz | D_{x} , $GNDA \leq V_{0} \leq V_{CC}$ | - 10 | | 10 | μА | | Input Low Voltage | VIL | | | | 0.6 | V | | Input High Voltage | V _{IH} | | 2.2 | | | ٧ | | Output Low Voltage | V _{OL} | $\begin{array}{l} D_{X,}\ l_{L}=3.2mA\\ SIG_{R},\ l_{L}=1.0mA\\ \overline{T_{SX}},\ l_{L}=3.2mA,\ Open\ Drain \end{array}$ | | | 0.4
0.4
0.4 | V | | Output High Voltage | V _{OH} | D_X , $I_H = -3.2 \text{mA}$
SIG _R , $I_H = -1.0 \text{mA}$ | 2.4
2.4 | | | V | | Analog Interface with Transmit | Input Amp | lifier | | | | | | Input Leakage Current | IıXA | $-2.5V \le V \le +2.5V$, VF _x I + or VF _x I - | - 200 | | 200 | nA | | Input Resistance | R _I XA | $-2.5V \le V \le +2.5V$, $VF_XI + \text{ or } VF_XI -$ | 10 | | | ΜΩ | | Output Resistance | R _o XA | Closed loop, unity gain | | 1 | 3 | ΜΩ | | Load Resistance | R _L XA | GS _x | 10 | | | ΚΩ | | Load Capacitance | CLXA | GS _x | | | 50 | pF | | Output Dynamic Range | VoXA | GS_X , $R_L \ge 10K\Omega$ | ± 2.8 | | | V | # **ELECTRICAL CHARACTERISTICS** (Continued) | Characteristic | Symbol | Test Conditions | Min | Тур | Max | Unit | |---|--------------------|---|----------|-------------------------|--------------------|-------------------| | Voltage Gain | A _V XA | VF _x I + to GS _x | 5000 | | | V/V | | Unit-Gain Bandwidth | F _U XA | | 1 | 2 | | MHz | | Offset Voltage | VosXA | | - 20 | | 20 | mV | | Common-Mode Voltage | V _{CM} XA | CMRRXA > 60dB | - 2.5 | | 2.5 | ٧ | | Common-Mode Rejection Ratio | CMRRXA | DC Test | 60 | | | dB | | Power Supply Rejection Ratio | PSRRXA | DC Test | 60 | | | dB | | Analog Interface with Receive F | ilter (All De | evices) | <u> </u> | | | | | Output Resistance | RoRF | Pin VF _R O | | 1 | 3 | Ω | | Output DC Offset Voltage | VOS _R O | Measure from VF _R O to GND A | - 200 | | 200 | mV | | Load Resistance | RLRF | VF ₈ O = ± 2.5V | 10 | | | ΚΩ | | Load Capacitance | CLRF | Connect from VF _R O to GND A | | | 25 | рF | | Analog Interface with Power Am | plifiers (Al | l Devices) | | | | | | Input Leakage Current | IPI | -1.0V≤VPI≤1.0V≤VPI≤1.0V | - 100 | | 100 | nA | | Input Resistance | RIPI | - 1.0V≤VPI≤1.0V | 10 | | | МΩ | | Input Offset Voltage | VIos | | - 25 | | 25 | m۷ | | Output Resistance | ROP | Inverting unity gain at VPO + or VPO - | | 1 | | Ω | | Unit-Gain Bandwidth | Fc | Open loop (VPO -) | | 400 | | KHz | | Load Capacitance | C _{LP} | $\begin{array}{lll} R_L \geq 1500\Omega & VPO + \text{ or} \\ R_L = 600\Omega & VPO - \text{ to} \\ R_L = 300\Omega & GNDA \end{array}$ | | | 100
500
1000 | pF
pF
pF | | Gain from VPO - to VPO+ | GA _P + | $R_L = 300\Omega \text{ VPO} + \text{ to GNDA level at}$
VPO - = -1.77Vrms (+3dBmo) | | -1 | | V/V | | Power Supply Rejection of V _{CC} or V _{BB} | PSRR₽ | VPO - connected to VPI
0KHz - 4KHz
0KHz - 50KHz | 60
36 | | | dB
dB | | Frequency of Master Clock | l/t _{PM} | Depends on the device used and the BCLK _R /CLKSEL Pin MCLK _x and MCLK _n | | 1.536
1.544
2.048 | j | MHz
MHz
MHz | | Width of Master Clock High | t _{wm} | MCLK _x and MCLK _R | 160 | | | ns | | Width of Master Clock Low | t _{wm} L | MCLK _x and MCLK _R | 160 | | | ns | | Rise Time of Master Clock | t _{RM} | MCLK _x and MCLK _R | | | 50 | ns | | Fall Time of Master Clock | t _{FM} | MCLK _X and MCLK _R | | | 50 | ns | | Set-Up Time from BCLK _x High
(and FS _x in Long Frame Sync
Mode) to MCLK _x Falling Edge | t _{sbfm} | First bit clock after the leading edge of FS _x | 100 | | | ns | | Period of Bit Clock | t _{PB} | | 485 | 488 | 15,725 | ns | | Width of Bit Clock High | t _{wbH} | V _{IH} = 2.2V | 160 | | | ns | | Width of Bit Clock Low | t _{wsL} | V _{IL} = 0.6V | 160 | | | ns | | Rise Time of Bit Clock | t _{RB} | t _{PB} = 480ns | | | 50 | ns | | Fall Time of Bit Clock | t _{FB} | t _{PB} = 488ns | | | 50 | ns | # **ELECTRICAL CHARACTERISTICS** (Continued) | Characteristic | Symbol | Test Conditions | Min | Тур | Max | Unit | |--|-------------------|--|-----|-----|-----|------| | Holding Time from Bit Clock
Low to Frame Sync | t _{HBF} | Long frame only | 0 | | | ns | | Holding Time from Bit Clock
High to Frame Sync | t _{HOLD} | Short frame only | 0 | • | | ns | | Set-Up Time for Frame Sync to Bit Clock Low | t _{SFB} | Long Frame Only | 80 | | | ns | | Delay Time from BCLK _x High to Data Valid | toeo | Load = 150pF plus 2 LSTTL loads | 0 | | 180 | ns | | Delay Time to TS _x Low | t _{XDP} | Load = 150pF plus 2 LSTTL loads | | | 140 | ns | | Delay Time from BCLK _x Low to Data Output Disabled | toec | | 50 | | 165 | ns | | Delay Time to Valid Data from FS _x or BCLK _x , whichever Comes Later | toze | C _L = 0pF to 150pF | 20 | | 165 | ns | | Set-Up Time from D _R Valid to BCLK _{R/X} Low | t _{SDB} | | 50 | | | ns | | Hold Time from BCLK _{R/X} Low to D _R Invalid | I _{HBD} | | 50 | | | ns | | Delay Time from BCLK _{R/X} Low to SIG _R Valid | torssr | Load = 50pF plus 2 LSTTL loads | | | 300 | ns | | Set-Up Time from FS _{X/R} to BCLK _{X/R} Low | t _{SF} | Short frame sync pulse (1 or 2 bit clock periods long)(Note 1) | 50 | | | ns | | Hold Time from BCLK _{X/R} Low to FS _{X/R} Low | t _{HF} | Short frame sync pulse (1 or 2 bit clock periods long)(Note 1) | 100 | | | ns | | Hold Time from 3rd Period of
Bit Clock Low to Frame Sync
(FS _x of FS _B) | t _{HBFI} | Long frame sync pulse (from 3 to 8 bit clock periods long) | 100 | | | ns | | Minimum Width of the Frame
Sync Pulse (Low Level) | t _{WFL} | 64K bit/s operating mode | 160 | | | ns | Note 1: For short frame sync timing, FS_x and FS_B must go high while their respective bit clocks are high. # PIN CONFIGURATION # PIN DESCRIPTION | Pin | Name | Function | |-----|-------------------------------|---| | 1 | VPO+ | The non-inverted output of the receive power amplifier. | | 2 | GNDA | Analog ground. All signals are referenced to this pin. | | 3 | VPO- | The inverted output of the receive power amplifier. | | 4 | VPI | Inverting input to the receive power amplifier. Also powers down both amplifiers when connected to V_{BB} . | | 5 | VF _R O | Analog output of the receive filter. | | 6 | V _{cc} | Positive power supply pin $V_{CC} = +5V \pm 5\%$. | | 7 | FS _R | Receive frame sync pulse which enables BCLK _R to shift PCM data into D _R , FS _R is an 8KHz pulse train. (refer to Fig 2 and 3 for timing details) | | 8 | D _R | Receive data input. PCM data is shifted into D_{R} following the FS _R leading edge. | | 9 | BCLK _E /
CLKSEL | The bit clock which shifts data into D _R after the FS _R leading edge. May vary from 64KHz to 2.048MHz. Alternatively, may be a logic input which selects either 1.536MHz/1.544MHz or 2.048MHz for master clock in synchronous mode and BCLK _X is used for both transmit and receive directions. (see Table 1) | | 10 | MCLK _R /
PDN | Receive master clock. Must be 1.536MHz or 2.048MHz. May be asynchronous with MCLK _x , but should be synchronous with MCLK _x for best performance. When MCLK _R is connected continuously low, MCLK _x is selected for all internal timing. When MCLK _R is connected continuously high, the device is powered down. | | 11 | MCLK _x | Transmit master clock. Must be 1.536MHz, 1.544MHz or 2.048MHz. May be asynchronous with MCLK ₈ . | | 12 | BCLK _x | The bit clock which shifts out the PCM data on D _x . May vary from 64KHz to 2.048MHz, but must be synchronous with MCLK _x . | | 13 | D _x | The TRI-STATE PCM data output which is enabled by FS _x . | | 14 | FS _x | Transmit frame sync pulse input which enables $BCLK_x$ to shift out the PCM data a on D_x , FS_x is an 8KHz pulse train. (refer to Fig 2, 3) | | 15 | TS _x | Open drain output which pulses low during the encoder time slot. | | 16 | ANLB | Analog loopback control input. Must be set to logic '0' for normal operation. When pulled to logic '1', the transmit filter input is dis connected from the output of the preamplifier and connected to the VPO+ output of the receive power, amplifier. | | 17 | GS _x | Analog output of the transmit input amplifier. Used to externally set again. | | 18 | VF _x I- | Inverting input of the transmit input amplifier. | | 19 | VF _x I+ | Non-inverting input of the transmit input amplifier. | | 20 | V _{BB} | Negative power supply pin $V_{BB} = -5V \pm 5\%$. | ## **FUNCTIONAL DESCRIPTION** #### **POWER-UP** When power is first applied, power-on reset circuitry initializes the COMBO and places it into the power-down mode. All non-essential circuits are deactivated and the D_X , VF_RO , VPO — and VPO + outputs are put in high impedance states. To power-up the device, a logical low level or clock must be applied to the MCLK_R/PDN pin and FS_X and/or FS_R pulses must be present. Thus, 2-power-down control modes are available. The first is to pull the MCLK_R/PDN pin high; the alternative is to hold both FS_X and FS_R inputs continuously low-the device will power-down approximately 2ms after the last FS_X or FS_R pulse. Power-up will occur on the first FS_X or FS_R pulse. The TRI-STATE PCM data output, D_X , will remain in the high impedance state until the second FS_X pulse. #### SYNCHRONOUS OPERATION For synchronous operation, the same master clock and bit clock should be used for both the transmit and receive directions. In this mode, a clock must be applied to MCLK_x and the MCLK_n/PDN pin can be used as a power-down control. A low level on MCLK_n/PDN powers up the device and a high level powers down the device. In either case, MCLK_x will be selected as the master clock for both the transmit and receive circuits. A bit clock must also be applied to BCLK_x and the BCLK_n/CLKSEL can be used to select the proper internal divider for a master clock of 1.536MHz, 1.544MHz or 2.048MHz. For 1.544MHz operation, the device automatically compensates for the 193rd clock pulse each frame. With a fixed level on the BCLK_R/CLKSEL pin, BCLK_X will be selected as the bit clock for both the transmit and receive directions. In synchronous mode, the bit clock, BCLK_X, may be from 64KHz to 2.048MHz, but must be synchronous with MCLK_X. Each FS_X pulse begins the encoding cycle and the PCM data from the previous encode cycle is shifted out of the enabled D_X output on the positive edge of BCLK_X. After 8 bit clock periods, the TRI-STATE D_X output is returned to a high impedance state. With an FS_R pulse, PCM data is latched via the D_R input on the negative edge of BCLK_X (or BCLK_R if running). FS_X and FS_R must be synchronous with MCLK_{X/R}. **TABLE 1. Selection of Master Clock Frequencies** | BCLK _R /CLKSEL | Master Clock Frequency Selected | |---------------------------|---------------------------------| | Clocked | 1.536MHz or 1.544MHz | | 0 . | 2.048MHz | | 1 (or Open Circuit) | 1.544MHz | #### **ASYNCHRONOUS OPERATION** For asynchronous operation, separate transmit and receive clocks maybe applied. $MCLK_R$ and $MCLK_R$ must be 1.536MHz, 1.544MHz for the KT3064, and need not be synchronous. For best transmission performance, however, $MCLK_R$ should be synchronous with $MCLK_X$, which is easily achieved by applying only static logic levels to the $MCLK_R$ /PDN pin. This will automatically connect $MCLK_X$ to all internal $MCLK_R$ functions (refer to pin description). For 1.544MHz operation, the device automatically compensates for the 193rd clock pulse each frame. FS_x starts each encoding cycle and must be synchronous with MCLK_x and BCLK_x. FS_R starts each decoding cycle and must be synchronous with BCLK_R, BCLK_R must be a clock. BCLK_x and BCLK_R many operate from 64KHz to 2.048MHz. #### SHORT FRAME SYNC OPERATION The COMBO can utilize either a short frame sync pulse or a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, both frame sync pulses, FS_X and FS_R , must be one bit clock period long (refer to Fig. 2). With FS_X high during a falling edge of $BCLK_X$, the next rising edge of $BCLK_X$ enables the D_X TRI-STATE output buffer, which will output the sign bit. The following seven rising edge disables the D_X output. With FS_R high during a falling edge of $BCLK_R$ ($BCLK_X$ in synchronous mode), the next falling edge of $BCLK_R$ latches in the sign bit. The following seven falling edges latch in the seven remaining bits. Both devices may utilize the short frame sync pulse in synchronous or asynchronous operating mode. ## LONG FRAME SYNC OPERATION To use the long (KT5116-type) frame mode, both the frame sync pulses, FS_x and FS_h , must be three or more bit clock periods long (refer to Fig. 3). Based on the transmit frame sync, FS_x , the COMBO will sense whether short or long frame sync pulses are being used. For 64KHz operation, the frame sync pulse must be kept low for a minimum of 160ns. The D_x TRI-STATE output buffer is enabled with the rising edge of FS_x or the rising edge of $BCLK_x$, whichever comes later, and the first bit clocked out is the sign bit. The following seven $BCLK_x$ rising edges clock out the remaining seven bits. The D_x output is disabled by the falling $BCLK_x$ edge following the eight falling edges of $BCLK_x$ in synchronous mode). Both devices may utilize the long frame sync pulse in synchronous or asynchronous mode. #### TRANSMIT SECTION The transmit section input is an operational amplifier with provision for gain adjustment using two external resistors. The low noise and wide bandwidth allow gains in excess of 20dB across the audio passband to be realized. The OP amp drives a unity-gain filter consisting of RC active pre-filter, followed by an eighth order switched-capacitor bandpass filter clocked at 256KHz. The output of this filter directly drives the encoder sample-and-hold circuit. The A/D is of companding type according to μ-law (KT3064) coding conventions. A precision voltage reference is trimmed in manufacturing to provide an input overload (t_{max}) of nominally 2.5V peak. The FS_x frame sync pulse controls the sampling of the filter output, and then the successive-approximation encoding cycle begins. The 8-bit code is then loaded into a buffer and shifted out through D_x at the next FS_x pulse. The total encoding delay will be approximately 165μs (due to the transmit filter) plus 125μs (due to encoding delay), which totals 290μs. Any offset voltage due to the filters or comparator is cancelled by sign bit integration. #### RECEIVE SECTION The receive section consists of an expanding DAC which drives a fifth order switched-capacitor low pass filter clocked at 256KHz. The decoder is μ -law (KT3064) and 5th order low pass filter corrects for the sin x/x attenuation due to the 8KHz sample/hold. The filter is then followed by a 2nd order RC active post-filter with its output at VF_RO. The receive section is unity-gain, but gain can be added by using the power amplifiers. Upon the occurrence of FS_R, the data at the D_R input is clocked in on the falling edge of the next eight BCLK_R (BCLK_x) periods. At the end of the decoder time slot, the decoding cycle begins, and 10μ s later the decoder DAC output is updated. The total decoder delay is 210μ s (decoder update) plus 110μ s (filter delay) plus 62.5μ s (1/2 frame), which gives approximately 180 μ s. #### RECEIVE POWER AMPLIFIERS Two inverting mode power amplifiers are provided for directly driving a matched line interface transformer. The gain of the first power amplifier can be adjusted to boost the ± 2.5 V peak output signal from the receive filter upto ± 3.3 V peak into an unbalanced 300Ω load, or ± 4.0 V into an unbalanced 15K Ω load. The second power amplifier is internally connected in unity-gain inverting mode to give 6dB of signal gain for balanced loads. Maximum power transfer to a 600Ω subscriber line termination is obtained by differently driving a balanced transformer with a $\sqrt{2:1}$ turns ratio, as shown in Fig. 2. A total peak power of 15.6dBm can be delivered to the load plus termination. Both power amplifiers can be powered down independently from the PDN input by connecting the VPI input to V_{BB} , saving approximately 12mW of power. ## **ENCODING FORMAT AT Dx OUTPUT** | V _{IN} = + Full - Scale | 1000000 | |----------------------------------|----------| | V _{IN} = 0V | 1111111 | | | 01111111 | | V _{IN} = - Full - Scale | 0000000 | # TRANSMISSION CHARACTERISTICS (Unless otherwise specified: Ta=0°C to 70°C, $V_{CC}=5V\pm5\%$, $V_{BB}=-5V\pm5\%$, GNDA=0V, f=1.02KHz, $V_{IN}=0$ dBm0 transmit input amplifier connected for unity-gain non-inverting.) | Characteristic | Symbol | Test Condition | Min | Тур | Max | Unit | |--|------------------|---|------------------------------------|--------|--|--| | Amplitude Response | | | | | | | | Absolute Levels | | Nominal 0dBm0 level is 4dBm (600Ω) 0dBm0 | | 1.2276 | | Vrms | | Max Transmit Overload Level | t _{MAX} | Max transmit overload level (3.17dBm0) | | 2.501 | | V _{PK} | | Transmit Gain, Absolute | G _{XA} | Ta = 25°C, V_{CC} = 5V, V_{BB} = -5V
Input at GS_X = 0dBm0 at 1020Hz | - 0.15 | | 0.15 | dB | | Transmit Gain, Relative to $G_{\scriptscriptstyle XA}$ | G _{XR} | f = 16Hz
f = 50Hz
f = 60Hz
f = 200Hz
f = 300Hz - 3000Hz
f = 3300Hz
f = 3400Hz
f = 4600Hz
f = 4600Hz and up, measure
Response from 0Hz to 4000Hz | - 1.8
- 0.15
- 0.35
- 0.7 | | - 40
- 30
- 26
- 0.1
0.15
0.05
0
- 14
- 32 | dB
dB
dB
dB
dB
dB
dB | | Absolute Transmit Gain Variation with Temperature | G _{XAT} | Ta = 0°C to 70°C | | | ± 0.1 | dB | | Absolute Transmit Gain Variation with Supply Voltage | G _{XAV} | $V_{CC} = 5V \pm 5\%, V_{BB} = -5V \pm 5\%$ | | | ± 0.05 | dB | | Transmit Gain Variations with
Level | G _{XRL} | Sinusoidal test method Reference level = $-10dBm0$ VF _x l + = $-40dBm0$ to $+3dBm0$ VF _x l + = $-50dBm0$ to $-40dBm0$ VF _x l + = $-55dBm0$ to $-50dBm0$ | - 0.2
- 0.4
- 1.2 | | 0.2
0.4
1.2 | dB
dB
dB | | Receive Gain, Absolute | G _{RA} | $Ta = 25$ °C, $V_{CC} = 5V$, $V_{BB} = -5V$
Input = Digital code sequence for 0dBm0 signal at 1020Hz | - 0.15 | | 0.15 | dB | | Receive Gain, Relative to G _{RA} | G _{RR} | f = 0Hz to 3000Hz
f = 3300Hz
f = 3400Hz
f = 4000Hz | - 0.15
- 0.35
- 0.7 | | 0.15
0.05
0
- 14 | dB
dB
dB
dB | | Absolute Receive Gain Variation with Temperature | GRAT | Ta=0°C to 70°C | | | ± 0.1 | dB | | Absolute Receive Gain Variation with Supply Voltage | G _{RAV} | $V_{CC} = 5V \pm 5\%, \ V_{BB} = -5V \pm 5\%$ | | | ± 0.05 | dB | | Receive Gain Variations with Level | GRRL | Sinusoidal test method; reference input PCM code corresponds to an ideally encoded—10dBm0 signal PCM level = -40dBm0 to +3 dBm0 PCM level = -50dBm0 to -40dBm0 PCM level = -55dBm0 to -50dBm0 | | | 0.2
0.4
1.2 | dB
dB
dB | | Receive Filter Output at VF _B O | V _{RO} | $R_L = 10K\Omega$ | - 2.5 | | 2.5 | ٧ | # TRANSMISSION CHARACTERISTICS (Continued) | Characteristic | Symbol | Test Condition | Min | Тур | Max | Unit | |--|-------------------|--|----------------|---|--|--| | Envelope Delay Distortion with Fre | quency | 1 | | L | L | | | Transmit Delay, Absolute | D _{XA} | f = 1600Hz | | 290 | 315 | μS | | Transmit Delay, Relative to D_{XA} | D _{XR} | f = 500Hz - 600Hz
f = 600Hz - 800Hz
f = 800Hz - 1000Hz
f = 1000Hz - 1600Hz
f = 1600Hz - 2600Hz
f = 2600Hz - 2800Hz
f = 2800Hz - 3000Hz | | 195
120
50
20
55
80
130 | 220
145
75
40
75
105
155 | μS
μS
μS
μS
μS
μS
μS | | Receive Delay, Absolute | D _{RA} | f = 1600Hz | | 180 | 200 | μS | | Receive Delay, Relative to DRA | D _{RR} | f = 500Hz - 1000Hz
f = 1000Hz - 1600Hz
f = 1600Hz - 2600Hz
f = 2600Hz - 2800Hz
f = 2800Hz - 3000Hz | - 40
- 30 | - 25
- 20
70
100
145 | 90
125
175 | μS
μS
μS
μS | | Noise | | | | | | | | Transmit Noise, C Message
Weighted | N _{xc} | VF _x I + = 0V | | 12 | 15 | dBmCO | | Receive Noise, C Message
Weighted | N _{RC} | PCM code equals alternating positive and negative zero | | 8 | 11 | dBrnCO | | Noise, Single Frequency | N _{RS} | f = 0KHz to 100KHz, loop around measurement, VF _x I + = 0Vrms | | | - 53 | dBm0 | | Positive Power Supply Rejection,
Transmit | PPSR _x | $VF_xI + = 0Vrms$,
$V_{CC} = 5.0V_{DC} + 100mVrms$
f = 0KHz - 50KHz | 40 | | | dBC | | Negative Power Supply Rejection,
Transmit | NPSR _x | $VF_XI + = 0Vrms$,
$V_{BB} = -5.0V_{DC} + 100mVrms$
f = 0KHz - 50KHz | 40 | | | dBC | | Positive Power Supply Rejection,
Receive | PPSR _R | PCM code equals positive zero $V_{\rm CC} = 5.0V_{\rm DC} + 100 mV rms$ $f = 0 Hz - 4000 Hz$ $f = 4 KHz - 25 KHz$ $f = 25 KHz - 50 KHz$ | 40
40
36 | | | dBC
dB
dB | | Negative Power Supply Rejection,
Receive | NPSR _R | PCM code equals positive zero $V_{BB} = -5.0V_{DC} + 100 \text{mVrms}$ $1 = 0 \text{Hz} - 4000 \text{Hz}$ $1 = 4 \text{KHz} - 25 \text{KHz}$ $1 = 25 \text{KHz} - 50 \text{KHz}$ | 40
40
36 | | | dBC
dB
dB | # TRANSMISSION CHARACTERISTICS (Continued) | Characteristic | Symbol | Test Condition | Min | Тур | Max | Unit | |---|-------------------|--|----------------------------------|------|----------------------|--| | Spurious Out-of-Band Signals
at the Channel Output | sos | Loop around measurement, 0dBm0, 300Hz – 3400Hz input applied to VF _x I + , measure individual image signals at VF _R O 4600Hz – 7600Hz 7600Hz – 8400Hz 8400Hz – 100,000Hz | | | - 32
- 40
- 32 | dB
dB
dB | | Distortion | | | • | | | | | Signal to Total Distortion | STD _x | Sinusoidal test method | | | | | | Transmit or Receive
Half-Channel | STD _R | Level = 3.0dBm0
= 0dBm0 to 130dBm0
= - 40dBm0 XMT
RCV
= - 55dBm0 XMT
RCV | 33
36
29
30
14
15 | | | dBC
dBC
dBC
dBC
dBC
dBC | | Single Frequency Distortion,
Transmit | SFD _x | | | | - 46 | dB | | Single Frequency Distortion,
Receive | SFDR | | | | - 46 | dB | | Intermodulation Distortion | IMD | Loop around measurement, $VF_X + = -4dBm0$ to $-21dBm0$, two frequencies in the range $300Hz - 3400Hz$ | | | - 41 | dB | | Crosstalk | | | | | | | | Transmit to Receive Crosstalk | CT _{X-R} | f = 300Hz - 3400Hz
D _R = Steady PCM code | | - 90 | - 75 | dB | | Receive to Transmit Crosstalk | CT _{R-X} | f = 300Hz - 3000Hz, VF _x I = 0V | | - 90 | - 70
(Note 1) | dB | | Power Amplifiers | | | | | | | | Maximum 0dBm0 Level for
Better than ±0.1dB Linearity
Over the Range = 10dBm0 to
+3dBm0 | VoL | Balanced load, R_L connected between VPO + and VPO - $R_L = 600\Omega$ $R_L = 1200\Omega$ $R_L = 30K\Omega$ | 3.3
3.5
4.0 | | | Vrms
Vrms
Vrms | | Signal/Distortion | S/Dp | $R_L = 600\Omega$, 0dBm0 | 50 | | | dB | Note 1. $CT_{R,X}$ is measured with a -40dBm0 activating signal applied at VF_XI+ . ## APPLICATION INFORMATION #### **POWER SUPPLY** While the pins of the KT3064 are well protected against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used. All ground connections to each device should meet at a common point as close as possible to the GNDA pin. This minimizes the interaction of ground return currents flowing through a common bus impedance. $0.1\mu F$ supply decoupling capacitors should be connected from this common ground point to V_{CC} and V_{BB} . For best performance, the ground point of each CODEC/FILTER on a card should be connected to a common card ground in start formation, rather tha via a ground bus. This common ground point should be decoupled to V_{CC} and V_{BB} with $10\mu F$ capacitors. ## **APPLICATION CIRCUIT** Note 2: Receive gain = $20 \times \log(\frac{2 \times R3}{R4})$, $R4 \ge 10 \text{K}\Omega$