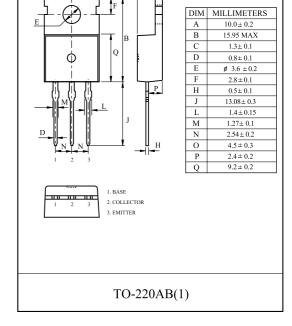
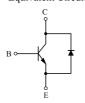


SEMICONDUCTOR TECHNICAL DATA

MJE13005DC


TRIPLE DIFFUSED NPN TRANSISTOR

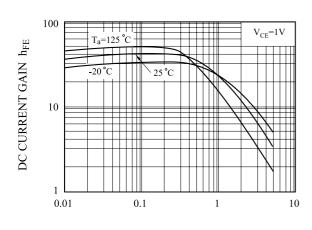
HIGH VOLTAGE HIGH SPEED POWER SWITCH APPLICATION.


- · Built-in Free wheeling Diode makes efficient anti saturation operation.
- · Suitable for half bridge light ballast Applications.
- · Low base drive requirement.

MAXIMUM RATING (Ta=25)

CHARACTERISTIC		SYMBOL	RATING	UNIT	
Collector-Base Voltage		V_{CBO}	700	V	
Collector-Emitter Voltage		V_{CEO}	400	V	
Emitter-Base Voltage		V_{EBO}	10	V	
Collector Current	DC	I_C	5	A	
	Pulse	I_{CP}	10		
Base Current	I_{B}	2	A		
Collector Power Dissipation (Tc=25)		P _C	75	W	
Junction Temperature		T _j	150		
Storage Temperature Range		T_{stg}	-55 150		

Equivalent Circuit


ELECTRICAL CHARACTERISTICS (Ta=25)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Emitter Cut-off Current	I_{EBO}	$V_{EB}=9V, I_{C}=0$	-	-	10	μA	
DC Current Gain	h _{FE} (1)	$V_{CE}=5V$, $I_{C}=1A$	23	-	35		
	h _{FE} (2)	$V_{CE}=5V$, $I_{C}=2A$	8	-	-		
Collector-Emitter Saturation Voltage	V _{CE(sat)}	$I_{C}=1A, I_{B}=0.2A$	-	-	0.5	V	
		$I_{C}=2A, I_{B}=0.5A$	-	-	0.6		
		$I_C=4A$, $I_B=1A$	-	-	1		
Base-Emitter Saturation Voltage	V _{BE(sat)}	$I_{C}=1A, I_{B}=0.2A$	-	-	1.2	V	
		I _C =2A, I _B =0.5A	-	-	1.6		
Collector Output Capacitance	C _{ob}	V _{CB} =10V, f=1MHz	-	65	-	pF	
Transition Frequency	f_T	$V_{CE}=10V, I_{C}=0.5A$	4	-	-	MHz	
Turn-On Time	t _{on}	300μS	-	-	0.15	μS	
Storage Time	t _{stg}	$I_{B1} \xrightarrow{INPUT} I_{B2} \xrightarrow{I_{B2}} \begin{cases} g \\ g \end{cases}$	2	-	5	μS	
Fall Time	t_{f}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-	0.8	μS	
Diode Forward Voltage	V _F	I _F =2A	-	-	1.6	V	
*Reverse recovery tims (di/dt=10A/ \(\beta\S\))	t _{rr}	I _F =0.4A	-	800	-	nS	
		I _F =1A	-	1.4	-	μS	
		I _F =2A	-	1.9	-	μS	

^{*}Pulse Test : Pulse Width = 5mS, Duty cycles 10%

MJE13005DC

Fig 1. h_{FE} - I_C

COLLECTOR CURRENT $I_C(A)$

Fig 3. h_{FE} - I_C

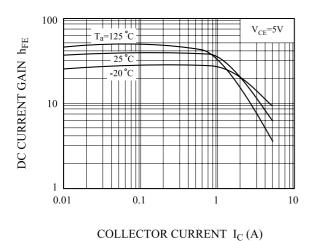
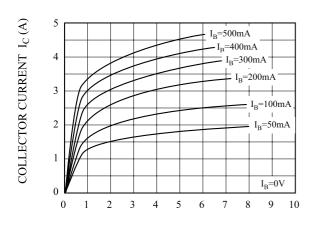
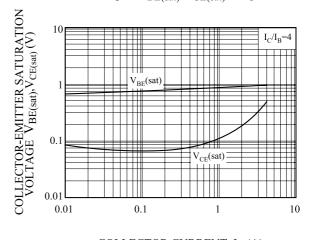




Fig 5. I_C - V_{CE}

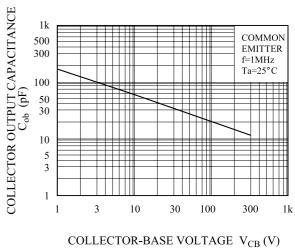

COLLECTOR EMITTER VOLTAGE $V_{CE}(V)$

Fig 2. $V_{BE(sat)}$, $V_{CE(sat)}$ - I_C

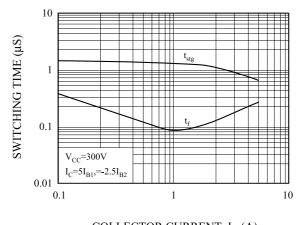
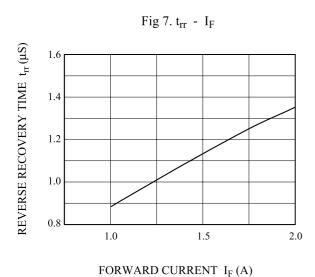

COLLECTOR CURRENT $I_C(A)$

Fig 4. Cob - VCB



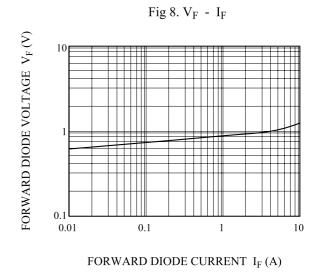
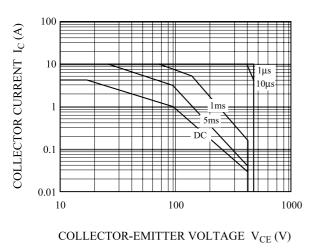
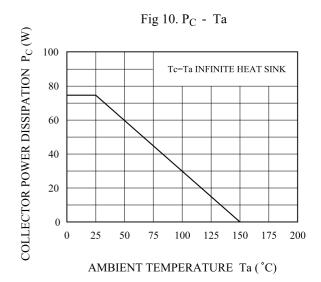
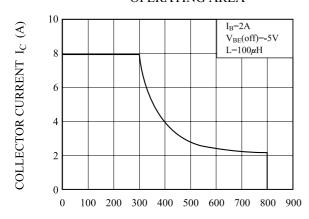
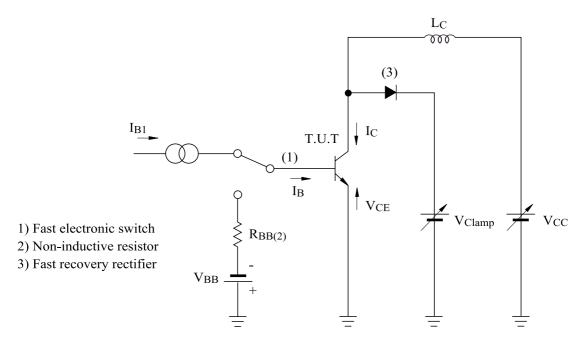

CB(+)

Fig 6. SWITCHING CHARACTERISTIC



MJE13005DC


Fig 11. REVERSE BIASED SAFE OPERATING AREA

COLLECTOR-EMITTER CLAMP VOLTAGE $V_{CE}\left(V\right)$

MJE13005DC

REVERSE BIASED SAFE OPERATING AREA TEST CIRCUITS

For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased.

Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current.

This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc.

The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current conditions during reverse biased turn-off.

This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

Figure 11 gives the complete RBSOA characteristics.