DIGITRON SEMICONDUCTORS

2N5431

PN SILICON ANNULAR UNIJUNCTION TRANSITOR

MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)

Rating	Symbol	Value	Unit
RMS power dissipation (1)	P_D	360	mW
RMS emitter current	$ m I_e$	50	mA
Peak pulse emitter current (2)	$ m I_e$	1.5	Amp
Emitter reverse voltage	V_{B2E}	30	Volts
Interbase voltage(3)	V_{B2B1}	35	Volts
Operating junction temperature range	T _J	-65 to +125	°C
Storage temperature range	T_{stg}	-65 to +200	°C

- 1. Derate 3 mW/°C increase in ambient temperature.
- 2. Duty cycle \leq 1%, PRR = 10 PPS.
- 3. Based upon power dissipation at $T_A = 25$ °C.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}$ C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Intrinsic standoff ratio (1) (V _{B2B1} = 10V)	ŋ	0.72	0.80	-
Interbase resistance $(V_{B2B1} = 3V, I_E = 0)$	R _{BB}	6	8.5	kΩ
Interbase resistance temperature coefficient ($V_{B2B1} = 3V$, $I_E = 0$, $T_A = 0$ to 100° C)	аR _{вв}	0.4	0.8	%/°C
Emitter saturation voltage $^{(2)}$ (V _{B2B1} = 10V, I _E = 50mA)	$V_{EB1(sat)}$	-	3	Volts
Modulated interbase current $(V_{B2B1} = 10V, I_E = 50mA)$	I _{B2(mod)}	5	30	mA
Emitter reverse current $(V_{B2E} = 30V, I_{B1} = 0)$	I _{EB2O}	-	10	nA
Peak point emitter current $(V_{B2B1} = 25V)$ $(V_{B2B1} = 4V)$	${ m I}_{\sf P}$	-	0.4 4	μΑ
Valley point current $^{(2)}$ (V _{B2B1} = 20V, R _{B2} = 100ohms)	I _V	2	-	mA
Base one peak pulse voltage (V _{BB} = 4V)	V _{OB1}	1	-	Volts

- ŋ. Intrinsic standoff ratio is defined in terms of the peak point voltage, V_P, by means of the equation: V_P = ŋV_{B2B1} + V_F, where V_F is about 0.45V at 25°C @ I_F = 10µA and decreases with temperature at about 2.5 mV/°C. Components R₁, C₁ and the UJT form a relaxation oscillator, the remaining circuitry serves as a peak voltage detector. The forward drop of diode D₁ compensates for V_F. To use, the "cal" button is pushed, and R₃ is adjusted to make the current meter, M₁, read full scale. When the "cal" button is released, the value of ŋ is read directly from the meter, if full scale on the meter reads 1.
- 2. PW = 300μ s, duty cycle $\leq 2\%$ to avoid internal heating, which may result erroneous readings.

FIGURE 1 – UNJUNCTION TRANSISTOR SYMBOL AND NOMENCLATURE

FIGURE 2 - STATIC EMITTER CHARACTERISTICS CURVES

144 Market Street Kenilworth NJ 07033 USA phone +1.908.245-7200 fax +1.908.245-0555 sales@digitroncorp.com www.digitroncorp.com

DIGITRON SEMICONDUCTORS

2N5431

PN SILICON ANNULAR UNIJUNCTION TRANSITOR

FIGURE 3 - VOB1 TEST CIRCUIT

V₁ +4.0 V R₁ 100Ω 100Ω V_{OB1} C₁ 0.2 μF R_{B1} 20 Ω

FIGURE 5 - PRR TEST CIRCUIT AND WAVEFORM

DUTY CYCLE < 1.0%, PRR < 10 PPS

Dim	TO-18					
	Inc	hes	Millimeters			
	Min	Max	Min	Max		
CD	0.178	0.195	4.520	4.950		
CH	0.170	0.210	4.320	5.330		
HD	0.209	0.230	5.310	5.840		
LC	0.100 TP		2.540 TP			
LD	0.016	0.021	0.410	0.530		
LL	0.500	0.750	12.700	19.050		
LU	0.016	0.019	0.410	0.480		
Lı	-	0.050	1	1.270		
L ₂	0.250		6.350	189		
Р	0.100	-	2.540			
Q	-	0.040	-	1.020		
TL	0.028	0.048	0.710	1.220		
TW	0.036	0.046	0.910	1.170		
а	45°TP		45°TP			

Available Non-RoHS (standard) or RoHS compliant (add PBF suffix).

Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.