Data Sheet

FEATURES

Extreme high temperature operation Specified temperature range: $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
High performance
16-bit resolution with no missing codes
600 kSPS throughput with no latency/pipeline delay
SNR: 91 dB typical at $1 \mathbf{k H z}$ input frequency
THD: -102 dB typical at $\mathbf{1} \mathbf{~ k H z}$ input frequency
INL: \pm 2.0 LSB maximum, DNL: ± 0.9 LSB maximum
Low power dissipation

2.25 mW typical at 600 kSPS (VDD only)
4.65 mW typical at 600 kSPS (total)
$70 \mu \mathrm{~W}$ typical at 10 kSPS

Small footprint

Pseudo differential analog input range
0 V to $\mathrm{V}_{\text {REF }}$ with $\mathrm{V}_{\text {REF }}$ between 2.4 V and 5.1 V
Easy to use
Single-supply 2.5 V operation with $1.8 \mathrm{~V} / 2.5 \mathrm{~V} / 3 \mathrm{~V} / 5 \mathrm{~V}$ logic interface
SPI-/QSPI-/MICROWIRE-/DSP-compatible digital interface
Daisy-chain multiple ADCs and busy indicator

APPLICATIONS

Downhole drilling and instrumentation

Avionics

Heavy industrial
High temperature environments

GENERAL DESCRIPTION

The AD7981 ${ }^{1}$ is a 16 -bit, successive approximation, analog-todigital converter (ADC) designed for high temperature operation. The AD7981 is capable of sample rates up to 600 kSPS while maintaining low power consumption from a single power supply, VDD. It is a fast throughput, high accuracy, high temperature, successive approximation register (SAR) ADC and packaged in a small form factor with a versatile serial port interface (SPI).
On the CNV rising edge, the AD7981 samples an analog input, $\mathrm{IN}+$, between 0 V and REF with respect to a ground sense, $\mathrm{IN}-$. The reference voltage, REF, is applied externally and can be set independent of the supply voltage, VDD. The device power scales linearly with throughput.

The SPI-compatible serial interface also features the ability, using the SDI input, to daisy-chain several ADCs on a single,

Rev. 0

Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Applications.
Typical Application Circuit 1
General Description 1
Revision History 2
Specifications 3
Timing Specifications 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions. 7
Typical Performance Characteristics 8
Terminology 12
Theory of Operation 13
Circuit Information 13
Converter Operation 13
Typical Connection Diagram 14
Analog Input 15
Driver Amplifier Choice 15
Voltage Reference Input 16
Power Supply 16
Digital Interface 16
$\overline{\mathrm{CS}}$ Mode, 3-Wire Without Busy Indicator 17
$\overline{\mathrm{CS}}$ Mode, 3-Wire with Busy Indicator 18
$\overline{\mathrm{CS}}$ Mode, 4-Wire Without Busy Indicator 19
CS Mode, 4-Wire with Busy Indicator 20
Chain Mode Without Busy Indicator 21
Chain Mode with Busy Indicator 22
Applications Information 23
Printed Circuit Board (PCB) Layout 24
Outline Dimensions 25
Ordering Guide 25

REVISION HISTORY

10/14—Revision 0: Initial Version

AD7981

SPECIFICATIONS

$\mathrm{VDD}=2.5 \mathrm{~V}, \mathrm{VIO}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
RESOLUTION		16			Bits
ANALOG INPUT Voltage Range Absolute Input Voltage Analog Input Common-Mode Rejection Ratio (CMRR) Leakage Current at $25^{\circ} \mathrm{C}$ Input Impedance	$\begin{aligned} & \mathrm{IN}+-\mathrm{IN}- \\ & \mathrm{IN}+ \\ & \mathrm{IN}- \\ & \mathrm{fiN}_{\mathrm{I}}=100 \mathrm{kHz} \\ & \text { Acquisition phase } \end{aligned}$	0 -0.1 -0.1 See	60 1 Analog	$\begin{aligned} & V_{\text {REF }} \\ & V_{\text {REF }}+0.1 \\ & +0.1 \end{aligned}$ ut section	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~dB} \\ & \mathrm{nA} \end{aligned}$
ACCURACY No Missing Codes Differential Nonlinearity Integral Nonlinearity Transition Noise Gain Error ${ }^{2}$ Gain Error Temperature Drift Zero Error ${ }^{2}$ Zero Temperature Drift Power Supply Sensitivity	$\begin{aligned} & \mathrm{V}_{\text {REF }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {REF }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {REF }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V} \end{aligned}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ $\mathrm{VDD}=2.5 \mathrm{~V} \pm 5 \%$	16 -0.9 -2.0 -1	$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \\ & \pm 0.7 \\ & \pm 0.6 \\ & 0.75 \\ & 1.2 \\ & \pm 2 \\ & \pm 0.35 \\ & \pm 0.08 \\ & 0.45 \\ & \pm 0.1 \end{aligned}$	$+0.9$ $+2.0$ $+1$	$\begin{aligned} & \text { Bits } \\ & \mathrm{LSB}^{1} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{mV} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB}^{1} \end{aligned}$
THROUGHPUT Conversion Rate Transient Response	Full-scale step	0		$\begin{aligned} & 600 \\ & 290 \end{aligned}$	kSPS ns
AC ACCURACY ${ }^{3}$ Dynamic Range Oversampled Dynamic Range ${ }^{4}$ Signal-to-Noise Ratio (SNR) Spurious-Free Dynamic Range (SFDR) Total Harmonic Distortion (THD) Signal-to-Noise-and-Distortion (SINAD)		89	92 87 110 91 86 104 -102 90.5 85.5		

[^0]$\mathrm{VDD}=2.5 \mathrm{~V}, \mathrm{VIO}=2.3 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
REFERENCE Voltage Range Load Current	$600 \mathrm{kSPS}, \mathrm{V}_{\text {REF }}=5 \mathrm{~V}$	2.4		5.1	$\begin{aligned} & \mathrm{V} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
SAMPLING DYNAMICS -3 dB Input Bandwidth Aperture Delay	$\mathrm{VDD}=2.5 \mathrm{~V}$		$\begin{aligned} & 10 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~ns} \end{aligned}$
DIGITAL INPUTS Logic Levels VII V_{IH} IIL I_{H}	$\begin{aligned} \mathrm{VIO} & >3 \mathrm{~V} \\ \mathrm{VIO} & \leq 3 \mathrm{~V} \\ \mathrm{VIO} & >3 \mathrm{~V} \\ \mathrm{VIO} & \leq 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.3 \\ & -0.3 \\ & 0.7 \times \mathrm{VIO} \\ & 0.9 \times \mathrm{VIO} \\ & -1 \\ & -1 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.3 \times \mathrm{VIO} \\ & 0.1 \times \mathrm{VIO} \\ & \mathrm{VIO}+0.3 \\ & \mathrm{VIO}+0.3 \\ & +1 \\ & +1 \end{aligned}$	V V V $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
DIGITAL OUTPUTS Data Format Pipeline Delay Vol VoH	$\begin{aligned} & \mathrm{I}_{\text {SINK }}=500 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {Source }}=-500 \mu \mathrm{~A} \end{aligned}$	Serial 16 bits straight binary Conversion results available immediately after completed conversion$0.4$$\text { VIO - } 0.3$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
POWER SUPPLIES VDD VIO VIO Range Standby Current ${ }^{1,2}$ Power Dissipation Total VDD Only REF Only VIO Only Energy per Conversion	$\begin{aligned} & \text { Specified performance } \\ & \text { VDD and VIO }=2.5 \mathrm{~V} \\ & \mathrm{VDD}=2.625 \mathrm{~V}, \mathrm{~V} \text { REF }=5 \mathrm{~V}, \mathrm{VIO}=3 \mathrm{~V} \\ & 10 \mathrm{kSPS} \\ & 600 \mathrm{kSPS} \\ & 600 \mathrm{kSPS} \\ & 600 \mathrm{kSPS} \\ & 600 \mathrm{kSPS} \end{aligned}$	$\begin{aligned} & 2.375 \\ & 2.3 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 2.5 \\ & \\ & 0.35 \\ & \\ & 70 \\ & 4.65 \\ & 2.25 \\ & 1.5 \\ & 0.9 \\ & 7.75 \end{aligned}$	$\begin{aligned} & 2.625 \\ & 5.5 \\ & 5.5 \\ & \\ & \\ & 7.0 \end{aligned}$	V V V $\mu \mathrm{A}$ $\mu \mathrm{W}$ mW mW mW mW $\mathrm{nJ} /$ sample
TEMPERATURE RANGE Specified Performance ${ }^{3}$	$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	-55		+175	${ }^{\circ} \mathrm{C}$

${ }^{1}$ With all digital inputs forced to VIO or GND as required.
${ }^{2}$ During the acquisition phase.
${ }^{3}$ Qualified for up to 1000 hours of operation at the maximum temperature rating.

TIMING SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}, \mathrm{VDD}=2.375 \mathrm{~V}$ to $2.625 \mathrm{~V}, \mathrm{VIO}=3.3 \mathrm{~V}$ to 5.5 V , unless otherwise stated. See Figure 2 and Figure 3 for load conditions.
Table 3.

Parameter	Symbol	Min	Typ	Max	Unit
Conversion Time: CNV Rising Edge to Data Available	tconv	625		900	ns
Acquisition Time	$\mathrm{tace}^{\text {a }}$	290			ns
Time Between Conversions	tcyc	1667			ns
CNV Pulse Width ($\overline{C S}$ Mode)	tcnve	10			ns
SCK Period ($\overline{C S}$ Mode)	$\mathrm{t}_{\text {ck }}$				
VIO Above 4.5 V		10.5			ns
VIO Above 3 V		12			ns
VIO Above 2.7V		13			ns
VIO Above 2.3 V		15			ns
SCK Period (Chain Mode)	$\mathrm{t}_{\text {ck }}$				
VIO Above 4.5 V		11.5			ns
VIO Above 3 V		13			ns
VIO Above 2.7 V		14			ns
VIO Above 2.3 V		16			ns
SCK Low Time	tsckl	4.5			ns
SCK High Time	tsckh	4.5			ns
SCK Falling Edge to Data Remains Valid	thsoo	3			ns
SCK Falling Edge to Data Valid Delay	tssDo				
VIO Above 4.5 V				9.5	ns
VIO Above 3 V				11	ns
VIO Above 2.7 V				12	ns
VIO Above 2.3 V				14	ns
CNV or SDI Low to SDO D15 MSB Valid ($\overline{C S}$ Mode)	ten				
VIO Above 3 V				10	ns
VIO Above 2.3 V				15	ns
CNV or SDI High or Last SCK Falling Edge to SDO High Impedance ($\overline{C S}$ Mode)	$\mathrm{t}_{\text {DIS }}$			20	ns
SDI Valid Setup Time from CNV Rising Edge	tssicanv	5			ns
SDI Valid Hold Time from CNV Rising Edge ($\overline{\mathrm{CS}}$ Mode)	thsilicnv	2			ns
SDI Valid Hold Time from CNV Rising Edge (Chain Mode)	thsoicnv	0			ns
SCK Valid Setup Time from CNV Rising Edge (Chain Mode)	tssckcnv	5			ns
SCK Valid Hold Time from CNV Rising Edge (Chain Mode)	thsckenv	5			ns
SDI Valid Setup Time from SCK Falling Edge (Chain Mode)	tssolick	2			ns
SDI Valid Hold Time from SCK Falling Edge (Chain Mode)	thsilick	3			ns
SDI High to SDO High (Chain Mode with Busy Indicator)	tosbosbl			15	ns

Figure 2. Load Circuit for Digital Interface Timing

${ }^{1}{ }^{1}$ OOR VIO $\leq 3.0 \mathrm{~V}, \mathrm{X}=90$ AND $\mathrm{Y}=10 ;$ FOR VIO $>3.0 \mathrm{~V}, \mathrm{X}=70$ AND $\mathrm{Y}=30$. ${ }^{2}$ MINIMUM $V_{\text {IH }}$ AND MAXIMUM $V_{I L}$ USED. SEE DIGITAL INPUTS SPECIFICATIONS IN TABLE 2.

Figure 3. Voltage Levels for Timing

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Analog Inputs	
IN+, IN- to GND ${ }^{\prime}$	-0.3 V to $\mathrm{V}_{\text {REF }}+0.3 \mathrm{~V}$ or
	$\pm 130 \mathrm{~mA}$
Supply Voltage	
REF, VIO to GND	-0.3 V to +6 V
VDD to GND	-0.3 V to +3 V
VDD to VIO	+3 V to -6 V
Digital Inputs to GND	-0.3 V to VIO +0.3 V
Digital Outputs to GND	-0.3 V to $\mathrm{VIO}+0.3 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$176.4^{\circ} \mathrm{C}$
Thermal Impedance (10-Lead MSOP)	
ӨJA	$200^{\circ} \mathrm{C} / \mathrm{W}$
ӨرC	$44^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature	
\quad Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$
ESD Ratings	
Human Body Model	2 kV
Machine Model	200 V
Field-Induced Charged Device Model	1.25 kV

${ }^{1}$ See the Analog Input section.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Type ${ }^{1}$	Description
1	REF	AI	Reference Input Voltage. The REF range is from 2.4 V to 5.1 V. It is referred to the GND pin. Decouple REF with a $10 \mu \mathrm{~F}$ capacitor as close as possible to the pin.
2	VDD	P	Power Supply.
3	IN+	AI	Analog Input. This pin is referred to $\mathrm{IN}-$. The voltage range, for example, the difference between $\mathrm{IN}+$ and IN -, is 0 V to $\mathrm{V}_{\text {REF }}$.
4	IN-	AI	Analog Input Ground Sense. Connect this pin to the analog ground plane or to a remote sense ground.
5	GND	P	Power Supply Ground.
6	CNV	DI	Conversion Input. This input has multiple functions. On its leading edge, it initiates the conversions and selects the interface mode of the device: chain or $\overline{C S}$ mode. In $\overline{\mathrm{CS}}$ mode, it enables the SDO pin when low. In chain mode, read the data when CNV is high.
7	SDO	DO	Serial Data Output. The conversion result is output on this pin. It is synchronized to SCK.
8	SCK	DI	Serial Data Clock Input. When the device is selected, the conversion result is shifted out by this clock.
9	SDI	DI	Serial Data Input. This input provides multiple features. It selects the interface mode of the ADC as follows: Chain mode is selected if SDI is low during the CNV rising edge. In this mode, SDI is used as a data input to daisy-chain the conversion results of two or more ADCs onto a single SDO line. The digital data level on SDI is output on SDO with a delay of 16 SCK cycles. $\overline{\mathrm{CS}}$ mode is selected if SDI is high during the CNV rising edge. In this mode, either SDI or CNV can enable the serial output signals when low. If SDI or CNV is low when the conversion is complete, the busy indicator feature is enabled.
10	VIO	P	Input/Output Interface Digital Power. Nominally at the same supply as the host interface (1.8V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$, or 5 V).

[^1]
TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{VDD}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {Ref }}=5.0 \mathrm{~V}, \mathrm{VIO}=3.3 \mathrm{~V}$, unless otherwise noted.

Figure 5. Integral Nonlinearity (INL) vs. Code and Temperature, $V_{\text {REF }}=5.0 \mathrm{~V}$

Figure 6. Integral Nonlinearity (INL) vs. Code and Temperature, $V_{\text {REF }}=2.5 \mathrm{~V}$

Figure 7.10 kHz FFT, $V_{\text {REF }}=5.0 \mathrm{~V}$

Figure 8. Differential Nonlinearity (DNL) vs. Code and Temperature, $V_{\text {REF }}=5.0 \mathrm{~V}$

Figure 9. Differential Nonlinearity (DNL) vs. Code and Temperature, $V_{R E F}=2.5 \mathrm{~V}$

Figure $10.10 \mathrm{kHz} F F T, V_{\text {REF }}=2.5 \mathrm{~V}$

Figure 11. Histogram of a DC Input at the Code Center, $V_{\text {REF }}=5.0 \mathrm{~V}$

Figure 12. Histogram of a DC Input at the Code Transition, $V_{\text {REF }}=5.0 \mathrm{~V}$

Figure 13. SINAD and ENOB vs. Reference Voltage ($V_{\text {ref }}$)

Figure 14. Histogram of a DC Input at the Code Center, $V_{\text {REF }}=2.5 \mathrm{~V}$

Figure 15. SNR vs. Input Level

Figure 16. THD and SFDR vs. Reference Voltage ($V_{\text {REF }}$)

Figure 17. SINAD vs. Input Frequency

Figure 18. SNR vs. Temperature

Figure 19. Operating Currents vs. Supply Voltage (VDD)

Figure 20. THD vs. Frequency

Figure 21. THD vs. Temperature

Figure 22. Operating Currents vs. Temperature

Figure 23. Power-Down Current vs. Temperature

TERMINOLOGY

Integral Nonlinearity (INL)
INL refers to the deviation of each individual code from a line drawn from negative full scale through positive full scale. The point used as negative full scale occurs $1 / 2$ LSB before the first code transition. Positive full scale is defined as a level $11 / 2$ LSB beyond the last code transition. The deviation is measured from the middle of each code to the true straight line (see Figure 25).

Differential Nonlinearity (DNL)

In an ideal ADC, code transitions are 1 LSB apart. DNL is the maximum deviation from this ideal value. It is often specified in terms of resolution for which no missing codes are guaranteed.

Zero Error

The first transition occurs at a level $1 / 2$ LSB above analog ground (38.1 $\mu \mathrm{V}$ for the 0 V to 5 V range). The offset error is the deviation of the actual transition from that point.

Gain Error

The last transition (from $111 \ldots 10$ to $111 \ldots$ 11) occurs for an analog voltage $11 / 2 \mathrm{LSB}$ below the nominal full scale $(4.999886 \mathrm{~V}$ for the 0 V to 5 V range). The gain error is the deviation of the actual level of the last transition from the ideal level after the offset is adjusted out.

Spurious-Free Dynamic Range (SFDR)

SFDR is the difference, in decibels (dB), between the rms amplitude of the input signal and the peak spurious signal.

Effective Number of Bits (ENOB)

ENOB is a measurement of the resolution with a sine wave input. It is related to SINAD by the following formula:

$$
E N O B=\left(S I N A D_{\mathrm{dB}}-1.76\right) / 6.02
$$

and is expressed in bits.

Noise-Free Code Resolution

Noise-free code resolution is the number of bits beyond which it is impossible to distinctly resolve individual codes. It is calculated as

$$
\text { Noise-Free Code Resolution }=\log _{2}\left(2^{\mathrm{N}} / \text { Peak-to-Peak Noise }\right)
$$

and is expressed in bits.

Effective Resolution

Effective resolution is calculated as
Effective Resolution $=\log _{2}\left(2^{\mathrm{N}} /\right.$ RMS Input Noise $)$
and is expressed in bits.
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first five harmonic components to the rms value of a full-scale input signal and is expressed in dB .

Dynamic Range

Dynamic range is the ratio of the rms value of the full scale to the total rms noise measured with the inputs shorted together. It is measured with a signal at -60 dBFS to include all noise sources and DNL artifacts. The value for dynamic range is expressed in dB.

Signal-to-Noise Ratio (SNR)

SNR is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, excluding harmonics and dc. The value for SNR is expressed in dB.

Signal-to-Noise-and-Distortion (SINAD) Ratio

SINAD is the ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for SINAD is expressed in dB .

Aperture Delay

Aperture delay is the measure of the acquisition performance. It is the time between the rising edge of the CNV input and when the input signal is held for a conversion.

Transient Response

Transient response is the time required for the ADC to accurately acquire its input after a full-scale step function is applied.

THEORY OF OPERATION

CIRCUIT INFORMATION

The AD7981 is a fast, low power, single-supply, precise 16-bit ADC that uses a successive approximation architecture.

The AD7981 is capable of converting 600,000 samples per second (600 kSPS) and powers down between conversions. When operating at 10 kSPS , for example, it consumes $70 \mu \mathrm{~W}$ typically, ideal for battery-powered applications.
The AD7981 provides the user with on-chip track-and-hold and does not exhibit any pipeline delay or latency, making it ideal for multiple multiplexed channel applications.
The AD7981 can be interfaced to any 1.8 V to 5 V digital logic family. It is housed in a 10 -lead MSOP that combines space savings and allows flexible configurations.
It is pin-for-pin compatible with the 18 -bit AD7982.

CONVERTER OPERATION

The AD7981 is a successive approximation ADC based on a charge redistribution digital-to-analog converter (DAC). Figure 24 shows the simplified schematic of the ADC. The capacitive DAC consists of two identical arrays of 16 binary weighted capacitors, which are connected to the two comparator inputs.

During the acquisition phase, terminals of the array tied to the input of the comparator are connected to GND via the SW + and SW- switches. All independent switches are connected to the analog inputs. Therefore, the capacitor arrays are used as sampling capacitors and acquire the analog signal on the IN + and IN- inputs. When the acquisition phase is completed and the CNV input goes high, a conversion phase is initiated. When the conversion phase begins, SW+ and SW- are opened first. The two capacitor arrays are then disconnected from the inputs and connected to the GND input. Therefore, the differential voltage between the inputs, $\mathrm{IN}+$ and IN -, captured at the end of the acquisition phase is applied to the comparator inputs, causing the comparator to become unbalanced. By switching each element of the capacitor array between GND and REF, the comparator input varies by binary weighted voltage steps ($\mathrm{V}_{\text {ref }} / 2, \mathrm{~V}_{\mathrm{ref}} / 4 \ldots \mathrm{~V}_{\mathrm{ref}} / 65,536$). The control logic toggles these switches, starting with the MSB, to bring the comparator back into a balanced condition. After the completion of this process, the device returns to the acquisition phase, and the control logic generates the ADC output code and a busy signal indicator. Because the AD7981 has an on-board conversion clock, the serial clock, SCK, is not required for the conversion process.

Transfer Functions

The ideal transfer characteristic for the AD7981 is shown in Figure 25 and Table 6.

Figure 25. ADC Ideal Transfer Function

Table 6. Output Codes and Ideal Input Voltages

	Analog Input	
Description	$\mathbf{V}_{\text {REF }}=\mathbf{5}$ V	Digital Output Code
FSR - 1 LSB	4.999924 V	$0 \times F F^{1}{ }^{1}$
Midscale + 1 LSB	2.500076 V	0×8001
Midscale	2.5 V	0×8000
Midscale - 1 LSB	2.499924 V	$0 \times 7 \mathrm{FFF}$
-FSR + 1 LSB	$76.3 \mu \mathrm{~V}$	0×0001
-FSR	0 V	0×0000^{2}

${ }^{1}$ This is also the code for an overranged analog input ($V_{\mathbb{N}_{+}}-\mathrm{V}_{\mathbb{I N}-}$ above $\left.\mathrm{V}_{\text {REF }}-\mathrm{V}_{\mathrm{GND}}\right)$.
${ }^{2}$ This is also the code for an underranged analog input $\left(\mathrm{V}_{\mathbb{I N}_{+}}-\mathrm{V}_{\mathrm{IN}^{-}}\right.$below $\left.\mathrm{V}_{\mathrm{GND}}\right)$.

TYPICAL CONNECTION DIAGRAM

Figure 26 shows an example of the recommended connection diagram for the AD7981 when multiple supplies are available.

ANALOG INPUT

Figure 27 shows an equivalent circuit of the input structure of the AD7981.

The two diodes, D 1 and D 2 , provide ESD protection for the analog inputs, $\mathrm{IN}+$ and $\mathrm{IN}-$. Ensure that the analog input signal never exceeds the supply rails by more than 0.3 V , because this causes these diodes to become forward-biased and to start conducting current. A transient with a very short duration of 10 ms applied on the analog inputs, IN+ and IN-, during latch-up testing shows that these diodes can then handle a forward-biased current of 130 mA maximum. For instance, these conditions may eventually occur when the supplies of the input buffer (U1) are different from VDD. In such a case (for example, an input buffer with a short circuit), the current limitation can be used to protect the device.

Figure 27. Equivalent Analog Input Circuit
The analog input structure allows the sampling of the true differential signal between $\mathrm{IN}+$ and $\mathrm{IN}-$. By using these differential inputs, signals common to both inputs are rejected.

During the acquisition phase, the impedance of the analog inputs (IN+ and IN-) can be modeled as a parallel combination of the capacitor, $\mathrm{C}_{\mathrm{pin}}$, and the network formed by the series connection of $\mathrm{R}_{\text {IN }}$ and $\mathrm{C}_{\text {IN }}$. CPIN is primarily the pin capacitance. R_{IN} is typically 400Ω and is a lumped component made up of some serial resistors and the on resistance of the switches. C_{IN} is typically 30 pF and is mainly the ADC sampling capacitor. During the conversion phase, where the switches are opened, the input impedance is limited to $\mathrm{C}_{\text {PIN }} . \mathrm{R}_{\text {IN }}$ and $\mathrm{C}_{\text {IN }}$ make a onepole, low-pass filter that reduces undesirable aliasing effects and limits the noise.

When the source impedance of the driving circuit is low, the AD7981 can be driven directly. Large source impedances significantly affect the ac performance, especially THD. The dc performances are less sensitive to the input impedance. The maximum source impedance depends on the amount of THD that can be tolerated. The THD degrades as a function of the source impedance and the maximum input frequency.

DRIVER AMPLIFIER CHOICE

Although the AD7981 is easy to drive, the driver amplifier must meet the following requirements:

- The noise generated by the driver amplifier must be kept as low as possible to preserve the SNR and transition noise performance of the AD7981. The noise coming from the driver is filtered by the one-pole, low-pass filter of the AD7981 analog input circuit made by $\mathrm{R}_{\text {IN }}$ and $\mathrm{C}_{\text {IN }}$ or by the external filter, if one is used. Because the typical noise of the AD7981 is $47.3 \mu \mathrm{~V} \mathrm{rms}$, the SNR degradation due to the amplifier is

$$
S N R_{\text {LOSS }}=20 \log \left(\frac{47.3}{\sqrt{47.3^{2}+\frac{\pi}{2} f_{-3 \mathrm{~dB}}\left(N e_{N}\right)^{2}}}\right)
$$

where:
$f_{-3 \mathrm{~dB}}$ is the input bandwidth in MHz of the AD7981 (10 MHz) or the cutoff frequency of the input filter, if one is used.
N is the noise gain of the amplifier (for example, 1 in buffer configuration).
e_{N} is the equivalent input noise voltage of the op amp, in $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$.

- For ac applications, the driver must have a THD performance commensurate with the AD7981.
- For multichannel multiplexed applications, the driver amplifier and the AD7981 analog input circuit must settle for a full-scale step onto the capacitor array at a 16 -bit level ($0.0015 \%, 15 \mathrm{ppm}$). In an amplifier data sheet, settling times at 0.1% to 0.01% are more commonly specified, and may differ significantly from the settling time at a 16-bit level and must be verified prior to driver selection.

The AD8634 is a rail-to-rail output, precision, low power, high temperature qualified, dual amplifier recommended for driving the input of the AD7981.

VOLTAGE REFERENCE INPUT

The AD7981 voltage reference input, REF, has a dynamic input impedance and must therefore be driven by a low impedance source with efficient decoupling between the REF and GND pins, as explained in the Printed Circuit Board (PCB) Layout section.
When REF is driven by a very low impedance source, a ceramic chip capacitor is appropriate for optimum performance. The high temperature qualified low temperature drift ADR225 2.5 V reference and the low power AD8634 reference buffer are recommended for the AD7981.

The REF pin must be decoupled with a ceramic chip capacitor of at least $10 \mu \mathrm{~F}$ (X5R, 1206 size) for optimum performance.
There is no need for an additional lower value ceramic decoupling capacitor (for example, 100 nF) between the REF and GND pins.

POWER SUPPLY

The AD7981 uses two power supply pins: a core supply, VDD, and a digital input/output interface supply, VIO. VIO allows direct interface with any logic between 1.8 V and 5 V . To reduce the number of supplies needed, tie VIO and VDD together. The AD7981 is independent of power supply sequencing between VIO and VDD. Additionally, it is insensitive to power supply variations over a wide frequency range, as shown in Figure 28.

Figure 28. PSRR vs. Frequency
The AD7981 powers down automatically at the end of each conversion phase and, therefore, the power scales linearly with the sampling rate, which makes the device ideal for low sampling rate (even of a few Hz) and low battery-powered applications.

Figure 29. Operating Currents vs. Throughput Rate

DIGITAL INTERFACE

Although the AD7981 has a reduced number of pins, it offers flexibility in its serial interface modes.
The AD7981, when in $\overline{\mathrm{CS}}$ mode, is compatible with SPI, QSPI ${ }^{\mathrm{m}}$, MICROWIRE ${ }^{\text {mp }}$, and digital hosts. The AD7981 interface can use either a 3-wire or 4-wire interface. A 3-wire interface using the CNV, SCK, and SDO signals minimizes wiring connections and is useful, for instance, in isolated applications. A 4 -wire interface using the SDI, CNV, SCK, and SDO signals allows CNV, which initiates the conversions, to be independent of the readback timing (SDI). The 4 -wire interface is useful in low jitter sampling or simultaneous sampling applications.
The AD7981, when in chain mode, provides a daisy-chain feature using the SDI input for cascading multiple ADCs on a single data line, similar to a shift register.
The mode in which the device operates depends on the SDI level when the CNV rising edge occurs. $\overline{\mathrm{CS}}$ mode is selected if SDI is high, and chain mode is selected if SDI is low. The SDI hold time is such that, when SDI and CNV are connected together, chain mode is selected.
In either mode, the AD7981 offers the flexibility to optionally force a start bit in front of the data bits. This start bit can be used as a busy signal indicator to interrupt the digital host and to trigger the data reading. Otherwise, without a busy indicator, the user must time out the maximum conversion time prior to readback.
The busy indicator feature is enabled

- In $\overline{\mathrm{CS}}$ mode if CNV or SDI is low when the ADC conversion ends (see Figure 33 and Figure 37, respectively).
- In chain mode if SCK is high during the CNV rising edge (see Figure 41).

$\overline{C S}$ MODE, 3-WIRE WITHOUT BUSY INDICATOR

The 3-wire $\overline{\mathrm{CS}}$ mode without busy indicator is typically used when a single AD7981 is connected to an SPI-compatible digital host. The connection diagram is shown in Figure 30, and the corresponding timing is given in Figure 31.
With SDI tied to VIO, a rising edge on CNV initiates a conversion, selects the $\overline{\mathrm{CS}}$ mode, and forces SDO to high impedance. When a conversion is initiated, it continues until completion, irrespective of the state of CNV, which can be useful, for instance, for bringing CNV low to select other SPI devices, such as analog multiplexers. However, CNV must return high before the minimum conversion
time elapses and then held high for the maximum conversion time to avoid the generation of the busy signal indicator. When the conversion is complete, the AD7981 enters the acquisition phase and powers down.
When CNV goes low, the MSB is output onto SDO. The remaining data bits are then clocked by subsequent SCK falling edges. The data is valid on both SCK edges. Although the rising edge can be used to capture the data, a digital host using the SCK falling edge allows a faster reading rate, provided that it has an acceptable hold time. After the 16th SCK falling edge or when CNV goes high, whichever is earlier, SDO returns to high impedance.

Figure 30. 3-Wire $\overline{C S}$ Mode Without Busy Indicator Connection Diagram (SDI High)

Figure 31. 3-Wire $\overline{C S}$ Mode Without Busy Indicator Serial Interface Timing (SDI High)

$\overline{\text { CS }}$ MODE, 3-WIRE WITH BUSY INDICATOR

The 3-wire $\overline{\mathrm{CS}}$ mode with busy indicator is typically used when a single AD7981 is connected to an SPI-compatible digital host having an interrupt input. The connection diagram is shown in Figure 32, and the corresponding timing is given in Figure 33.
With SDI tied to VIO, a rising edge on CNV initiates a conversion, selects $\overline{\mathrm{CS}}$ mode, and forces SDO to high impedance. SDO is maintained in high impedance until the completion of the conversion, irrespective of the state of CNV. Prior to the minimum conversion time, CNV can be used to select other SPI devices, such as analog multiplexers, but CNV must be returned low before the minimum conversion time elapses and then held low for the maximum conversion time to guarantee the generation of the busy signal indicator.

When the conversion is complete, SDO goes from high impedance to low. With a pull-up resistor on the SDO line, this transition can be used as an interrupt signal to initiate the data reading controlled by the digital host. The AD7981 then enters the acquisition phase and powers down. The data bits are clocked out, MSB first, by subsequent SCK falling edges. The data is valid on both SCK edges. Although the rising edge can be used to capture the data, a digital host using the SCK falling edge allows a faster reading rate, provided it has an acceptable hold time. After the optional 17th SCK falling edge or when CNV goes high, whichever is earlier, SDO returns to high impedance.
If multiple AD7981 devices are selected at the same time, the SDO output pin handles this contention without damage or induced latch-up. It is recommended to keep this contention as short as possible to limit extra power dissipation.

Figure 32. 3-Wire $\overline{C S}$ Mode with Busy Indicator Connection Diagram (SDI High)

Figure 33. 3-Wire $\overline{C S}$ Mode with Busy Indicator Serial Interface Timing (SDI High)

$\overline{C S}$ MODE, 4-WIRE WITHOUT BUSY INDICATOR

The 4-wire $\overline{\mathrm{CS}}$ mode without busy indicator is typically used when multiple AD7981 devices are connected to an SPI-compatible digital host. A connection diagram example using two AD7981 devices is shown in Figure 34, and the corresponding timing is given in Figure 35.
With SDI high, a rising edge on CNV initiates a conversion, selects $\overline{\mathrm{CS}}$ mode, and forces SDO to high impedance. In this mode, CNV must be held high during the conversion phase and the subsequent data readback (if SDI and CNV are low, SDO is driven low). Prior to the minimum conversion time, SDI can be used to select other SPI devices, such as analog multiplexers, but SDI must be returned high before the minimum conversion
time elapses and then held high for the maximum conversion time to avoid the generation of the busy signal indicator.
When the conversion is complete, the AD7981 enters the acquisition phase and powers down. Each ADC result can be read by bringing its SDI input low, which consequently outputs the MSB onto SDO. The remaining data bits are then clocked by subsequent SCK falling edges. The data is valid on both SCK edges. Although the rising edge can be used to capture the data, a digital host using the SCK falling edge allows a faster reading rate, provided it has an acceptable hold time. After the 16th SCK falling edge or when SDI goes high, whichever is earlier, SDO returns to high impedance, and another AD7981 can be read.

Figure 34. 4-Wire $\overline{C S}$ Mode Without Busy Indicator Connection Diagram

Figure 35. 4-Wire $\overline{C S}$ Mode Without Busy Indicator Serial Interface Timing

$\overline{\text { CS }}$ MODE, 4-WIRE WITH BUSY INDICATOR

The 4-wire $\overline{\mathrm{CS}}$ mode with busy indicator is typically used when a single AD7981 is connected to an SPI-compatible digital host that has an interrupt input, and it is desired to keep CNV, which is used to sample the analog input, independent of the signal used to select the data reading. This requirement is particularly important in applications where low jitter on CNV is desired.
The connection diagram is shown in Figure 36, and the corresponding timing is given in Figure 37.
With SDI high, a rising edge on CNV initiates a conversion, selects $\overline{\mathrm{CS}}$ mode, and forces SDO to high impedance. In this mode, CNV must be held high during the conversion phase and the subsequent data readback (if SDI and CNV are low, SDO is driven low). Prior to the minimum conversion time, SDI can be used to
select other SPI devices, such as analog multiplexers, but SDI must be returned low before the minimum conversion time elapses and then held low for the maximum conversion time to guarantee the generation of the busy signal indicator. When the conversion is complete, SDO goes from high impedance to low.

With a pull-up resistor on the SDO line, this transition can be used as an interrupt signal to initiate the data readback controlled by the digital host. The AD7981 then enters the acquisition phase and powers down. The data bits are clocked out, MSB first, by subsequent SCK falling edges. The data is valid on both SCK edges. Although the rising edge can be used to capture the data, a digital host using the SCK falling edge allows a faster reading rate provided it has an acceptable hold time. After the optional 17th SCK falling edge or SDI going high, whichever is earlier, the SDO returns to high impedance.

Figure 36. 4-Wire $\overline{C S}$ Mode with Busy Indicator Connection Diagram

Figure 37.4-Wire $\overline{C S}$ Mode with Busy Indicator Serial Interface Timing

CHAIN MODE WITHOUT BUSY INDICATOR

Chain mode without busy indicator can be used to daisy-chain multiple AD7981 devices on a 3-wire serial interface. This feature is useful for reducing component count and wiring connections, for example, in isolated multiconverter applications or for systems with a limited interfacing capacity. Data readback is analogous to clocking a shift register.

A connection diagram example using two AD7981 devices is shown in Figure 38, and the corresponding timing is given in Figure 39.

When SDI and CNV are low, SDO is driven low. With SCK low, a rising edge on CNV initiates a conversion, selects chain mode, and disables the busy indicator. In this mode, CNV is held high
during the conversion phase and the subsequent data readback. When the conversion is complete, the MSB is output onto SDO, and the AD7981 enters the acquisition phase and powers down. The remaining data bits stored in the internal shift register are clocked by subsequent SCK falling edges. For each ADC, SDI feeds the input of the internal shift register and is clocked by the SCK falling edge. Each ADC in the chain outputs its data MSB first, and $16 \times \mathrm{N}$ clocks are required to read back the N ADCs. The data is valid on both SCK edges. Although the rising edge can be used to capture the data, a digital host using the SCK falling edge allows a faster reading rate and, consequently, more AD7981 devices in the chain, provided the digital host has an acceptable hold time. The total readback time allows a reduction in the maximum conversation rate.

Figure 38. Chain Mode Without Busy Indicator Connection Diagram

Figure 39. Chain Mode Without Busy Indicator Serial Interface Timing

CHAIN MODE WITH BUSY INDICATOR

Chain mode with busy indicator can also be used to daisy-chain multiple AD7981 devices on a 3-wire serial interface while providing a busy indicator. This feature is useful for reducing component count and wiring connections, for example, in isolated multiconverter applications or for systems with a limited interfacing capacity. Data readback is analogous to clocking a shift register.
A connection diagram example using three AD7981 devices is shown in Figure 40, and the corresponding timing is given in Figure 41.
When SDI and CNV are low, SDO is driven low. With SCK high, a rising edge on CNV initiates a conversion, selects chain mode, and enables the busy indicator feature. In this mode, CNV is held high during the conversion phase and the subsequent
data readback. When all ADCs in the chain have completed their conversions, the SDO pin of the ADC closest to the digital host (see the AD7981 ADC labeled C in Figure 40) is driven high. This transition on SDO can be used as a busy indicator to trigger the data readback controlled by the digital host. The AD7981 then enters the acquisition phase and powers down. The data bits stored in the internal shift register are clocked out, MSB first, by subsequent SCK falling edges. For each ADC, SDI feeds the input of the internal shift register and is clocked by the SCK falling edge. Each ADC in the chain outputs its data MSB first, and $16 \times \mathrm{N}+1$ clocks are required to read back the N ADCs. Although the rising edge can be used to capture the data, a digital host using the SCK falling edge allows a faster reading rate and, consequently, more AD7981 devices in the chain, provided the digital host has an acceptable hold time.

Figure 40. Chain Mode with Busy Indicator Connection Diagram

Figure 41. Chain Mode with Busy Indicator Serial Interface Timing

APPLICATIONS INFORMATION

A growing number of industries demand low power electronics that can operate reliably at temperatures of $175^{\circ} \mathrm{C}$ and higher. The AD7981 enables precision analog signal processing from the sensor to the processor at high temperatures for these types of applications.
Figure 42 shows the simplified signal chain of the data acquisition instrument.

In downhole drilling, avionics, and other extreme temperature environment applications, signals from various sensors are sampled to collect information about the surrounding geologic formations. These sensors can take the form of electrodes, coils, piezoelectric, or other transducers. Accelerometers and gyroscopes provide information about the inclination, vibration, and rotation rate. Some of these sensors are very low bandwidth, whereas others can
have information in the audio frequency range and higher. The AD7981 is ideal for sampling data from sensors with varying bandwidth requirements while maintaining power efficiency and accuracy. The small footprint of the AD7981 makes it easy to include multiple channels even in space constrained layouts, such as the very narrow board widths prevalent in downhole tools. In addition, the flexible digital interface allows simultaneous sampling in more demanding applications, while also allowing simple daisy-chained readback for low pin count systems.
For a complete selection of available high temperature products, see the high temperature product list and qualification data available at www.analog.com/hightemp.

Figure 42. Simplified Data Acquisition System Signal Chain

PRINTED CIRCUIT BOARD (PCB) LAYOUT

Design the PCB that houses the AD7981 so that the analog and digital sections are separated and confined to certain areas of the board. The pinout of the AD7981, with all its analog signals on the left side and all its digital signals on the right side, eases this task.

Avoid running digital lines under the device because these couple noise onto the die, unless a ground plane under the AD7981 is used as a shield. Fast switching signals, such as CNV or clocks, must never run near analog signal paths. Avoid crossover of digital and analog signals.
Use at least one ground plane. It can be common or split between the digital and analog section. If the ground plane is split, join the planes underneath the AD7981.
The AD7981 voltage reference input, REF, has a dynamic input impedance and must be decoupled with minimal parasitic inductances. The reference decoupling ceramic capacitor must be placed close to, ideally right up against, the REF and GND pins and connecting them with wide, low impedance traces.

Decouple the AD7981 power supplies, VDD and VIO, with ceramic capacitors, typically 100 nF , placed close to the AD7981 and connected using short and wide traces to provide low impedance paths and to reduce the effect of glitches on the power supply lines.
An example of a layout following these rules is shown in Figure 43 and Figure 44.

Figure 43. Example PCB Layout of the AD7981 (Top Layer)

Figure 44. Example PCB Layout of the AD7981 (Bottom Layer)

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-BA
Figure 45. 10-Lead Mini Small Outline Package [MSOP] (RM-10)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Integral Nonlinearity (INL)	Temperature Range	Ordering Quantity	Package Description	Package Option	Branding
AD7981HRMZ	$\pm 2.0 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$	50	$10-$ Lead Mini Small Outline Package $[\mathrm{MSOP}]$	RM-10	C 7 C

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ LSB means least significant bit. With the 5 V input range, 1 LSB is $76.3 \mu \mathrm{~V}$.
 ${ }^{2}$ See the Terminology section. These specifications include full temperature range variation, but not the error contribution from the external reference.
 ${ }^{3}$ All ac accuracy specifications in dB are referred to an input full-scale range (FSR). Tested with an input signal at 0.5 dB below full scale, unless otherwise specified.
 ${ }^{4}$ The oversampled dynamic range is the ratio of the peak signal power to the noise power (for a small input) measured in the ADC output FFT from dc up to $\mathrm{f}_{5} /\left(2 \times \mathrm{OSR}^{2}\right.$), where f_{s} is the ADC sample rate and OSR is the oversampling ratio.

[^1]: ${ }^{1} \mathrm{AI}=$ analog input, $\mathrm{DI}=$ digital input, $\mathrm{DO}=$ digital output, and $\mathrm{P}=$ power.

