Panasonic ideas for life

FEATURES

1. Super miniature design
$14 \times 8.6 \times 7.2 \mathrm{~mm} .551 \times .339 \times .283$ inch (standard PC board terminal)

2. Lineup includes silent type.

(75 type only)

Operation noise (Unit: dB)

3 GHz MICROWAVE RELAYS Miniature size Lineup includes 50/75 Ω type

RS RELAYS (ARS)

3. Excellent high frequency

 characteristics- Impedance: 50Ω
(Standard PC board terminal)

Frequency	to 900 MHz	to 3 GHz
V. S. W. R. (Max.)	1.20	1.40
Insertion loss (dB, Max.)	0.10	0.35
Isolation (dB, Min.)	60	35

- Impedance: 75Ω
(Standard PC board terminal)

Frequency	to 900 MHz	to 3 GHz
V. S. W. R. (Max.)	1.15	1.40
Insertion loss (dB, Max.)	0.10	0.30
Isolation (dB, Min.)	60	30

- Impedance: 50Ω
(Surface-mount terminal)

Frequency	to 900 MHz	to 3 GHz
V. S. W. R. (Max.)	1.20	1.40
Insertion loss (dB, Max.)	0.20	0.40
Isolation (dB, Min.)	55	30

- Impedance: 75Ω
(Surface-mount terminal)

Frequency	to 900 MHz	to 3 GHz
V. S. W. R. (Max.)	1.20	1.50
Insertion loss (dB, Max.)	0.20	0.50
Isolation (dB, Min.)	55	30

4. Lineup includes surface-mount terminal type

E and Y layouts available.

5. Lineup includes reversed contact

type

Great design freedom is possible using reversed contact type in which the positions of the N.O. and N.C. contacts are switched.

TYPICAL APPLICATIONS

1. Broadcasting and video equipment markets

- Digital broadcasting equipment
- STB/tuner, etc.

2. Mobile phone base stations
3. Communications market

- Antenna switching
- All types of wireless devices

4. Measurement equipment market

- Spectrum analyzer and oscilloscope, etc.

If you wish to use in applications with low level loads or with high frequency switching, please consult us.

ORDERING INFORMATION

TYPES

1. Standard PC board terminal and standard contact type

Impedance	Nominal coil voltage	Part No.			
		Single side stable type	1 coil latching type		2 coil latching type
50Ω	3 V DC	ARS1403	ARS1503		ARS1603
	4.5 V DC	ARS144H	ARS154H		ARS164H
	9 VDC	ARS1409	ARS1509		ARS1609
	12 VDC	ARS1412	ARS1512		ARS1612
	24 VDC	ARS1424	ARS1524		ARS1624
Impedance	Nominal coil voltage	Part No.			
		Standard type			Silent type
		Single side stable type	1 coil latching type	2 coil latching type	Single side stable type
75Ω	3 V DC	ARS1003	ARS1103	ARS1203	ARS1303
	4.5 V DC	ARS104H	ARS114H	ARS124H	ARS134H
	9 VDC	ARS1009	ARS1109	ARS1209	ARS1309
	12 VDC	ARS1012	ARS1112	ARS1212	ARS1312
	24 V DC	ARS1024	ARS1124	ARS1224	ARS1324

Standard packing: 50 pcs. in an inner package; 500 pcs. in an outer package
2. Standard PC board terminal and reversed contact type

Impedance	Nominal coil voltage	Part No.			
		Single side stable type	1 coil latching type		2 coil latching type
50Ω	3 V DC	ARS3403	ARS3503		ARS3603
	4.5 V DC	ARS344H	ARS354H		ARS364H
	9 VDC	ARS3409	ARS3509		ARS3609
	12 V DC	ARS3412	ARS3512		ARS3612
	24 V DC	ARS3424	ARS3524		ARS3624
Impedance	Nominal coil voltage	Part No.			
		Standard type			Silent type
		Single side stable type	1 coil latching type	2 coil latching typ	Single side stable type
75Ω	3 V DC	ARS3003	ARS3103	ARS3203	ARS3303
	4.5 V DC	ARS304H	ARS314H	ARS324H	ARS334H
	9 VDC	ARS3009	ARS3109	ARS3209	ARS3309
	12 VDC	ARS3012	ARS3112	ARS3212	ARS3312
	24 V DC	ARS3024	ARS3124	ARS3224	ARS3324

Standard packing: 50 pcs. in an inner package; 500 pcs. in an outer package
3. Surface-mount terminal and standard contact type, E layout

Impedance	Nominal coil voltage	Part No.		
		Single side stable type	1 coil latching type	2 coil latching type
50Ω	3 V DC	ARS14A03 \square	ARS15A03 \square	ARS16A03 \square
	4.5 V DC	ARS14A4H \square	ARS15A4H \square	ARS16A4H \square
	9 V DC	ARS14A09 \square	ARS15A09 \square	ARS16A09 \square
	12 VDC	ARS14A12 \square	ARS15A12 \square	ARS16A12 \square
	24 VDC	ARS14A24 \square	ARS15A24 \square	ARS16A24 \square
75Ω	3 V DC	ARS10A03 \square	ARS11A03 \square	ARS12A03 \square
	4.5 V DC	ARS10A4H \square	ARS11A4H \square	ARS12A4H \square
	9 V DC	ARS10A09 \square	ARS11A09 \square	ARS12A09 \square
	12 VDC	ARS10A12 \square	ARS11A12 \square	ARS12A12 \square
	24 V DC	ARS10A24 \square	ARS11A24 \square	ARS12A24 \square

Standard packing: 40 pcs. in an inner package (tube); 1,000 pcs. in an outer package
Standard packing: 500 pcs . in an inner package (tape and reel); 1,000 pcs. in an outer package
Note: The box at the end of a part number shows where packing type is indicated. If there is no indication, tube packing will be used.
If " X " or " Z " is added, tape and reel packing will be used. Example: ARS14A03 (tube packing), ARS14A03X (tape and reel packing)

4. Surface-mount terminal and standard contact type, Y layout

Impedance	Nominal coil voltage	Part No.		
		Single side stable type	1 coil latching type	2 coil latching type
50Ω	3 V DC	ARS14Y03 \square	ARS15Y03 \square	ARS16Y03 \square
	4.5 V DC	ARS14Y4H \square	ARS15Y4H \square	ARS16Y4H \square
	9 V DC	ARS14Y09 \square	ARS15Y09 \square	ARS16Y09 \square
	12 VDC	ARS14Y12 \square	ARS15Y12 \square	ARS16Y12 \square
	24 V DC	ARS14Y24 \square	ARS15Y24 \square	ARS16Y24 \square
75Ω	3 V DC	ARS10Y03 \square	ARS11Y03 \square	ARS12Y03 \square
	4.5 V DC	ARS10Y4H \square	ARS11Y4H \square	ARS12Y4H \square
	9 VDC	ARS10Y09 \square	ARS11Y09 \square	ARS12Y09 \square
	12 VDC	ARS10Y12 \square	ARS11Y12 \square	ARS12Y12 \square
	24 V DC	ARS10Y24 \square	ARS11Y24 \square	ARS12Y24 \square

Standard packing: 40 pcs. in an inner package (tube); 1,000 pcs. in an outer package
Standard packing: 500 pcs . in an inner package (tape and reel); $1,000 \mathrm{pcs}$. in an outer package
Note: The box at the end of a part number shows where packing type is indicated. If there is no indication, tube packing will be used.
If " X " or " Z " is added, tape and reel packing will be used. Example: ARS14Y03 (tube packing), ARS14Y03X (tape and reel packing)

5. Surface-mount terminal and reversed contact type, E layout

Impedance	Nominal coil voltage	Part No.		
		Single side stable type	1 coil latching type	2 coil latching type
50Ω	3 V DC	ARS34A03 \square	ARS35A03 \square	ARS36A03 \square
	4.5 V DC	ARS34A4H \square	ARS35A4H \square	ARS36A4H \square
	9 VDC	ARS34A09 \square	ARS35A09 \square	ARS36A09 \square
	12 VDC	ARS34A12 \square	ARS35A12 \square	ARS36A12 \square
	24 V DC	ARS34A24 \square	ARS35A24 \square	ARS36A24 \square
75Ω	3 V DC	ARS30A03 \square	ARS31A03 \square	ARS32A03 \square
	4.5 V DC	ARS30A4H \square	ARS31A4H \square	ARS32A4H \square
	9 V DC	ARS30A09 \square	ARS31A09 \square	ARS32A09 \square
	12 VDC	ARS30A12 \square	ARS31A12 \square	ARS32A12 \square
	24 V DC	ARS30A24 \square	ARS31A24 \square	ARS32A24 \square

Standard packing: 40 pcs. in an inner package (tube); $1,000 \mathrm{pcs}$. in an outer package
Standard packing: 500 pcs . in an inner package (tape and reel); $1,000 \mathrm{pcs}$. in an outer package
Note: The box at the end of a part number shows where packing type is indicated. If there is no indication, tube packing will be used.
If " X " or " Z " is added, tape and reel packing will be used. Example: ARS34A03 (tube packing), ARS34A03X (tape and reel packing)

6. Surface-mount terminal and reversed contact type, Y layout

Impedance	Nominal coil voltage	Part No.		
		Single side stable type	1 coil latching type	2 coil latching type
50Ω	3 V DC	ARS34Y03 \square	ARS35Y03 \square	ARS36Y03 \square
	4.5 V DC	ARS34Y4H \square	ARS35Y4H \square	ARS36Y4H \square
	9 VDC	ARS34Y09 \square	ARS35Y09 \square	ARS36Y09 \square
	12 V DC	ARS34Y12 \square	ARS35Y12 \square	ARS36Y12 \square
	24 VDC	ARS34Y24 \square	ARS35Y24 \square	ARS36Y24 \square
75Ω	3 VDC	ARS30Y03 \square	ARS31Y03 \square	ARS32Y03 \square
	4.5 V DC	ARS30Y4H \square	ARS31Y4H \square	ARS32Y4H \square
	9 VDC	ARS30Y09 \square	ARS31Y09 \square	ARS32Y09 \square
	12 V DC	ARS30Y12 \square	ARS31Y12 \square	ARS32Y12 \square
	24 VDC	ARS30Y24 \square	ARS31Y24 \square	ARS32Y24 \square

Standard packing: 40 pcs. in an inner package (tube); 1,000 pcs. in an outer package
Standard packing: 500 pcs . in an inner package (tape and reel); 1,000 pcs. in an outer package
Note: The box at the end of a part number shows where packing type is indicated. If there is no indication, tube packing will be used.
If " X " or " Z " is added, tape and reel packing will be used. Example: ARS34Y03 (tube packing), ARS34Y03X (tape and reel packing)

RATING

1. Coil data

1) Single side stable type

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current $[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max. applied voltage (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	66.7 mA	45Ω	200 mW	110% V or less of nominal voltage
4.5 V DC			44.4 mA	101.3Ω		
9 VDC			22.2 mA	405Ω		
12 VDC			16.7 mA	720Ω		
24 V DC			8.3 mA	2,880 Ω		

2) 1 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Nominal operating power	Max. applied voltage (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	66.7 mA	45Ω	200 mW	$110 \% \mathrm{~V}$ or less of nominal voltage
4.5 V DC			44.4 mA	101.3Ω		
9 V DC			22.2 mA	405Ω		
12 VDC			16.7 mA	720Ω		
24 V DC			8.3 mA	2,880 Ω		

3) 2 coil latching type

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	133.3 mA	22.5Ω	400 mW	$110 \% \mathrm{~V}$ or less of nominal voltage
4.5 V DC			88.9 mA	50.6Ω		
9 V DC			44.4 mA	202.5Ω		
12 VDC			33.3 mA	360Ω		
24 V DC			16.7 mA	1,440 Ω		

2. Specifications

Item			Specifications
Contact	Arrangement		1 Form C
	Contact material		Gold plating
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 10 V AC 10mA)
Rating	Nominal switching capacity		1 W (at 3 GHz , Impedance: 50/75 , V.S.W.R.: Max. 1.4), 10 mA 24 V DC (resistive load)
	Contact carrying power		Max. 10W (at 3GHz, Impedance: 50/75 , V.S.W.R.: Max. 1.4)
	Max. switching voltage		30 V DC
	Max. switching current		0.5 A DC
	Nominal operating power	Single side stable type	200 mW
		1 coil latching type	200 mW
		2 coil latching type	400 mW
High frequency characteristics, Impedance: 50Ω (Initial)	V.S.W.R.		Max. 1.20/900MHz, Max. 1.40/3GHz (Standard PC board terminal) Max. 1.20/900MHz, Max. 1.40/3GHz (Surface-mount terminal)
	Insertion loss (without D.U.T. board's loss)		Max. $0.10 \mathrm{~dB} / 900 \mathrm{MHz}$, Max. $0.35 \mathrm{~dB} / 3 \mathrm{GHz}$ (Standard PC board terminal) Max. $0.20 \mathrm{~dB} / 900 \mathrm{MHz}$, Max. $0.40 \mathrm{~dB} / 3 \mathrm{GHz}$ (Surface-mount terminal)
	Isolation		Min. $60 \mathrm{~dB} / 900 \mathrm{MHz}$, Min. $35 \mathrm{~dB} / 3 \mathrm{GHz}$ (Standard PC board terminal) Min. $55 \mathrm{~dB} / 900 \mathrm{MHz}$, Min. 30dB/3GHz (Surface-mount terminal)
High frequency characteristics, Impedance: 75Ω (Initial)	V.S.W.R.		Max. 1.15/900MHz, Max. 1.40/3GHz (Standard PC board terminal) Max. 1.20/900MHz, Max. 1.50/3GHz (Surface-mount terminal)
	Insertion loss (without D.U.T. board's loss)		Max. $0.10 \mathrm{~dB} / 900 \mathrm{MHz}$, Max. $0.30 \mathrm{~dB} / 3 \mathrm{GHz}$ (Standard PC board terminal) Max. $0.20 \mathrm{~dB} / 900 \mathrm{MHz}$, Max. $0.50 \mathrm{~dB} / 3 \mathrm{GHz}$ (Surface-mount terminal)
	Isolation		Min. $60 \mathrm{~dB} / 900 \mathrm{MHz}$, Min. 30dB/3GHz (Standard PC board terminal) Min. $55 \mathrm{~dB} / 900 \mathrm{MHz}$, Min. 30dB/3GHz (Surface-mount terminal)
Electrical characteristics	Insulation resistance (Initial)		Min. 100M (at 500V DC, Measurement at same location as "Breakdown voltage" section.)
	Breakdown voltage (Initial)	Between open contacts	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and earth terminal	500 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	1,000 Vrms for 1 min . (Detection current: 10 mA)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $60^{\circ} \mathrm{C} 140^{\circ} \mathrm{F}$ (By resistive method, nominal voltage applied to the coil, contact carrying current: 10 mA)
	Operate time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (Nominal voltage applied to the coil, excluding contact bounce time)
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 6 ms (Nominal voltage applied to the coil, excluding contact bounce time) (without diode)
	Set time and Reset time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (Nominal voltage applied to the coil, excluding contact bounce time)
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms , detection time: $10 \mu \mathrm{~s}$)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Operation noise*	Standard type		Approx. 40dB
	Silent type (75Ω, PC board terminal type only)		Approx. 30dB
Expected life	Mechanical life	Single side stable standard type	Min. 5×10^{6} (at 180 cpm)
		Single side stable silent type	Min. 10^{6} (at 180 cpm)
		Latching type	Min. 10^{6} (at 180 cpm)
	Electrical life	50Ω type	Min. 10^{6} (Standard PC board terminal), Min. 3×10^{5} (Surface-mount terminal) (10V DC 10 mA resistive load)/Min. 3×10^{5} (24 V DC 10 mA resistive load) Min. 10^{6} (Standard PC board terminal), Min. 3×10^{5} (Surface-mount terminal) (1W, at 3GHz, Impedance: 50Ω, V.S.W.R: Max. 1.4) (at 20 cpm)
		75Ω type	Min. 3×10^{5} (10 mA 24 V DC resistive load) Min. 3×10^{5} (1 W , at 3 GHz , Impedance: 75Ω, V.S.W.R: Max. 1.4) (at 20 cpm)
Conditions	Conditions fo	operation, transport and storage	Ambient temperature: -40 to $70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$ (Single side stable standard and Latching type) Ambient temperature: -40 to $60^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ (Single side stable silent type) Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
Unit weight			Approx. 2 g .071 oz

*Measured the operation noise of the relay alone (with diodes at both ends of the coil) 30 cm away from top side, by the A-weighted, FAST method while applying the rated voltage.
(Reference) Operation noise of RK relay (existing model): Approx. 50dB

REFERENCE DATA

1.-(1) High frequency characteristics (Impedance: 50Ω, Standard PC board terminal)

Sample: ARS144H; Measuring method: Measured with Agilent Technologies network analyzer (E8363B). *For details see No. 7 under "NOTES".

- V.S.W.R. characteristics

- Insertion loss characteristics
(without D.U.T. board's loss)

- Isolation characteristics

1.-(2) High frequency characteristics (Impedance: 75Ω, Standard PC board terminal)

Sample: ARS104H; Measuring method: Measured with Agilent Technologies network analyzer (E8363B). *For details see No. 7 under "NOTES".

- V.S.W.R. characteristics

- Insertion loss characteristics
(without D.U.T. board's loss)

- Isolation characteristics

1.-(3) High frequency characteristics (Impedance: 50Ω, Surface-mount terminal)

Sample: ARS14A4H; Measuring method: Measured with Agilent Technologies network analyzer (E8363B). *For details see No. 7 under "NOTES".

- V.S.W.R. characteristics

- Insertion loss characteristics
(without D.U.T. board's loss)

- Isolation characteristics

1.-(4) High frequency characteristics (Impedance: 75Ω, Surface-mount terminal)

Sample: ARS10A4H; Measuring method: Measured with Agilent Technologies network analyzer (E8363B). *For details see No. 7 under "NOTES".

- V.S.W.R. characteristics

- Insertion loss characteristics
(without D.U.T. board's loss)

- Isolation characteristics

2.-(1) Operation noise distribution

Sample: ARS134H (single side stable silent type),
50 pcs.
Coil voltage: rated voltage applied (with diode)
Equipment setting: A weighted sound pressure level,
FAST.
Background noise: approx. 20 dB
Method of measurement: See figure below.

2.-(2) Operation noise distribution

Sample: ARS104H (single side stable standard type), 50 pcs .
Coil voltage: rated voltage applied (with diode)
Equipment setting: A weighted sound pressure level,
FAST.
Background noise: approx. 20 dB
Method of measurement: See figure below.

When released

2.-(3) Operation noise distribution

Sample: ARS114H (latching type), 50 pcs.
Coil voltage: rated voltage applied (with diode)
Equipment setting: A weighted sound pressure level,
FAST.
Background noise: approx. 20 dB
Method of measurement: See figure below.

DIMENSIONS (mm inch)
The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/
<Standard PC board terminal>

1. 50Ω type

CAD Data

External dimensions

Tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

2. 75Ω type

CAD Data

External dimensions

Tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)

1. Standard contact type

Single side stable type 1 coil latching type (Deenergized condition) (Reset condition)

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

2 coil latching type (Reset condition)

2. Reversed contact type

Single side stable type 1 coil latching type 2 coil latching type (Deenergized condition) (Reset condition) (Reset condition)

<Surface-mount terminal>

1. Impedance: 50Ω type

1) E layout
 External dimensions

Schematic (Top view)
<Standard contact type>

<Reversed contact type>
Single side stable type
(Deenergized condition)

1 coil latching type (Reset condition)

$$
1 \text { coil latching type }
$$ (Reset condition)

2-coil latching type (Reset condition)

2-coil latching type (Reset condition)

Tolerance: $\pm 0.3 \pm .012$
2) Y layout

External dimensions

Schematic (Top view)
<Standard contact type>

Single side stable type	1 coil latching type		
(Deenergized condition)	(Reset condition)	\quad	2-coil latching type
:---:			
(Reset condition)			

1 coil latching type (Reset condition)

2-coil latching type (Reset condition)

Tolerance: $\pm 0.3 \pm .012$

2. Impedance: 75Ω type

1) E layout

External dimensions

Schematic (Top view)
<Standard contact type>

<Reversed contact type>
Single side stable type
1 coil latching type
(Reset condition)

2-coil latching type (Reset condition)

Tolerance: $\pm 0.3 \pm .012$

2) Y layout

Schematic (Top view)
<Standard contact type>

<Reversed contact type>
Single side stable type (Deenergized condition)

1 coil latching type (Reset condition)

2-coil latching type (Reset condition)

Tolerance: $\pm 0.3 \pm .012$

NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.
However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 30 ms to set/reset the latching type relay.

2. Coil connection

When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

Since RS relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Cleaning

For automatic cleaning, the boiling method is recommended. Avoid ultrasonic cleaning which subjects the relays to high frequency vibrations, which may cause the contacts to stick. It is recommended that alcoholic solvents be used.

5. Conditions for operation, transport and storage conditions

1) Temperature

- Single side stable standard and latching type: -40 to $70^{\circ} \mathrm{C}-40$ to $158^{\circ} \mathrm{F}$
- Single side stable silent type:
-40 to $60^{\circ} \mathrm{C}-40$ to $140^{\circ} \mathrm{F}$

2) Humidity: 5 to $85 \% \mathrm{RH}$
(Avoid freezing and condensation.)
The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:
Single side stable standard and latching type

Single side stable silent type

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.

5) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ}$. This causes problems such as sticking of movable parts or operational time lags.
6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.
7) Storage requirements

Since the relay is sensitive to humidity, the surface-mount type is packaged with tightly sealed anti-humidity packaging. However, when storing, please be careful of the following.
(1) Please use promptly once the antihumidity pack is opened.
If relays are left as is after unpacking, they will absorb moisture which will result in loss of air tightness as a result of case expansion due to thermal stress when reflow soldering during the mounting process. (within one day, $30^{\circ} \mathrm{C}$ and 60% R.H or less)
(2) When storing for a log period after opening the anti-humidity pack, storage in anti-humidity packaging with an antihumidity bag to which silica gel has been added, is recommended.
*Furthermore, if the relay is solder mounted when it has been subjected to excessive humidity, cracks and leaks can occur. Be sure to mount the relay under the required mounting conditions.

6. Soldering

1) Please meet the following conditions if this relay is to be automatically soldered.
(1) Preheating: Max. $120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$
(terminal solder surface) for max. 120
seconds
(2) Soldering: Max. $260 \pm 5^{\circ} \mathrm{C} 500 \pm 9^{\circ} \mathrm{F}$ for max. 6 seconds
*Relays are influenced by the type of PC board used. Please confirm with the actual PC board you plan to use.
*Please avoid reflow soldering.
2) Surface-mount terminal

In case of automatic soldering, the
following conditions should be observed
(1) Position of measuring temperature

A: Surface of PC board where relay is mounted.
(2) IR (infrared reflow) soldering method

- Mounting cautions

Rise in relay temperature depends greatly on the component mix on a given PC board and the heating method of the reflow equipment. Therefore, please test beforehand using actual equipment to ensure that the temperature where the relay terminals are soldered and the temperature at the top of the relay case are within the conditions given above.
3) Please meet the following conditions if this relay is to be soldered by hand.
(1) $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$ for max. 10 seconds
(2) $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ for max. 3 seconds

The effect on the relay depends on the actual substrate used. Please verify the substrate to be used.
(3) Avoid ultrasonic cleaning. Doing so will adversely affect relay characteristics. Please use alcohol-based cleaning solvents when cleaning relays.

7. Tape and reel packing

1) Tape dimensions

2) Dimensions of plastic reel

8. Measuring method

1) 50Ω type

Connect connectors 1 and 2 respectively to PORT 1 and PORT 2. Perform calibration using the 3.5 mm calibration kit (HP85052B).

No.	Product name	Contents
1	Agilent	
	Adapter $2.4 \mathrm{~mm}-3.5 \mathrm{~mm}$ female .095inch-.138inch female	
2	SUHNER	Cable
	SUCOFLEX104	3.5mm-3.5mm male .138inch-.138inch male

After calibration, connect the D.U.T.
board and measure. However, connectors other than those for measurement should be connected with a 50Ω termination resistor.
<Standard PC board terminal>
PC board
Dimensions (mm inch)

<Surface-mount terminal and

E layout>

PC board
Dimensions (mm inch)

<Surface-mount terminal and

Y layout>

PC board
Dimensions (mm inch)

PC board for correction
Dimensions (mm inch)

Material: Glass PTFE double-sided through hole PC board R-4737 (Panasonic Corporation)
Board thickness: $t=0.8 \mathrm{~mm} .031$ inch
Copper plating: $18 \mu \mathrm{~m}$
Connector (SMA type receptacle)
Product name: 01K1808-00 (Waka
Manufacturing Co., Ltd.)
Insertion loss compensation
The insertion loss of relay itself is given by subtracting the insertion loss of shortcircuit the Com and the NC (or NO).
(signal path and two connectors)
2) 75Ω type

Connect connectors 1 and 2 respectively to PORT 1 and PORT 2. Perform calibration using the 3.5 mm calibration kit (HP85039B).

No.	Product name	Contents
1	$85134-60003$	Test port cable
2	11852 B	Conversion adapter; $50 \Omega \mathrm{~N}$ type (female) to $75 \Omega \mathrm{~N}$ type (male)
2	$85039-60011$	Conversion adapter; $75 \Omega \mathrm{~N}$ type (female) to $75 \Omega \mathrm{~F}$ type (male)

After calibration, connect the D.U.T. board and measure. However, connectors other than those for measurement should be connected with a 75Ω termination resistor.

<Standard PC board terminal>

PC board
Dimensions (mm inch)

<Surface-mount terminal and E layout>
PC board
Dimensions (mm inch)

<Surface-mount terminal and
Y layout>
PC board
Dimensions (mm inch)

PC board for correction
Dimensions (mm inch)

Material: Glass PTFE double-sided through hole PC board R-4737 (Panasonic Corporation)
Board thickness: $t=0.8 \mathrm{~mm} .031$ inch
Copper plating: $18 \mu \mathrm{~m}$
Connector (F type receptacle)
Product name: C05-0236 (Komine
Musen Electric Corporation)

Insertion loss compensation
The insertion loss of relay itself is given by subtracting the insertion loss of shortcircuit the COM and the NC (or NO). (signal path and two connectors)

9. Others

1) The switching lifetime is defined under the standard test condition specified in the JIS* C 5442 standard (temperature 15 to $35^{\circ} \mathrm{C} 59$ to $95^{\circ} \mathrm{F}$, humidity 25 to $75 \%)$. Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors.
Also, be especially careful of loads such as those listed below.

- When used for AC load-operating and the operating phase is synchronous, rocking and fusing can easily occur due to contact shifting.
- When high-frequency opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO_{3} is formed. This can corrode metal materials.

Three countermeasures for these are listed here.
(1) Incorporate an arc-extinguishing circuit.
(2) Lower the operating frequency
(3) Lower the ambient humidity
2) Use the relay within specifications such as coil rating, contact rating and on/ off service life. If used beyond limits, the relay may overheat, generate smoke or catch fire.
3) Be careful not to drop the relay. If accidentally dropped, carefully check its appearance and characteristics before use.
4) Be careful to wire the relay correctly. Otherwise, malfunction, overheat, fire or other trouble may occur.
5) If a relay stays on in a circuit for many months or years at a time without being activated, circuit design should be reviewed so that the relay can remain non-excited. A coil that receives current all the time heats, which degrades insulation earlier than expected. A latching type relay is recommended for such circuits.
6) To ensure accurate operation of the latching type amidst surrounding temperature changes and other factors that might affect the set and reset pulse times, we recommend a coil impress set and reset pulse width of at least 30 ms at the rated operation voltage.
7) The latching type relay is shipped in the reset position. But jolts during transport or impacts during installation can change the reset position. It is, therefore, advisable to build a circuit in which the relay can be initialized (set and reset) just after turning on the power. 8) If silicone materials (e.g., silicone rubbers, silicone oils, silicone coating agents, silicone sealers) are used in the vicinity of the relay, the gas emitted from the silicone may adhere to the contacts of the relay during opening and closing and lead to improper contact. If this is the case, use a material other than silicone.

For general cautions for use, please refer to the "General Application Guidelines".

