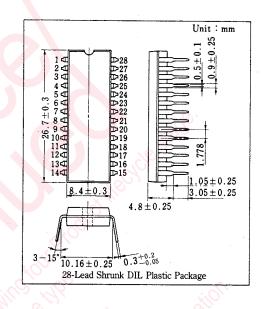
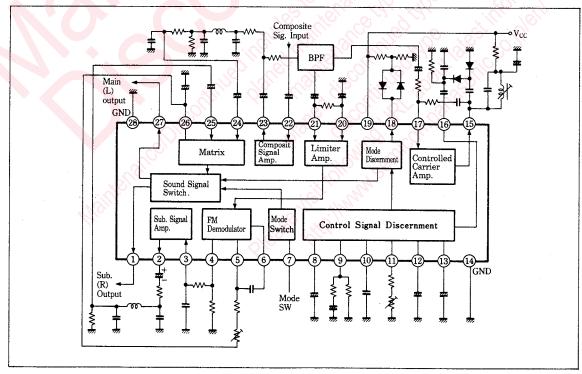
AN5826NK


TV Multiplex Sound System Demodulator Circuit

Outline

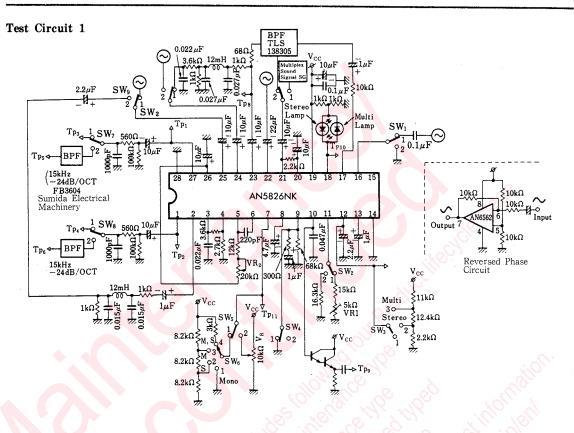

The AN5826NK is an integrated circuit designed for TV multiplex sound system demodulator circuit.

Features

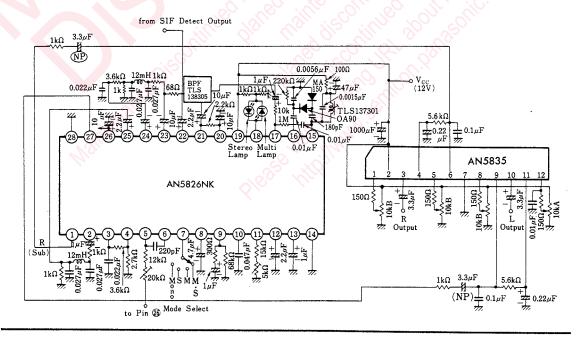
- Including multiplex sound signal processing circuit on a single chip, for easier compact set design
- Sub signal demodulator circuits free from signal adjustment
- Lead filter not required

■ Block Diagram

Pin


Pin No.	Pin Name	Pin No.	Pin Name			
1	Sub(R)Sound Signal Output	15	Controlled Sub Signal Output			
2	Sub Signal Output	16	Controlled Signal Input			
3	Sub Signal Input	17	Controlled Sub Signal Output			
4	Sub Signal Discriminator Output	18	Mode Display Output			
5	Mono Multi Oscillator	19	V _{cc}			
6	Mono Multi Oscillator	20	Filter			
7	Mode Switch Input	21	Sub Signal Input			
8	Filter	22	Composite Signal Output			
9	Sound Multiplex Discernment Filter	23	Composite Signal Output			
10	Filter	24	Main Sound Signal Input			
11	952.5Hz Oscillator	25	Sub Sound Signal Input			
12	982.5Hz Discernment Filter	26	Bias Filter			
13	Filter	27	Main(L)Sound Signal Output			
14	GND	28	GND			

Absolute Maximum Ratings(Ta=25°C)


	Item	Symbol	Rating	Unit	
Supply Voltage		V _{cc}	+14.4	v	
Circuit Current		I	76	mA .	
Power Dissipation		P_D	1 100	mW	
Temperature	Operating Ambient Temperature	Topr .	-20~+70	°C	
remperature	Storage Temperature	Tstg	-55~+150		

Electrical Characteristics(Ta=25℃)

Item		Symbol	Test Circuit	Condition	min.	typ.	max.	Unit
Total Circuit Current	Mono	I_{CC1}	1	V _{CC} =12 V	30	42	55	mA
	Multi	I_{CC2}	1	V _{CC} =12V	36	48	62	mA
Composite Signal Voltage Gain.		Gγ	1	Pin@input 200mVp-p 1KHz, Pin@output	2.4	3.7	4.9	dB
Total Harmonic Distortion		THD(typ.)	1	Pin@input 200mVp-p 1KHz, Pin@output	0	0.45	0.6	%
Total Harmonic Distortion		THD(max-)	1	Pin@input 3Vp-p 1KHz, Pin@output		0.85	1.0	%
Sub Signal Detect Max. Output Voltage		Vsub(max.)	1	Pin@input 100%, Mod.400Hz	880	1 150	1 500	mV _{rms}
VCO Oscillation Frequency		f_{OSC}	1	Vcc=12V, GND with Pin(101KΩ, Monaural mode is set when standerd sample is 952Hz	857	952	1 047	Hz
fosc Change with Supply Voltage		- 000, 00	1	$V_{CC}=12V\pm20\%$, for $V_{CC}=12V$	-3	0	+3	Hz/V
fosc Change with ambient Temperatuse		∆fosc/Ta	1	$Ta = -20 \sim +70^{\circ}C$, for $Ta = +25^{\circ}C$	-10	0	+10	Hz
Capture Range(Stereo side)		CR _(ST)	1	Pin 160.5 V _{rms} frequency variable		67	170	Hz
Capture Range(Dual side)		CR _(MU)	1	Pin 160.5 V _{rms} frequency variable	-170	-70		Hz
Main(L)Output DC Offset Level		V _{O(offset-L)}	1	V _{cc} =12V, Input invalid signal, Output level difference for each mode		50	120	mV
Sub(R)Output DC Offset Level		VO(offset-R)	1	V _{cc} =12V, Input invalid signal,Output level difference for each mode		50	120	mV
Main/Sub Output High Frequency Distortion		THD _(L.R)	1	V _{cc} =12V,Pin@input 100mVrms,1kHz		0.2	0.45	%
Main(L)Output Stereo Separation		Sep(Main)	1	Pin ② , ② 1 kHz, Opposite phase	40	50		dB
Sub(R)Output Stereo Separation		Sep(Sub)	1	Pin 20, 251 kHz, Same-phase	40	50		dB
Main(L) Output Dual Crosstalk		CT(R-L)	1	Pin 24, 251 kHz	50	60		dB
Sub(R)Output Crosstalk		CT(L-R)	1	Pin 24, 251 kHz	50	60		dB
Output Noise Voltage		Vno	1	V _{CC} =12 V, Monaural mode		0.17	0.3	mV _{rms}

Application Circuit

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20080805