CFPT9300

SMD Temperature Compensated Crystal Oscillator (PLUTO)

A series of lead free surface mountable TCXO/TCVCXO for medium to high volume applications where small size (5 x 3.2 mm) and high performance are prerequisites.

Product description

The CFPT9300 uses Rakon's proprietary ASIC 'Pluto™', a single chip oscillator and analogue compensation circuit, capable of sub 0.3ppm performance over an extented temperature range. Its ability to function down to a supply voltage of 2.4V and low power consumption makes it particulary suitable for mobile applications.

Applications

- Communications
- Other

Features

3.2

Load sensitivity

- HCMOS or clipped sinewave output
- Stability ±0.2ppm over -20/70°C or ±0.3ppm over -40/85°C

Specifications

1.0 SPECIFICATION REFERENCES

Line	Parameter	Description
1.1	Model description	CFPT9300
1.2	RoHS compliant	Yes
1.3	Package size	5.0 x 3.2 x 1.7 mm (see model drawing)

2.0 FREQUENCY CHARACTERISTICS (ALL)

3.1	Supply voltage stability	$\pm 5\%$ variation, reference to frequency at nominal supply voltage, typical	±0.1	ppm
Line	Parameter	Test Condition	Value	Unit
3.0	FREQUENCY CHARACTER	ISTICS (CLIPPED SINEWAVE)		
2.5	Reflow shift	Measured \geq 60 minutes after reflow	±1 max	ppm
2.4	Temperature range	Operating temperature range over which temperature stability is measured	-40 to 85	°C
2.3	Frequency stability over temperature	Reference to (Fmax + Fmin)/2	±0.2 to 2	ppm
2.2	Frequency calibration	Initial calibration @ 25°C	±1 max	ppm
2.1	Frequency range	Frequency range available (note 1 & 2)	1.25 to 52	MHz
Line	Parameter	Test Condition	Value	Unit

±10% variation, reference to frequency at nominal load, typical

±0.05

ppm

rakon

4.0 FREQUENCY CHARACTERISTICS (HCMOS)

Line	Parameter	Test Condition	Value	Unit
4.1	Supply voltage stability <20MHz	±5% variation, reference to frequency at nominal supply voltage, typical	±0.1	ppm
4.2	Supply voltage stability 20 - 35MHz	±5% variation, reference to frequency at nominal supply voltage, typical	±0.3	ppm
4.3	Supply voltage stability 35 - 52MHz	±5% variation, reference to frequency at nominal supply voltage, typical	±0.5	ppm
4.4	Load sensitivity <20MHz	\pm 5pF variation, reference to frequency at nominal load, typical	±0.2	ppm
4.5	Load sensitivity 20 - 35MHz	\pm 5pF variation, reference to frequency at nominal load, typical	±0.3	ppm
4.6	Load sensitivity 35 - 52MHz	\pm 5pF variation, reference to frequency at nominal load, typical	±0.5	ppm

5.0 LONG TERM STABILITY

5.0	LONG TERM STADIETT			
Line	Parameter	Test Condition	Value	Unit
5.1	In first year	≤20MHz	±1 max	ppm
5.2	In first year	>20MHz	±2 max	ppm
5.3	For 10 years	≤20MHz	±3 max	ppm
5.4	For 10 years	>20MHz	±5 max	ppm

6.0	POWER SUPPLY			
Line	Parameter	Test Condition	Value	Unit
6.1	Supply voltage	Nominal supply voltage $(\pm 10\%)$ to be specified as part of model code	2.4 to 6	V
6.2	Current HCMOS	typically: 1+frequency(MHz)*supply(V)*{load(pF)+15}*10-3mA e.g 20MHz, 3.3V, 15pF approximately equals 3mA		
6.3	Current Clipped Sinewave	typically: 1+frequency(MHz)*1.2*{load(pF) +30}*10 ⁻³ mA e.g 20MHz,10pF approximately equals 2mA		

7.0 CONTROL VOLTAGE

Line	Parameter	Test Condition	Value	Unit
7.1	Control voltage range		0.5 to 2.5	V
7.2	Frequency tuning	Frequency ≤20MHz (note 3)	±5 min	ppm
7.3	Frequency tuning	Frequency >20MHz (note 3)	±7 min	ppm
7.4	Frequency tuning	Custom request	±5 to 20	ppm
7.5	Port input impedance	Measured between control voltage and GND pin	100 min	kΩ
7.6	Linearity		2 max	%
7.7	Slope	Positive		
7.8	Modulation bandwidth		2 min	kHz
8.0	OSCILLATOR OUTPUT-	CLIPPED SINEWAVE		
Line	Parameter	Test Condition	Value	Unit
8.1	Output waveform	Clipped sinewave		
8.2	Output voltage level	Peak to peak voltage measured at minimum supply voltage	0.8 min	V
8.3	Output load resistance		10	kΩ
8.4	Output load capacitance		10	pF

9.0	OSCILLATOR OUTPUT-H	CMOS		
Line	Parameter	Test Condition	Value	Unit
9.1	Output waveform	HCMOS. Refer to note 2 re ACMOS		
9.2	Output voltage level low		0.1 max	Vs
9.3	Output voltage level high		0.9 min	Vs
9.4	Rise and fall times		8 max	ns
9.5	Duty cycle	at 50% level	45 to 55	%
9.6	Load		15	pF
10.0	PHASE NOISE			
Line	Parameter	Test Condition	Value	Unit
10.1	SSB phase noise power density at 1Hz offset	Typical value for a 14.4MHz oscillator at 25°C	-70	dBc/Hz
10.2	SSB phase noise power density at 10Hz offset	Typical value for a 14.4MHz oscillator at 25°C	-95	dBc/Hz
10.3	SSB phase noise power density at 100Hz offset	Typical value for a 14.4MHz oscillator at 25°C	-115	dBc/Hz
10.4	SSB phase noise power density at 1kHz offset	Typical value for a 14.4MHz oscillator at 25°C	-135	dBc/Hz
10.5	SSB phase noise power density at 10kHz offset	Typical value for a 14.4MHz oscillator at 25°C	-140	dBc/Hz
10.6	SSB phase noise power density at 100kHz offset	Typical value for a 14.4MHz oscillator at 25°C	-145	dBc/Hz
11.0	ENVIRONMENTAL			
Line	Parameter	Description		
11.1	Shock	IEC 60068-2-27 test Ea. 1500gn acceleration for 0.5ms duration, ha each direction along three mutually perpendicular axes at octave pe		shocks in
11.2	Vibration	IEC 60068-2-6 test Fc. 10-60Hz 1.5mm displacement, 60-2000Hz a three mutually perpendicular axes at 1 octave per minute	t 20gn, 4 hours	in each of
11.3	Storage temperature	-55°C to 125°C		
12.0	PIN CONNECTIONS			
Line	Parameter	Description		
12.1	Pin 1	Voltage Control (leave unconnected in case the 'no frequency adjust	' option has bee	en ordered)
12.2	Pin 2	Ground		
12.3	Pin 3	Output		
12.4	Pin 4	Supply Voltage, Vs		
13.0	MARKING			
Line	Parameter	Description		
13.1	Туре	Laser marked		
13.2	Line 1	[R XXX] Rakon, manufacturing identifier (XXX)		
13.3	Line 2	$[\Delta \ 0000 \ YW]$ Pad 1 / static sensitivity identifier (Δ), abbreviated par date code (YW)	t number (0000), device
14.0	MANUFACTURING INFO	RMATION		
Line	Parameter	Description		
14.1	Reflow shift	Solder reflow processes as per profile attached (see reflow profile di	agram)	

14.1	Reflow shift	Solder reflow processes as per profile attached (see reflow profile diagram)
14.2	Packaging description	Quanities >100 pieces will be supplied on tape and reel

15.0	NOTES	
Line	Parameter	Description
15.1	1	Frequency range available dependent on output type. Available in HCMOS output: 1.25-52MHz and clipped sinewave output: 10-52MHz
15.2	2	Available on request: ACMOS, 50pF max load or sinewave $10k\Omega$ //10pF, DC coupled
15.3	3	Other tuning ranges may be available on request

Drawing Name: CFPT9300 Model Drawing

MODEL DRAWING

BOTTOM VIEW

RECOMMENDED PAD LAYOUT - TOP VIEW

NOTE:

- 1) Pin connections are detailed in the specification.
- For correct operation a 10nF supply de-coupling capacitor should be placed next to the device, as shown above. If an AC coupled output is required a 10nF should be placed in series with output pad 3.

TITLE: CFPT9300 MODEL OUTLINE DRAWING			Tolerance:	
FILENAME: CFPT9300_MD	REVISION:	В	$- XX = \pm 0.5$ $X.X = \pm 0.2$	
RELATED DRAWINGS:	DATE:	22-Jul-10	$X.XX = \pm 0.10$	rakon
	SCALE:	5:1	$- X.XXX = \pm 0.05$ $- X^{\circ} = \pm 1.0^{\circ}$	
	Millimeters	[inch]	Hole =±0.10	©2009 Rakon Limited

Drawing Name: CFPT9300 Model Code Builder

MODEL CODE BUILDER

TITLE: CFPT9300 MODEL CODE BUILDER		Tolerance: - xx =±0.5	
FILENAME: CFPT9300_MC	REVISION: A	$XX = \pm 0.3$ X.X = ± 0.2	
RELATED DRAWINGS:	DATE: 25-Feb-11	$X.XX = \pm 0.10$	rakon
	SCALE: NTS	$X.XXX = \pm 0.05$ $X^{0} = \pm 1.0^{\circ}$	
	Millimeters [inch]	Hole $=\pm 0.10$	©2009 Rakon Limited

AX*

EX*

FΧ

* Code may not be available for all frequency

GΧ

-40 to 85°C

Drawing Name: CFPT9300 Series Test Circuit

- * DC cut capacitor required for AC coupled Clipped sinewave.
- * Load 15pF (HCMOS or 10k Ω // 10pF (Clipped sinewave), inclusive of probe and jig capacitance.

TITLE: CFPT9300 SERIES TEST CIRCUIT	FILENAME: CFPT9300_TC	
RELATED DRAWINGS:	REVISION: A DATE: 12-May-10 SCALE: NTS	rakon
	Millimetres [inch]	©2009 Rakon Limited

Drawing Name: CFPT9300 Output Waveform Chart

TITLE: CFPT9300 SERIES OUTPUT WAVEFORM - HCMOS RELATED DRAWINGS: FILENAME: CFPT9300_OW REVISION: A

DATE: 13-May-10 SCALE: NTS Millimetres [inch]

Drawing Name: CFPT9300 Reflow Profile

Pb-Free Reflow Soldering Profile *

* NOTE:

This profile was used during the qualification testing of the product and therefore represents worst case conditions. It is not recommended for use by the customer in the actual assembly of these parts.

TITLE: CFPT9300 SERIES REFLOW PROFILE		Tolerance: - xx =±0.5	
FILENAME: CFPT9300_RF	REVISION: B	$- XX = \pm 0.5$ $- X.X = \pm 0.2$	
RELATED DRAWINGS:	DATE: 09-Sep-10		rakon
	SCALE: NTS	$- X.XXX = \pm 0.05$ $- x^{\circ} = \pm 1.0^{\circ}$	
	Millimeters [inch]	Hole $=\pm 0.10$	©2009 Rakon Limited