HT9261/HT9262/HT9264 TinyPower™ Operation Amplifier

Features

- Wide operating voltage: 1.4V to 5.5V
- Low quiescent current: typical 0.6μA/amplifier
- · Rail-to-Rail output
- · Gain bandwidth: 11kHz typical
- · Unity gain stable

- Available in Single, Dual and Quad OP's package types
- Package type:

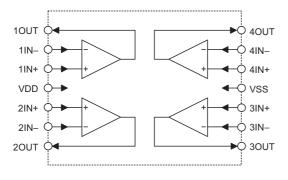
HT9261: TSOT23-5 HT9262: 8-pin DIP/SOP HT9264: 14-pin DIP/SOP

Applications

- · Wearable products
- · Temperature measurement
- · Battery powered products

- Portable equipment
- · Low power sensors

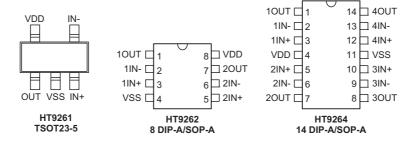
General Description


The Holtek HT9261/HT9262/HT9264 range of Low Power Operation Amplifiers offer the advantage of a single supply voltage down to as low as 1.4V as well as the advantages of an extremely low quiescent current of only 0.6μ A/amplifier. One other major advantage of these devices lie in their rail-to-rail voltage operation for maximum range. The devices also provide a typical gain bandwidth product of 11kHz and are also unity gain sta-

ble. The devices are available in a range of packages according the number of internal amplifiers. The special characteristics of these devices will ensure their excellent use in applications with stringent low power demands such as portable products, battery powered equipment, low power sensor signal processing etc.

Selection Table

Part No.	Amplifiers	Package
HT9261	1	TSOT23-5
HT9262	2	8DIP/SOP
HT9264	4	14DIP/SOP


Block Diagram

Rev. 1.00 1 February 11, 2010

Pin Assignment

Pin Descriptions

HT9261

Pin No.	Pin Name	Description
1	OUT	Analog output
2	VSS	Negative power supply
3	IN+	Non-inverting input
4	IN-	Inverting input
5	VDD	Positive power supply

HT9262

Pin No.	Pin Name	Description	
1	10UT	Analog output (operation amplifier 1)	
2	1IN-	Inverting input (operation amplifier 1)	
3	1IN+	Non-inverting input (operation amplifier 1)	
4	VSS	Negative power supply	
5	2IN+	Non-inverting input (operation amplifier 2)	
6	2IN-	Inverting input (operation amplifier 2)	
7	2OUT	Analog output (operation amplifier 2)	
8	VDD	Positive power supply	

HT9264

Pin No.	Pin Name	Description
1	10UT	Analog output (operation amplifier 1)
2	1IN-	Inverting input (operation amplifier 1)
3	1IN+	Non-inverting input (operation amplifier 1)
4	VDD	Positive power supply
5	2IN+	Non-inverting input (operation amplifier 2)
6	2IN-	Inverting input (operation amplifier 2)
7	2OUT	Analog output (operation amplifier 2)
8	3OUT	Analog output (operation amplifier 3)
9	3IN-	Inverting input (operation amplifier 3)
10	3IN+	Non-inverting input (operation amplifier 3)
11	VSS	Negative power supply
12	4IN+	Non-inverting input (operation amplifier 4)
13	4IN-	Inverting input (operation amplifier 4)
14	4OUT	Analog output (operation amplifier 4)

Rev. 1.00 2 February 11, 2010

Absolute Maximum Ratings

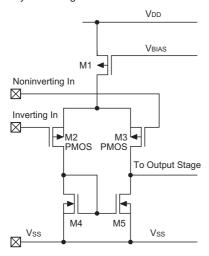
Supply Voltage6.0V	Input Voltage V_{SS} -0.3V ~ V_{DD} +0.3V
Difference Input Voltage $\pm (V_{DD} - V_{SS})$	ESD protection on all pins (HBM;MM)≥4kV; 400V
Storage Temperature65°C to +150°C	Operating Temperature40°C to +85°C
Junction Temperature150°C	

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics

Unless otherwise indicated, V_{SS}=GND, Ta=25°C, V_{CM}=V_{DD}/2, V_L=V_{DD}/2, and R_L=1M Ω to V_L, C_L=60pF

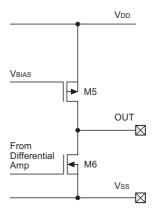
0	Downwood on		Test Conditions				1124
Symbol	Parameter	V_{DD}	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage	_	_	1.4	_	5.5	V
Vos	Input Offset Voltage	5V	V _{IN} =V _{CM} /2	-5.0	_	5.0	mV
$\Delta V_{OS}/\Delta T$	Drift with Temperature	5V	V _{IN} =V _{CM} /2	_	±2	_	μV/°C
Ios	Input Offset Current	5V	Ta=25°C	_	±5	_	рА
I _B	Input Bias Current	5V	Ta=25°C	_	±50	_	рА
V _{CM}	Input Common Mode Range	5V	_	0	_	V _{DD} -1.2	V
V _{OH}	VoH		0.5V input overdrive R_L =1M Ω to V_L	V _{SS} +10	_	V _{DD} -10	mV
V _{OL}	Maximum Output Voltage Swing	5V	0.5V input overdrive R_L =50k Ω to V_L	V _{SS} +20	_	V _{DD} -50	mV
A _{OL}	DC Open-Loop Gain (large signal)	5V	V_{OUT} =0.2V to V_{DD} -0.2V, V_{IN} = V_{CM} /2	70	100	_	dB
GBW	Gain BandWidth Product	5V	$R_L=1M\Omega$, $C_L=60pF$ $V_{IN}=V_{CM}/2$	_	11	_	kHz
Фт	Phase Margin	5V	$R_L=1M\Omega$, $C_L=60pF$ $G=+1V/V$, $V_{IN+}=V_{DD}/2$	_	50	_	0
CMRR	Common Mode Rejection Ratio	5V	V _{CM} =0V to V _{DD} -1.4V	60	90	_	dB
PSRR	Power Supply Rejection Ratio	5V	VCM = 0.2V	65	95	_	dB
I _{CC}	Supply Current Per Single Amplifier	5V	Io=0A	0.3	0.6	1.0	μΑ
SR	Slew Rate at Unity Gain	5V	$R_L=1M\Omega$, $C_L=60pF$	_	5	_	V/ms
I _{O_SOURCE}	Output Short Circuit Source Current	5V	$V_{IN+} - V_{IN-} \ge 10 mV$	-0.3	-1.2	_	mA
I _{O_SINK}	Output Short Circuit Sink Current	5V	$V_{IN-} - V_{IN+} \geq 10 mV$	1	4	_	mA


Rev. 1.00 3 February 11, 2010

Functional Description

Input Stage

The input stage of op amps are nominal PMOS differential amplifiers (see the following diagram), therefore the common mode input voltage can extend to V_{SS} -0.6V. On the other hand the common mode input voltage has to be maintained below (V_{DD} -1.2V) to keep the input device (M2 and M3) active. This implies that when using HT9261/HT9262/HT9264 as a voltage follower, the input as well as output active range will be limited between $V_{SS} \sim V_{DD}$ -1V (approx.). Avoid applying any voltage greater than V_{DD} +0.6V or less than V_{SS} -0.6V to the input pins, otherwise the internal input protection devices may be damaged.


Since the input impedance of PMOS is inherently very high, it can directly couple to high impedance elements without loading effect. For example, coupling to ceramic transducers, integrating capacitor and resistor networks.

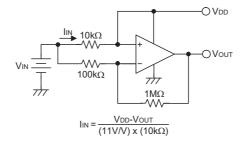
Actually the extremly high input impedance is its major advantage over the bipolar counterpart, in some application fields such as integrators where the input current of op amp can cause significant error.

Output Stage

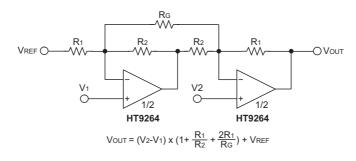
The HT9261/HT9262/HT9264 uses push-pull CMOS configuration as the output stage of op amps to minimize low power consumption and to provide adequate output driving current.

Note that the output is an unbuffered structure, therefore the open loop gain will be affected by the load resistor since the voltage gain of this stage can be expressed as $(gm5+gm6)\times R_L$.

Because of the consideration for minimized power consumption, the output short circuit current is limited to about -1.2mA for source drive and 4mA for sink drive. This is believed to be enough for most low power systems, however it is recommended to use the load resistor of >1M Ω for normal applications. In case of heavy load driving, an external buffer stage using bipolar transistors is recommended.


The HT9261/HT9262/HT9264 is internally compensated for AC stability and capable to withstand up to a 60pF capacitive load.

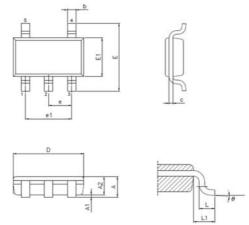
Rev. 1.00 4 February 11, 2010



Application Circuits

High Side Battery Current Sensor

Two Op Amp Instrumentation Amplifier



Rev. 1.00 5 February 11, 2010

Package Information

5-pin TSOT23-5 Outline Dimensions

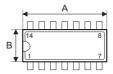
• MO-193C

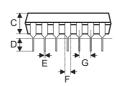
Ch.al		Dimensions in inch	
Symbol	Min.	Nom.	Max.
A	_	_	0.043
A1	0.000	_	0.004
A2	0.028	_	0.039
b	0.012	_	0.020
С	0.003	_	0.008
D	_	0.114	_
Е	_	0.110	_
E1		0.063	
е	_	0.037	_
e1		0.075	
L	0.012	_	0.024
L1	_	0.024	_
θ	0°	_	8°

Complete		Dimensions in mm	
Symbol	Min.	Nom.	Max.
A	_	_	1.10
A1	0.00	_	0.10
A2	0.70	_	1.00
b	0.30	_	0.50
С	0.08	_	0.20
D	_	2.90	_
E	_	2.80	_
E1		1.60	
е	_	0.95	_
e1	_	1.90	
L	0.30	_	0.60
L1	_	0.60	_
θ	0°	_	8°

Rev. 1.00 6 February 11, 2010

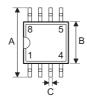
8-pin DIP (300mil) Outline Dimensions




Completed		Dimensions in inch		
Symbol	Min.	Nom.	Max.	
А	0.355	_	0.375	
В	0.240	_	0.260	
С	0.125	_	0.135	
D	0.125	_	0.145	
E	0.016	_	0.020	
F	0.050	_	0.070	
G	_	0.100	_	
Н	0.295	_	0.315	
l	_	0.375	_	

Complete I		Dimensions in mm		
Symbol	Min.	Nom.	Max.	
Α	9.02	_	9.53	
В	6.10	_	6.60	
С	3.18	_	3.43	
D	3.18	_	3.68	
E	0.41	_	0.51	
F	1.27	_	1.78	
G	_	2.54	_	
Н	7.49	_	8.00	
1	_	9.53	_	

14-pin DIP (300mil) Outline Dimensions

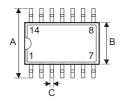

Cumbal	Dimensions in inch		
Symbol	Min.	Nom.	Max.
А	0.745	_	0.775
В	0.240	_	0.260
С	0.125	_	0.135
D	0.125	_	0.145
E	0.016	_	0.020
F	0.050	_	0.070
G	_	0.1100	_
Н	0.295	_	0.315
l	_	0.375	_

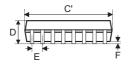
Complete I		Dimensions in mm		
Symbol	Min.	Nom.	Max.	
Α	18.92	_	19.69	
В	6.10	_	6.60	
С	3.18	_	3.43	
D	3.18	_	3.68	
E	0.41	_	0.51	
F	1.27	_	1.78	
G	_	2.54	_	
Н	7.49	_	8.00	
I	_	9.53	_	

Rev. 1.00 8 February 11, 2010

8-pin SOP (150mil) Outline Dimensions

• MS-012

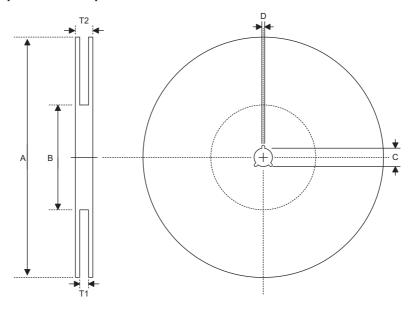

Symbol	Dimensions in inch		
Symbol	Min.	Nom.	Max.
Α	0.228	_	0.244
В	0.150	_	0.157
С	0.012	_	0.020
C'	0.188	_	0.197
D	_	_	0.069
E	_	0.050	_
F	0.004		0.010
G	0.016	_	0.050
Н	0.007	_	0.010
α	0°	_	8°


Cumhal	Dimensions in mm		
Symbol	Min.	Nom.	Max.
A	5.79	_	6.20
В	3.81	_	3.99
С	0.30	_	0.51
C'	4.78	_	5.00
D	_	_	1.75
E	_	1.27	_
F	0.10	_	0.25
G	0.41	_	1.27
Н	0.18	_	0.25
α	0°	_	8°

Rev. 1.00 9 February 11, 2010

14-pin SOP (150mil) Outline Dimensions

• MS-012


Symbol	Dimensions in mil		
Symbol	Min.	Nom.	Max.
Α	0.228	_	0.244
В	0.150	_	0.157
С	0.012	_	0.020
C'	0.337	_	0.344
D	_	_	0.069
E	_	0.050	
F	0.004	_	0.010
G	0.016	_	0.050
Н	0.007	_	0.010
α	0°	_	8°

Cymphal	Dimensions in mm		
Symbol	Min.	Nom.	Max.
A	5.79	_	6.20
В	3.81	_	3.99
С	0.30	_	0.51
C'	8.56	_	8.74
D	_	_	1.75
E	_	1.27	_
F	0.10	_	0.25
G	0.41	_	1.27
Н	0.18	_	0.25
α	0°	_	8°

Rev. 1.00 10 February 11, 2010

Product Tape and Reel Specifications

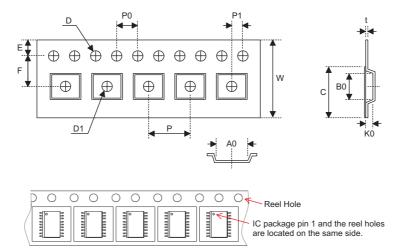
Reel Dimensions

SOP 8N

Symbol	Description	Dimensions in mm
Α	Reel Outer Diameter	330.0±1.0
В	Reel Inner Diameter	100.0±1.5
С	Spindle Hole Diameter	13.0 +0.5/-0.2
D	Key Slit Width	2.0±0.5
T1	Space Between Flange	12.8 +0.3/-0.2
T2	Reel Thickness	18.2±0.2

SOP 14N

Symbol	Description	Dimensions in mm
А	Reel Outer Diameter	330.0±1.0
В	Reel Inner Diameter	100.0±1.5
С	Spindle Hole Diameter	13.0 +0.5/-0.2
D	Key Slit Width	2.0±0.5
T1	Space Between Flange	16.8 +0.3/-0.2
T2	Reel Thickness	22.2±0.2


TSOT23-5

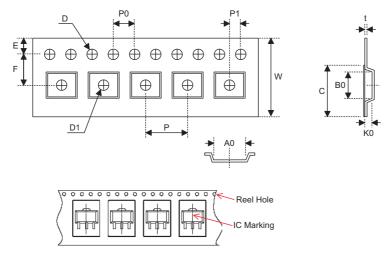
Symbol	Description	Dimensions in mm
Α	Reel Outer Diameter	178.0±1.0
В	Reel Inner Diameter	60.0±1.0
С	Spindle Hole Diameter	13.0 +0.5/-0.2
D	Key Slit Width	2.4±0.1
T1	Space Between Flange	9.0±0.5
T2	Reel Thickness	11.8±0.5

Rev. 1.00 11 February 11, 2010

Carrier Tape Dimensions

SOP 8N

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	12.0 +0.3/-0.1
Р	Cavity Pitch	8.0±0.1
Е	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	5.5±0.1
D	Perforation Diameter	1.55±0.1
D1	Cavity Hole Diameter	1.50 +0.25/-0.00
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	6.4±0.1
В0	Cavity Width	5.2±0.1
K0	Cavity Depth	2.1±0.1
t	Carrier Tape Thickness	0.30±0.05
С	Cover Tape Width	9.3±0.1


SOP 14N

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	16.0 +0.3/-0.1
Р	Cavity Pitch	8.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	7.5±0.1
D	Perforation Diameter	1.5 +0.1/-0.0
D1	Cavity Hole Diameter	1.50 +0.25/-0.00
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	6.5±0.1
В0	Cavity Width	9.5±0.1
K0	Cavity Depth	2.1±0.1
t	Carrier Tape Thickness	0.30±0.05
С	Cover Tape Width	13.3±0.1

Rev. 1.00 12 February 11, 2010

Carrier Tape Dimensions

TSOT23-5

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	8.0±0.2
Р	Cavity Pitch	4.0±0.1
Е	Perforation Position	1.75±0.10
F	Cavity to Perforation (Width Direction)	3.50±0.05
D	Perforation Diameter	1.5 +0.1/-0.0
D1	Cavity Hole Diameter	1.1 +0.1/-0.0
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.00±0.05
A0	Cavity Length	3.2±0.1
В0	Cavity Width	3.2±0.1
K0	Cavity Depth	1.1±0.1
t	Carrier Tape Thickness	0.25±0.05
С	Cover Tape Width	5.3±0.1

Rev. 1.00 13 February 11, 2010

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan

Tel: 886-2-2655-7070 Fax: 886-2-2655-7373

Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shenzhen Sales Office)

5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057

Tel: 86-755-8616-9908, 86-755-8616-9308

Fax: 86-755-8616-9722

Holtek Semiconductor (USA), Inc. (North America Sales Office)

46729 Fremont Blvd., Fremont, CA 94538

Tel: 1-510-252-9880 Fax: 1-510-252-9885 http://www.holtek.com

Copyright $\ensuremath{@}$ 2010 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Rev. 1.00 14 February 11, 2010