

Multi Output Clock Generator with Integrated 2.0GHz VCO AK8186B

FEATURES

- Low phase noise PLL : RMS Jitter < 300fs
- On-chip VCO tunes from 1.75GHz to 2.25GHz
- External VCO/VCXO to 500MHz optional
- 1 differential or 2 single-ended Inputs
- Reference Switchover/Holdover modes
- Lock Detect
- 3 pairs of 1GHz LVPECL outputs
- 2 pairs of 800MHz LVDS outputs
- 8 250MHz CMOS outputs (two per LVDS)
- Serial control register interface
- 3.3V+/-5% Operating Voltage
- 2.5V-3.3V LVPECL Drive Voltage
- Operating Temperature: -40 to +85°C
- Package: 64-pin Leadless QFN (Pb free)
- Pin compatible with AD9516-3

DESCRIPTION

The AK8186B is a multi-output clock generator with sub-ps jitter performance. The on-chip VCO tunes from 1.75GHz to 2.25GHz.

The distribution section has three pairs of LVPECL buffers (6 outputs) and two pairs of LVDS buffers (4 outputs)/eight CMOS buffers (two per LVDS outputs). The LVPECL outputs operate up to 1GHz, the LVDS outputs operate up to 800MHz and the CMOS outputs operate up to 250MHz.

Each pair of the outputs has a divider. The LVPECL outputs have the division range of 1 to 32. The LVDS and CMOS outputs have the 1 to 1024.

The AK8186B operates at 3.3V and the LVPECL outputs are supplied independently from 2.375V to 3.6V. The operating temperature range is from -40 to +85°C. The part is available in a 9mm 9 mm 64-pin Leadless-QFN (Pb free) package.

ORDERING INFORMATION

Part Number	Marking	Shipping Packaging	Package	Temperature Range
AK8186B	AK8186B	Tape and Reel	64-pin Leadless QFN	-40 to 85 °C

BLOCK DIAGRAM



Figure 1. AK8186B Block Diagram

Asahi KASEI

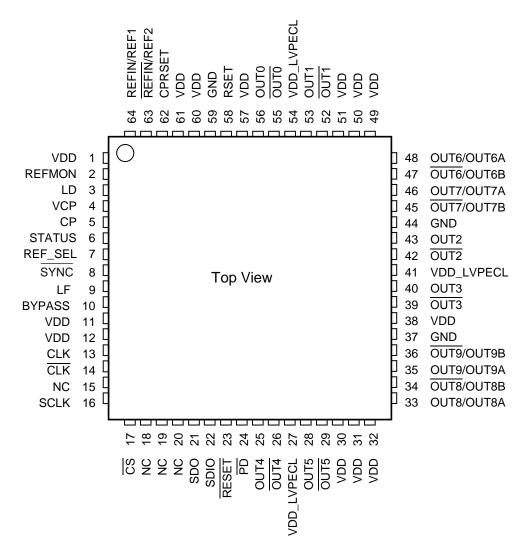

AK8186B

TABLE OF CONTENTS

l	Loop Filter for an External VCO	- 24 -
I	FEEDBACK DIVIDER (N DIVIDER)	- 24 -
l	LOCK DETECT	- 26 -
I	HOLDOVER	- 28 -
I	Frequency Status Monitors	- 30 -
CLC	OCK DISTRIBUTION	- 31 -
	VCO DIVIDER	- 31 -
(Channel Dividers for LVPECL OUTPUTS	- 31 -
(Channel Dividers for LVDS/CMOS OUTPUTS	- 31 -
5	Synchronizing the Outputs: SYNC FUNCTION	- 32 -
	Phase Offset	
l	LVPECL OUTPUTS : OUT0 to OUT5	- 34 -
l	LVDS/CMOS OUTPUTS : OUT6 to OUT9	- 34 -
	ET	
	Power-on reset (POR)	
/	Asynchronous reset by RESET pin	- 35 -
	Soft reset by 0x00[5]	
	WER DOWN MODES	
(Chip Power Down by PDn pin	- 36 -
I	PLL Power Down	- 36 -
I	REF1, REF2 Power Down	- 36 -
	VCO and CLK Input Power Down	- 36 -
l	Distribution Power Down	- 36 -
I	Individual Clock Output Power Down (OUTO to Ol	JT9)-
-	37 -	
SER	IAL CONTROL PORT	- 38 -
5	SERIAL CONTROL PORT PIN DESCRIPTIONS	- 38 -
(GENERAL DESCRIPTION OF SERIAL CONTROL POR	T- 38
-		
(Communication Cycle	- 38 -
-	The Instruction Word (16 bits)	- 39 -
	WRITE	- 39 -
	READ	-
l	BUS STALLING IN READ/WRITE ACCESS	- 40 -
I	MSB/LSB FIRST TRANSFERS	- 41 -
REG	GISTER MAP	- 43 -
REG	GISTER MAP FUNCTION DESCRIPTIONS	- 46 -
	Serial Port Configuration	
	PLL Configuration	
l	LVPECL Outputs	- 56 -
l	LVDS/CMOS Outputs	- 58 -
	LVPECL Channel Dividers	
l	LVDS/CMOS Channel Dividers	- 62 -
	VCO Divider and CLK Input	
	System	
l	Update All Registers	- 65 -
РАСКА		
TACK	GE INFORMATION	- 66 -
	AGE INFORMATION	
ME		- 66 -

PIN DESCRIPTION

PIN CONFIGURATION

Pin No.	Pin Name	Pin Type	Description
1	VDD	PWR	3.3V Power Supply.
2	REFMON	OUT	Reference Monitor.
3	LD	OUT	Lock Detect.
4	VCP		3.3V Power Supply for Charge Pump (CP)
5	СР	OUT	Charge Pump Output. Connect to external loop filter.
6	STATUS	OUT	Status Indication.
7	REF_SEL	IN	Reference Select. L: REF1 H: REF2. Pulled down with $30k\Omega$ internal resistor.
8,	SYNC	IN	Manual Synchronization and Manual Holdover. Active Low. Pulled up with 30 k $\!\Omega$ internal resistor.
9	LF	IN	Loop Filter Input.
10	BYPASS		This pin is for bypassing the LDO to ground.
11	VDD	PWR	3.3V Power supply.
12	VDD	PWR	3.3V Power supply.
13	CLK		Differential Input for the external VCO/VCXO
14	CLK		Differential Input for the external VCO/VCXO
15	NC		No Connect. Leave open or connected to GND.
16	SCLK	IN	Serial clock for the Serial control port. Pulled down with 30k Ω internal resistor.
17	CS	IN	Chip Select for the Serial control port. Active low. Pulled up to VDD with 30 k Ω internal resistor.
18	NC		No Connect. Leave open or connected to GND.
19	NC		No Connect. Leave open or connected to GND.
20	NC		No Connect. Leave open or connected to GND.
21	SDO	OUT	Unidirectional Serial Data Out for Serial Control Port.
22	SDIO	IN/OUT	Bidirectional Serial Data In/Out for Serial Control Port.
23	RESET	IN	Reset. Active low. Pulled up with 30 k Ω internal resistor.
24	PD	IN	Power Down. Active low. Pulled up with 30 k Ω internal resistor.
25	OUT4	OUT	LVPECL Output 4
26	OUT4	OUT	LVPECL Output 4
27	VDD_LVPECL	PWR	2.5V to 3.3V Power Supply for LVPECL Output (OUT4/OUT4, OUT5/OUT5).
28	OUT5	OUT	LVPECL Output 5
29	OUT5	OUT	LVPECL Output 5
30	VDD	PWR	3.3V Power supply
31	VDD	PWR	3.3V Power supply.
32	VDD	PWR	3.3V Power supply for OUT8/OUT8 and OUT9/OUT9.

(Continued on next page)

Pin No.	Pin Name	Pin Type	Description
33	OUT8/OUT8A	OUT	LVDS/CMOS Output 8
34	OUT8/OUT8B	OUT	LVDS/CMOS Output 8
35	OUT9/OUT9A	OUT	LVDS/CMOS Output 9
36	OUT9/OUT9B	OUT	LVDS/CMOS Output 9
37	GND	PWR	Ground. Includes External Pad (EPAD).
38	VDD	PWR	3.3V Power supply.
39	OUT3	OUT	LVPECL Output 3
40	OUT3	OUT	LVPECL Output 3
41	VDD_LVPECL	PWR	2.5V to 3.3V Power Supply for LVPECL Output (OUT2/OUT2, OUT3/OUT3).
42	OUT2	OUT	LVPECL Output 2
43	OUT2	OUT	LVPECL Output 2
44	GND	PWR	Ground. Includes External Pad (EPAD).
45	OUT7/OUT7B	OUT	LVDS/CMOS Output 7
46	OUT7/OUT7A	OUT	LVDS/CMOS Output 7
47	OUT6/OUT6B	OUT	LVDS/CMOS Output 6
48	OUT6 /OUT6A	OUT	LVDS/CMOS Output 6
49	VDD	PWR	3.3V Power supply for OUT6/OUT6 and OUT7/OUT7.
50	VDD	PWR	3.3V Power supply.
51	VDD	PWR	3.3V Power supply.
52	OUT1	OUT	LVPECL Output 1
53	OUT1	OUT	LVPECL Output 1
54	VDD_LVPECL	PWR	2.5V to 3.3V Power Supply for LVPECL Output (OUT0/OUT0, OUT1/OUT1).
55	OUT0	OUT	LVPECL Output 0
56	OUT0	OUT	LVPECL Output 0
57	VDD	PWR	3.3V Power supply.
58	RSET		Internal bias current control. Nominal value = $4.12k\Omega$
59	GND	PWR	Ground.
60	VDD	PWR	3.3V Power supply.
61	VDD	PWR	3.3V Power supply.
62	CPRSET		Charge pump current control. Nominal value = $5.1 k\Omega$
62	REFIN	IN	Differential input for the PLL reference.
63	/REF2	IIN	Alternatively single-ended input for REF2.
64	REFIN	IN	Differential input for the PLL reference.
04	/REF1	111	Alternatively single-ended input for REF1.
EPAD	GND	PWR	Ground. The EPAD is connected with other GND pins.

ABSOLUTE MAXIMUM RATING

Table 1	Over operation	Over operating free-air temperature range unless otherwise noted ⁽¹⁾				
Items	Symbol	Min	Max	Unit		
Supply voltage(VDD,VDD_LVPECL,VCP)	VDD	-0.3	4.3	V		
Input voltage	VIN	GND-0.3	VDD+0.3	V		
Input Current	lin	-10	10	mA		
Storage temperature	Tstg	-55	125	°C		

(1) Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rating conditions for extended periods may affect device reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

ESD Sensitive Device

This device is manufactured on a CMOS process, therefore, generically susceptible to damage by excessive static voltage. Failure to observe proper handling and installation procedures can cause damage. AKM recommends that this device is handled with appropriate precautions.

RECOMMENDED OPERATING CONDITIONS

Т	able	e 2
	abit	-

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating temperature	Та		-40		85	°C
Ourse have the set (1)	VDD, VCP		3.135	3.3	3.465	V
Supply voltage ⁽¹⁾	VDD_LVPECL		2.375		VDD	V
RSET Pin Resistor	Rr	Connect to GND.	4.08	4.12	4.16	kΩ
CPRSET Pin Resistor	Rc	Connect to GND.	4.3	5.1	6.2	kΩ
BYPASS Pin Capacitor	C _{BP}	Connect to VCOGND.		220		nF

(1) Power of 2.5V or 3.3V requires to be supplied from a single source. A decoupling capacitor of 0.1µF for power supply line should be located close to each VDD pin.

ELECTRICAL CHARACTERISTICS

Power Dissipation

I able J

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Power on default	PD1	*1		0.4	0.52	W
Full Operation	PD2	*2		1.6	2.0	W
Full Operation	PD3	*3		1.4	1.7	W
Power Down	PD4				0.4	mW

(*1)No clock input. Default register values. Not include power dissipation in external resistors.

(*2) REF1/REF2=246.575MHz, Rdiv=16, Ndiv=146, VCO=2.25GHz, VCO div=2, LVPECL=562.5MHz, CMOS(10pF load)=225MHz. Not include power dissipation in external resistors.

(*3) REF1/REF2=246.575MHz, Rdiv=16, Ndiv=146, VCO=2.25GHz, VCO div=2, LVPECL=562.5MHz, LVDS=225MHz. Not include power dissipation in external resistors.

PLL Characteristics

Table 4. All specifications at VDD=3.3V±5%, VDD_LVPECL= 2.375V to VDD, Ta: -40 to +85°C, unless otherwise noted

Parameter	Conditions	Min	Тур	Max	Unit
On Chip VCO Frequency Range		1750		2250	MHz
VCO Gain	Fvco=2.25GHz Fvco=1.97GHz Fvco=1.75GHz	18 16 14	67 52 41	146 128 114	MHz/V
Tuning Voltage		1.0		2.5	V
Frequency Pushing	Open Loop	-5		5	MHz/V
Phase Noise@100kHz Offset Phase Noise@1MHz Oddset	Fvco=2.00GHz Fvco=2.00GHz		-105 -130		dBc/Hz dBc/Hz
Reference Inputs (Differential Mode) Input Frequency	REFIN, REFINn Below 1MHz should be dc-coupled	0		250	MHz
Input Duty		40		60	%
Input Sensitivity(AC-Couple)		200			mVpp
Input Slew Rate		0.2			V/ns
Self-Bias Voltage,REFIN Self-Bias Voltage,REFINn		1.35 1.3	1.6 1.5	1.75 1.7	V V
Input Resistance,REFIN Input Resistance,REFINn		3.3 3.7	4.8 5.3	6.2 6.9	kΩ kΩ
Reference Inputs (Single-Ended Mode) Input Frequency(AC-Couple) Input Frequency(DC-Couple) Input Sensitivity(AC-Couple)	REF1, REF2	20 0 0.6		250 250	MHz MHz Vpp
Input Duty	at VDD/2	40		60	%
Input Slew Rate		0.2			V/ns
Input Logic HIgh Input Logic Low		2.0		0.8	V V
Input Logic Current		-100		+100	μA
INPUT Capacitance	REFIN/REF1, REFINn/REF2		5		pF
Phase Frequency Detector PFD Input Frequency Antibacklash Pulse Width			1.4	100	MHz ns
Charge Pump					
Icp Sink/Source	Programmable	4.32	4.0	E OO	
High Value Low Value	CPRSET=5.1kΩ, VCP=3.3V, CP =1.65V, Temp=25°C	4.32 0.54	4.8 0.60	5.28 0.66	mA mA
Icp Leakage	CP = 0.5 to VCP-0.5V	-1		+1	μA
Sink/Source Matching ^{*1}	CP = 0.5 to VCP-0.5V	-10	2.2	+10	%
Icp vs Vcp *2	CP = 0.5 to VCP-0.5V	-8	3.6	+8	%
Icp vs Temperature	CP = 0.5*VCP	-5		+5	%

Parameter	Conditions	Min	Тур	Мах	Unit
Prescaler (Part of N divider)					
Prescaler Input Frequency					
P = 1 FD	1E1[1]=0			300	MHz
P = 2 FD	1E1[1]=0			500	MHz
P = 3 FD	1E1[1]=0			500	MHz
P = 2 DM (2/3)	1E1[1]=0			500	MHz
P = 4 DM (4/5)	1E1[1]=0			500	MHz
P = 8 DM (8/9)	1E1[1]=0 or 1			2250	MHz
P = 16 DM (16/17)	1E1[1]=0 or 1			2250	MHz
P = 32 DM (32/33)	1E1[1]=0 or 1			2250	MHz
Prescaler Output Frequency	A,B counter input.			300	MHz
Noise Characteristics					
In-Band Phase Noise of the Charge	@500 kHz PFD Frequency		-169		dBc/Hz
Pump/Phase Frequency Detecter	@1MHz PFD Frequency		-166		dBc/Hz
	@10MHz PFD Frequency		-155		dBc/Hz
	@50MHz PFD Frequency		-147		dBc/Hz
PLL Figure of Merit (FOM)	FOM		-226		dBc/Hz
5	= Phase Noise - 10log(f _{PFD})				
	- 20log(Ndiv) + 20log(Odiv);				
	where Ndiv = N divider ratio, Odiv =				
	VCO divider ratio * Channel divider				
	ratio.				
PLL Digital Lock Detect Window					
Required to Lock	0x18[4] = 1		3.5		ns
-	0x18[4] = 0		7.5		ns
To Unlock After Lock (Hysteresis)	0x18[4] = 1		7		ns
	0x18[4] = 0		15		ns

*1) [(|lsink|-|lsource|)/{(|lsink|+|lsource|)/2}] * 100 [%]

*2) (||1-|2|)/(||1+|2|/2)*100 [%]

Clock Input Characteristics

Table 5.

Parameter	Conditions	Min	Тур	Max	Unit
CLOCK INPUTS (CLK, CLK)					
Input Frequency	Below 1MHz should be dc-coupled.	0		500	MHz
Input Sensitivity, Differential			150		mVpp
Input Level, Differential				2	Vpp
Input Common-Mode Voltage, Vcm		1.3	1.57	1.8	V
Input Common-Mode Range, Vcm	With 200mVpp signal applied. dc-coupled	1.3		1.8	V
Input Sensitivity, Single-Ended	CLK ac-coupled, CLK ac-bypassed to RF ground.		150		mVpp
Input Resistance	Self-biased	3.2	4.7	6.1	kΩ
Input Capacitance			2		pF

Clock Output Characteristics

Table 6. All specifications at VDD=3.3V±5%, VDD_LVPECL= 2.375V to VDD, Ta: -40 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
LVPECL CLOCK OUTPUT		Vterm = 50Ω to				
Output Frequency		VDD_LVPECL-2V			1000	MHz
Output High Voltage(VOH)		0xFn[3:2] = 00 (n=0 to 5) 0xFn[3:2] = 01 (n=0 to 5) 0xFn[3:2] = 10 (n=0 to 5) 0xFn[3:2] = 11 (n=0 to 5)	VDD_LVPECL -1.23	VDD_LVPECL -0.98	VDD_LVPECL -0.73	V
Output High Voltage(VOL)		0xFn[3:2] = 00 (n=0 to 5)	VDD_LVPECL -1.67	VDD_LVPECL -1.38	VDD_LVPECL -1.10	
		0xFn[3:2] = 01 (n=0 to 5)	VDD_LVPECL -1.86	VDD_LVPECL -1.58	VDD_LVPECL -1.31	
		0xFn[3:2] = 10 (n=0 to 5)	VDD_LVPECL -2.03	VDD_LVPECL -1.77	VDD_LVPECL -1.49	V
		0xFn[3:2] = 11 (n=0 to 5)	VDD_LVPECL -2.20	VDD_LVPECL -1.94	VDD_LVPECL -1.65	
Differential Output Voltage		0xFn[3:2] = 00 (n=0 to 5)	250	400	550	
		0xFn[3:2] = 01 (n=0 to 5)	430	600	770	
		0xFn[3:2] = 10 (n=0 to 5)	550	790	980	mV
		0xFn[3:2] = 11 (n=0 to 5)	740	960	1180	
LVDS CLOCK OUTPUT						
Output Frequency Maximum					800	MHz
Differential Output Voltage		0x14n[2:1] = 00 (n=0 to 3)	124	180	227	
		0x14n[2:1] = 01 (n=0 to 3)	247	360	454	mV
		0x14n[2:1] = 10 (n=0 to 3)	186	270	340	
		0x14n[2:1] = 11 (n=0 to 3)	247	360	454	
Delta V _{OD}		0x14n[2:1] = 01 (n=0 to 3)			25	mV
Output Offset Voltage		0x14n[2:1] = 01 (n=0 to 3)	1.125	1.24	1.375	V
Delta V _{op}		0x14n[2:1] = 01 (n=0 to 3)			25	mV
Short-Circuit Current		0x14n[2:1] = 01 (n=0 to 3) Output shorted to GND.		3.5	24	mA
CMOS CLOCK OUTPUTS						
Output Frequency Maximum		load=10pF			250	MHz
Output High Voltage(VOH)		loh=1mA	VDD-0.2			V
Output High Voltage(VOL)		lol=1mA			0.2	V

Timing Characteristics

Table 7. All specifications at VDD=3.3V±5%, VDD_LVPECL= 2.375V to VDD, Ta: -40 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	MIN	ТҮР	МАХ	Unit
LVPECL Output		Termination = 50Ω to VDD-LVPECL-2V 0xFn[3:2] = 10 (n=0 to 5)				
Rise/Fall time		20% to 80% / 80% to 20%		175	225	ps
Propagation Delay, CLK-to-LVPECL Ouput Variation with Temperature				TBD TBD		ns ps/∘C
Output Skew ^{*1}		Same Divider Different Dividers		5 13	40 40	ps ps
Output Duty		750MHz ≤ Fout 500M ≤ Fout < 750MHz 250M ≤ Fout < 500MHz ^{'2} Fout < 250MHz ^{'2 '3} Fout<1000MHz, VDD_LVPECL= $3.3V\pm5\%$	30 35 40 45 45	50 50 50 50 50	70 65 60 55 55	% % % %
LVDS Output		Termination = 100Ω @3.5mA 0x14n[2:1] = 01 (n=0 to 3) 20% to 80% / 80% to 20%		190	350	ps
Propagation Delay, CLK-to-LVPECL Ouput Variation with Temperature		For All Device Values		TBD TBD	350	ns ps/°C
Output Skew ^{*1}		Same Divider Different Dividers		6 25	62 150	ps ps
Output Duty		*2 *3	45	50	55	%
CMOS Output Rise/Fall time		20% to 80% / 80% to 20% Cload = 10pF		400	1000	ps
Propagation Delay, CLK-to-LVPECL Ouput Variation with Temperature		For All Device Values		TBD TBD		ns ps/°C
Output Skew ^{*1}		Same Divider Different Dividers		4 28	66 180	ps ps
Output Duty		*2 *3	45	50	55	%

*1) Skew: The Difference between any two similar delay paths while operating at the same voltage and temperature.

*2) Differential input through CLK/CLK pins: Clock input is assumed to be 50% duty.

*3) Single-end input through CLK pin: Clock input is assumed to be 50% duty and Fout < 150 MHz.

Clock Output Additive Phase Noise (Distribution Only; VCO Divider Not Used)

Table 8. All specifications at VDD=3.3V±5%, VDD_LVPECL= 2.375V to VDD, Ta: -40 to +85°C, unless otherwise noted

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
CLK-TO-LVPECL Additive Phase Noise					Does not include PLL and VCO
CLK=500MHz, Output=500MHz,					Input slew rate > 1 V/ns
Divider=1					
At 1 kHz Offset		-108		dBc/Hz	
At 10 kHz Offset		-130		dBc/Hz	
At 100 kHz Offset		-142		dBc/Hz	
At 1 MHz Offset		-149		dBc/Hz	
At 10 MHz Offset		-150		dBc/Hz	
CLK=500MHz, Output=250MHz,					Input slew rate > 1 V/ns
Divider=2					
At 1 kHz Offset		-114		dBc/Hz	
At 10 kHz Offset		-133		dBc/Hz	
At 100 kHz Offset		-143		dBc/Hz	
At 1 MHz Offset		-151		dBc/Hz	
At 10 MHz Offset		-152		dBc/Hz	
CLK-TO-LVDS Additive Phase Noise					Does not include PLL and VCO
CLK=500MHz, Output=500MHz,					Input slew rate > 1 V/ns
Divider=1					
At 1 kHz Offset		-106		dBc/Hz	
At 10 kHz Offset		-126		dBc/Hz	
At 100 kHz Offset		-141		dBc/Hz	
At 1 MHz Offset		-145		dBc/Hz	
At 10 MHz Offset		-147		dBc/Hz	
CLK=500MHz, Output=250MHz,					Input slew rate > 1 V/ns
Divider=2					
At 1 kHz Offset		-114		dBc/Hz	
At 10 kHz Offset		-133		dBc/Hz	
At 100 kHz Offset		-143		dBc/Hz	
At 1 MHz Offset		-150		dBc/Hz	
At 10 MHz Offset		-152		dBc/Hz	

Parameter	Min	Тур	Мах	Unit	Test Conditions/Comments
CLK-TO-CMOS Additive Phase Noise					Dose not include PLL and VCO
CLK=500MHz, Output=250MHz, Divider=2					Input slew rate > 1 V/ns
At 1 kHz Offset		-113		dBc/Hz	
At 10 kHz Offset		-135		dBc/Hz	
At 100 kHz Offset		-143		dBc/Hz	
At 1 MHz Offset		-149		dBc/Hz	
At 10 MHz Offset		-152		dBc/Hz	
CLK=500MHz, Output=50MHz, Divider=10					Input slew rate > 1 V/ns
At 1 kHz Offset		-129		dBc/Hz	
At 10 kHz Offset		-139		dBc/Hz	
At 100 kHz Offset		-149		dBc/Hz	
At 1 MHz Offset		-156		dBc/Hz	
At 10 MHz Offset		-160		dBc/Hz	

Clock Output Phase Noise (Internal VCO Used)

Table 9. All specifications at VDD=3.3V±5%, VDD_LVPECL= 2.375V to VDD, Ta: -40 to +85°C, unless otherwise noted

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL Phase Noise					through VCO divider and channel divider
Fvco=2.24256GHz, Fout=280.32MHz					
At 1 kHz Offset		-94		dBc/Hz	REF=122.88MHz
At 10 kHz Offset		-103		dBc/Hz	
At 100 kHz Offset		-105		dBc/Hz	
At 1 MHz Offset		-125		dBc/Hz	
At 10 MHz Offset		-135		dBc/Hz	
At 40 MHz Offset		-136		dBc/Hz	
Fvco=1.96608GHz, Fout=245.76MHz					
At 1 kHz Offset		-89		dBc/Hz	REF=122.88MHz
At 10 kHz Offset		-102		dBc/Hz	
At 100 kHz Offset		-106		dBc/Hz	
At 1 MHz Offset		-127		dBc/Hz	
At 10 MHz Offset		-136		dBc/Hz	
At 40 MHz Offset		-137		dBc/Hz	
Fvco=1.75104GHz, Fout=218.88MHz					
At 1 kHz Offset		-96		dBc/Hz	REF=122.88MHz
At 10 kHz Offset		-105		dBc/Hz	
At 100 kHz Offset		-108		dBc/Hz	
At 1 MHz Offset		-129		dBc/Hz	
At 10 MHz Offset		-137		dBc/Hz	
At 40 MHz Offset		-138		dBc/Hz	

Clock Output Absolute Time Jitter (Clock Generation Using Internal VCO)

Table 10.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments		
LVPECL Output Absolute Time Jitter					Internal VCO; through dividers		
Fvco=1.96608GHz, Fout=245.76MHz					REF=122.88MHz, PLL BW=140kHz		
		156		fs rms	200kHz to 10MHz		
		284		fs rms	12kHz to 20MHz		
Fvco=1.96608GHz, Fout=122.88MHz					REF=122.88MHz, PLL BW=140kHz		
		169		fs rms	200kHz to 10MHz		
		293		fs rms	12kHz to 20MHz		
Fvco=1.96608GHz, Fout=61.44MHz					REF=122.88MHz, PLL BW=140kHz		
		193		fs rms	200kHz to 10MHz		
		325		fs rms	12kHz to 20MHz		

Clock Output Absolute Time Jitter (Clock Generation Using External VCXO)

Table 11.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL Output Absolute Time Jitter					External VCXO:
					Reference = 15.36MHz, R=1
LVPECL=245.76MHz, PLLBW=125Hz				fs rms	Integration BW = 200kHz to 5MHz
		TBD		fs rms	Integration BW = 200kHz to 10MHz
				fs rms	Integration BW = 12kHz to 20MHz
LVPECL=122.88MHz. PLLBW=125Hz				fs rms	Integration BW = 200kHz to 5MHz
		TBD		fs rms	Integration BW = 200kHz to 10MHz
				fs rms	Integration BW = 12kHz to 20MHz
LVPECL=61.44MHz, PLLBW=125Hz				fs rms	Integration BW = 200kHz to 5MHz
		TBD		fs rms	Integration BW = 200kHz to 10MHz
				fs rms	Integration BW = 12kHz to 20MHz

Clock Output Additive Time Jitter (VCO Divider Not Used)

Table 12

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL Output Additive Time Jitter					Distribution Section Only
CLK=500MHz,Output=500MHz,Divider=1		39		fs rms	12kHz to 20MHz
CLK=500MHz,Output=250MHz,Divider=2		92		fs rms	12kHz to 20MHz
CLK=500MHz,Output=100MHz,Divider=5		137		fs rms	12kHz to 20MHz
LVDS Output Additive Time Jitter					Distribution Section Only
CLK=500MHz,Output=500MHz,Divider=1		76		fs rms	12kHz to 20MHz
CLK=500MHz,Output=250MHz,Divider=2		92		fs rms	12kHz to 20MHz
CLK=500MHz,Output=100MHz,Divider=5		237		fs rms	12kHz to 20MHz
CMOS Output Additive Time Jitter					Distribution Section Only
CLK=500MHz,Output=100MHz,Divider=5		131		fs rms	12kHz to 20MHz

Clock Output Additive Time Jitter (VCO Divider Used)

Table 13

Parameter	Min	Тур	Мах	Unit	Test Conditions/Comments
LVPECL Output Additive Time Jitter					Distribution Section Only
CLK=500MHz,Output=100MHz,Divider=5		129		fs rms	12kHz to 20MHz
LVDS Output Additive Time Jitter					Distribution Section Only
CLK=500MHz,Output=100MHz,Divider=5		219		fs rms	12kHz to 20MHz
CMOS Output Additive Time Jitter					Distribution Section Only
CLK=500MHz,Output=100MHz,Divider=5		120		fs rms	12kHz to 20MHz

Serial Control Port

Table 14. All specifications at VDD=3.3V±5%, VDD_LVPECL= 2.375V to VDD, Ta: -40 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	MIN	ТҮР	МАХ	Unit
CS (INPUT)		internal $30 k\Omega$ pull-up resistor				
Input High Level Voltage	V _{IH}		2.0			V
Input Low Level Voltage	VIL				0.8	V
Input High Level Current	I _{IH}		-3		3	μΑ
Input Low Level Current	IIL		45	110	220	μA
Input Capacitance	CIN			5		pF
SCLK (INPUT)		internal 30 k Ω pull-down resistor				
Input High Level Voltage	VIH		2.0			V
Input Low Level Voltage	V _{IL}				0.8	V
Input High Level Current	I _{IH}		45	110	220	μA
Input Low Level Current	IIL		-3		3	μA
Input Capacitance	C _{IN}			5		pF
SDIO (INPUT)						
Input High Level Voltage	V _{IH}		2.0			V
Input Low Level Voltage	V _{IL}				0.8	V
Input High Level Current	I _{IH}		-3		3	μA
Input Low Level Current	IIL		-3		3	μA
Input Capacitance	C _{IN}			11		pF
SDIO, SDO (OUTPUT)						
High Level Output Voltage	V _{OHS}	SDO,SDIO(OUT), I _{OH} =-1mA	2.7			V
Low level Output Voltage	V _{OLS}	SDO,SDIO(OUT) , I _{OL} =1mA			0.4	V
TIMING		Load=100pF				
Clock Rate(SCLK)	1/ t _{SCLK}				20	MHz
Pulse Width High	t _{HI}		20			ns
Pulse Width Low	t _{LO}		20			ns
SDIO to SCLK Setup	t _{DS}		8			ns
SCLK to SDIO Hold	t _{DH}		8			ns
SCLK to Valid SDIO and SDO	t _{ov}				15	ns
CS to SCLK Setup and Hold	ts		12			ns
SCLK to $\overline{\text{CS}}$ Holdup and Hold	t _H		8			ns
CS Minimum Pulse Width High	t _{PWH}		5			ns

$\overline{\text{PD}}$, $\overline{\text{SYNC}}$ and $\overline{\text{RESET}}$

Table 15. All specifications at VDD=3.3V \pm 5%, VDD_LVPECL= 2.375V to VDD, Ta: -40 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	MIN	ТҮР	МАХ	Unit
INPUT		internal 30k Ω pull-up resistor				
Input High Level Voltage	V _{IH}		2.0			V
Input Low Level Voltage	VIL				0.8	V
Input High Level Current	I _{IH}		-3		3	μA
Input Low Level Current	I _{IL}		45	110	220	μΑ
Input Capacitance	C _{IN}			5		pF
RESET TIMING						
Pulse Width Low	t _{LO}		50			ns
SYNC TIMING						
Pulse Width Low	t _{LO}	Refer to Input signal cycle	1.5			Cycle

LD, STATUS and REFMON

Table 16. All specifications at VDD=3.3V±5%, VDD_LVPECL= 2.375V to VDD, Ta: -40 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	MIN	ТҮР	МАХ	Unit
OUTPUT						
High Level Output Voltage	V _{он}	I _{OH} =-1mA	2.7			V
Low level Output Voltage	V _{OL}	I _{OL} =1mA			0.4	V
LD Output Current	ILD	0x1A[5:0]=04h 0V < LD Output voltage < 2V,	88	110	132	μΑ
MAXIMUM TOGGLE RATE		Load=10pF	50	100		MHz
ANALOG LOCK DETECT						
Capacitance				9		pF
FREQUENCY STATUS MONITOR						
REF1, REF2, VCO		0x1A[6]=0 (Default)	1.02	2.00	4.00	MHz
REF1, REF2		0x1A[6]=1	8	16	32	MHz
LD COMPARATOR						
Trip Point L to H			1.58	1.73	1.88	V
Trip Point H to L			1.32	1.47	1.62	V
Hysteresis			170	260	350	mV

TIMING DIAGRAMS

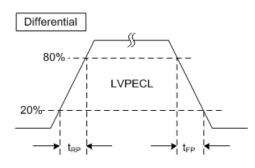


Figure 3. LVPECL Timing, Differential

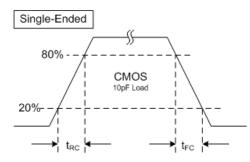


Figure 5. CMOS Timing, Single-Ended, 10pF Load

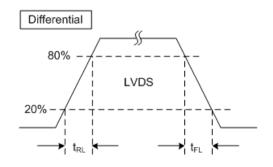
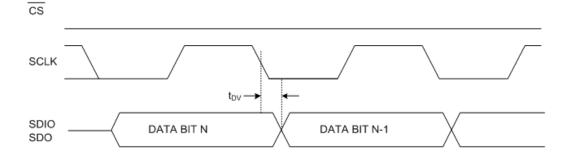
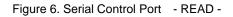
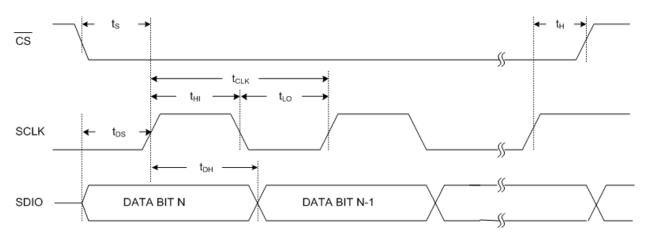





Figure 4. LVDS Timing, Differential

THEORY OF OPERATION

OPERATIONAL CONFIGURATIONS

The AK8186B can be configured in two ways below.

- Internal VCO and Clock Distribution
- External VCO and Clock Distribution

Each functional block must be set by the registers through a serial control port.

Internal VCO and Clock Distribution

When using the internal VCO and PLL, the things below are to be cared.

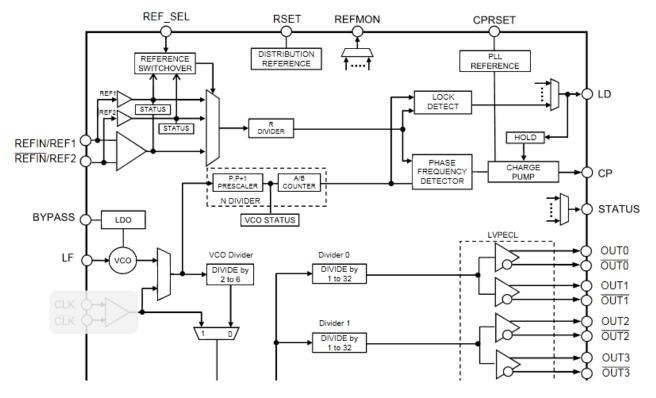

- Prescaler divide ratio : 8/9, 16/17 and 32/33 can be used to meet the maximum input frequency of A,B counter, 300MHz.
- VCO calibration must be executed after the internal VCO is enabled.

 Table 17 Settings for Internal VCO

 Register
 Function

 0x10[1:0] = 00b
 PLL pormal operation

Register	Function
0x10[1:0] = 00b	PLL normal operation (PLL on).
0x10 to 0x1E	PLL settings. Select and enable a reference input; set R, N(P,A,B) PFD polarity, and Icp according to the intended loop configuration.
0x18[0] = 0	Reset VCO calibration.
0x232[0] = 1	Register Update.
0x18[0] = 1	Initiate VCO calibration.
0x232[0] = 1	Register Update.
0x1E0[2:0]	Set VCO divider ratio.
0x1E1[0] = 0	Use the VCO divider as source for distribution section.
0x1E1[1] = 1	Select VCO as the source.

External VCO and Clock Distribution

When using the external VCO and PLL, the things below are to be cared.

- Prescaler divide ratio : 1, 2/3, 4/5, 8/9, 16/17 and 32/33 can be used to meet the maximum input frequency of A,B counter, 300MHz.
- Maximum frequency of the External VCXO is 500MHz.

Table 18 Settings for External VCO		
Register	Function	
0x10[1:0] = 00b	PLL normal operation (PLL on).	
0x10[7] = 0 or 1	PFD polarity 0: positive 1:negative	
0x10 to 0x1E	PLL settings. Select and enable a reference input; set R, N(P,A,B) PFD polarity, and Icp according to the intended loop configuration.	
0x1E0[2:0]	Set VCO divider ratio.	
0x1E1[0] = 0 or 1	Select the source for distribution section.	
	0: VCO divider 1: CLK input	
0x1E1[1] = 0	Select the CLK input as the source.	

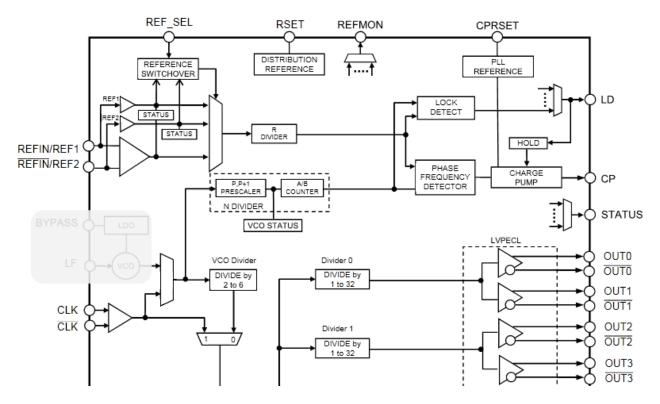


Figure 9 External VCO and Clock Distribution

PLL

The AK8186B integrates a PLL with a VCO which can be configured to meet user's application. The following functions are set through a serial control port. The setting registers are mapped into 0x10 to 0x1F in a register.

- PLL Power down
- Charge pump current
- R counter for Reference input
- A counter, B counter and Prescaler in loopback path
- Pin function of STATUS,LD and REFMON pins
- VCO calibration
- Lock Detect
- Frequency monitor of REF1, REF2 and VCO
- Switchover
- Holdover

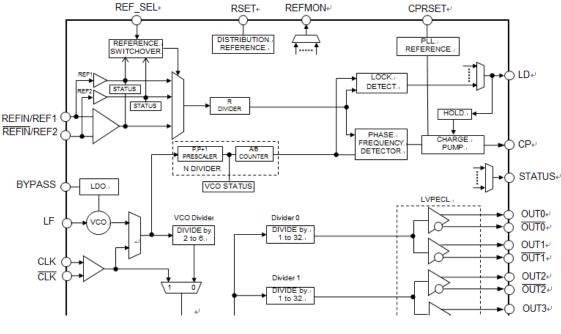


Figure 10. PLL

REFERENCE INPUT

The reference input section of the AK8186B allows a differential input or two single-ended inputs. Both types of inputs are self-biased. It allows easy ac-coupled input signals. The desired reference input is selected by 0x1C[2:0].

Single-ended input

A dc-coupled CMOS level signal or an ac-coupled sinewave or square wave signal can be input.

Differential input

An ac-coupled signal or a dc-coupled signal can be input. If a single-ended signal is applied to the differential REFIN, the REFINn should be decoupled through a capacitor to a ground.

Note

All reference inputs are powered down by default.

When PLL is powered down, all the reference inputs are powered down.

When the differential mode is selected, the single-ended inputs are powered down and vice versa.

The maximum input frequency of both type of inputs is 250MHz.

REFERENCE SWITCHOVER

When dual single-ended CMOS inputs are imposed to REF1 and REF2, the AK8186B could support automatic and manual PLL reference clock switching between REF1 and REF2. The automatic switchover is enabled by setting 0x1C[4].

0x1C[4] = 0 : manual switchover 1 : automatic switchover

Note;

The single-ended inputs should be dc-coupled CMOS levels and not go to high impedance. If these go to high impedance, input buffers may cause chattering due to noise. A false detection might occur.

Manual Switchover

A PLL reference input can be selected by a register or a pin. 0x1C[5] assigns the register 0x1C[6] or the REF_SEL pin to select a PLL reference input.

Automatic Switchover

Automatic switchover has two modes of operation. Both of them switch from REF1 to REF2 when REF1 is lost. The difference of the two modes is whether the AK8186B would stay on REF2 or not when REF1 returns. 0x1C[3] selects one of the two modes.

0x1D[3] = 0 : Switch to REF1.

1 : Stay on REF2. It can be switched to REF1 manually.

Condition to switch from REF1 to REF2

If the reference switchover circuit detects three consecutive rising edges of REF2 without any REF1 rising edges, the REF1 is considered to be lost. On the 2nd subsequent rising edge of REF2, the reference clock input to PLL is switched from REF1 to REF2.

Condition to switch back to REF1 when 0x1D[3]=0

If the reference switchover circuit detects four consecutive rising edges of REF1 without three consecutive REF2 rising edges between REF1 edges, the REF1 is considered to be returned. On the 2nd subsequent rising edge of REF2, the reference clock input to PLL is switched from REF2 to REF1.

R DIVIDER (REFERENCE DIVIDER)

The reference input goes into the R divider (a 14-bit counter). It can be set to any value from 0 to 16383 by 0x11 and 0x12. When 0 is set, the input is divided by 1.

Maximum output frequency

The output of the R divider goes to one of the PFD inputs which is compared to the output of the N divider. The frequency applied to the PFD must not exceed 100MHz.

Reset

The R is divider can be reset under the following conditions.

- 1) Power on reset
- 2) When RESET is asserted low.
- 3) When 0x16[6] is set to 1 (reset of the R divider)
- 4) When 0x16[5] is set to 1 (shared reset bit of the R, A and B counter)
- 5) When $\overline{\text{SYNC}}$ is released from L to H.

PHASE FREQUENCY DETECTOR (PFD)

The PFD has two inputs of R divider and N divider. It outputs an up/down signal for the charge pump, which is proportional to the phase and frequency difference between the inputs. Both input frequencies must not exceed the maximum frequency of 100MHz.

CHARGE PUMP (CP)

The charge pump pumps up/down controlled by the output of the PFD. The output current of the CP goes out through the CP pin and integrated and filtered by the external loop filter, then is finally turned into a voltage. The voltage goes into the VCO via the LF pin to tune the VCO frequency.

The CP has four modes of operation and eight current values. Each of them can be set by the registers below.

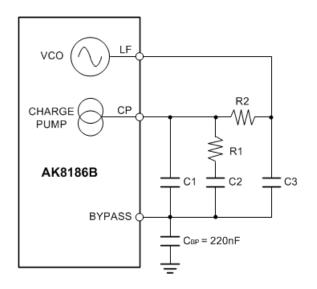
Item	Register	Description
Operation Mode	0x10[3:2]	Normal, High Impedance, Pump up, Pump down
CP Current	0x10[6:4]	0.6 to 4.8 mA with 0.6mA step (CPRSET=5.1kΩ)

Table 19 Register for Charge Pump Operation Mode

On-Chip VCO

The AK8186B integrates a VCO working in the range of 1.75GHz to 2.25GHz. The VCO requires a calibration to achieve optimal operation around the REFIN frequency. After power-up or reset. a initial calibration is required along with the procedure shown below. The calibration can be executed at anytime after power-up or reset from the step marked (*). SYNC function is executed during the VCO calibration. Distribution outputs remain static in this period. Maximum time of the VCO calibration is 4400 cycles of a VCO calibration clock supplied by a VCO calibration divider. The VCO calibration divider divides the R divider output (= the PFD input clock) with the divider value of 2,4,8 or 16 set to 0x18[2:1]. When the calibration is finished, a logic true (1b) is returned to a readback bit 0x1F[6].

Figure 11. Procedure of VCO calibration



External VCO/VCXO

The AK8186B supports an external VCO/VCXO. The CLK/CLK input can be used as a differential feedback for an external VCO/VCXO. The input frequency is up to 500MHz.

PLL EXTERNAL LOOP FILTER

The loop filter supplies a voltage to the VCO via the LF pin to move the VCO frequency up or down. When using the internal VCO, the external loop filter should be referenced to the BYPASS pin for optimal noise and spurious performance. An example is shown in Fig.13. The values of loop filter must be calculated for each PLL. It depends on the VCO frequency, the Kvco, the PFD frequency, the CP current, the desired loop bandwidth and the desired phase margin.

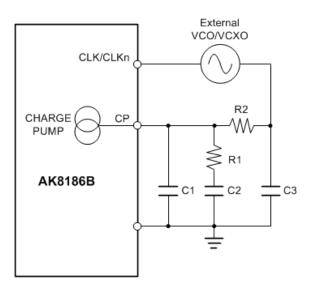


Figure 12 Example of External Loop Filter for the Internal VCO

Figure 13 Example of External Loop Filter for an External VCO

FEEDBACK DIVIDER (N DIVIDER)

The N divider consists of a prescaler (P), A and B counters.

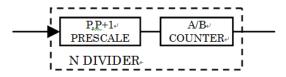


Figure 14. N divider

PRESCALER

The prescaler is a dual modulus counter which has two modes of operation. Division value of A counter defines the mode as below.

- 1) When A = 0: a fixed divide (FD) mode where the prescaler divides by P.
- 2) When $A \neq 0$: dual modulus (DM) mode where the prescaler divides by P and (P+1).

Since the maximum output frequency of the prescaler is 300MHz, the prescaler input frequency is limited by the modes as shown in Table 4. The prescaler must divide its input frequency by appropriate divide ratio defined by Register 0x016[2:0]. In case of using the internal VCO, its output (1.75GHz min) must be divided by P = 8, 16 and 32. (See the "PLL Configuration in Register Map Function Descriptions")

```
FD mode (A=0)
```

The Prescaler divider value is P. It is divided by B counter.

```
 \begin{array}{ll} \mathsf{N}=\mathsf{P} \ \mathsf{x} \ \mathsf{B} \\  \  \mathsf{Where} & \mathsf{P}=\mathsf{1}, \, \mathsf{2}, \, \mathsf{4}, \, \mathsf{8}, \, \mathsf{16} \ \mathsf{or} \ \mathsf{32} \ \mathsf{for} \ \mathsf{an} \ \mathsf{external} \ \mathsf{VCO/VCXO}. \\  & \mathsf{P}=\mathsf{8}, \, \mathsf{16} \ \mathsf{or} \ \mathsf{32} \ \mathsf{for} \ \mathsf{an} \ \mathsf{internal} \ \mathsf{VCO}. \\  & \mathsf{B}: \mathsf{3} \ \mathsf{to} \ \mathsf{8191} \quad \mathsf{when} \ \mathsf{B}=\mathsf{1}, \ \mathsf{B} \ \mathsf{counter} \ \mathsf{is} \ \mathsf{bypassed}. \ \mathsf{Not} \ \mathsf{allowed} \ \mathsf{for} \ \mathsf{B}=\mathsf{0} \ \mathsf{and} \ \mathsf{2}. \end{array}
```

DM mode (A≠0)

The prescaler divider value is P for (B-A) times and P+1 for A times.

$$\begin{split} \mathsf{N} &= \mathsf{P} \times \mathsf{B} + \mathsf{A} \\ \text{Where} \quad \mathsf{P} &= 1, \, 2/3, \, 4/5, \, 8/9, \, 16/17 \text{ or } 32/33 \text{ for an external VCO/VCXO.} \\ \mathsf{P} &= 8/9, \, 16/17 \text{ or } 32/33 \text{ for an internal VCO.} \\ \mathsf{B} : 3 \text{ to } 8191 \quad \text{when } \mathsf{B} &= 1, \, \mathsf{B} \text{ counter is bypassed. Not allowed for } \mathsf{B} &= 0 \text{ and } 2. \end{split}$$

The output frequency of the N divider f_{VCO}/N is equated to the output of the R divider f_{REF}/R at the PFD. Then the VCO frequency is

- 1) When A = 0: $f_{VCO} = f_{REF} x N/R$ where N = P x B
- 2) When $A \neq 0$: $f_{VCO} = f_{REF} x N/R$ where N = P x B + A

A and B COUNTERS

The division value of the A and B counters is defined by the registers below.

A counter : 0x13[5:0]

B counter : 0x14[7:0] and 0x15[4:0]

Note;

- Both division values should be set $A \le B$.
- P = 1, 2, 4, 8, 16 or 32 when A=0.
- B = 0 and B = 2 are not allowed.
- Maximum input frequency of A/B counters is 300MHz.

Reset Counters

 $\overline{\text{SYNC}}$ pin resets all of P, A and B counters simultaneously. This is allowed by the register 0x19[7:6]. A/B counters can be reset by the register 0x16[5][4].

LOCK DETECT

The AK8186B has three kinds of lock detect function. Each Lock Detect function is able to report to LD, STATUS and REFMON pins.

.Table 20 Registers for Lock Detect

Mode	Enable/Disable		OUTPUT pin	
	Register	LD	STATUS	REFMON
		0x1A[5:0]	0x17[7:2]	0x1B<4:0>
Digital Lock Detect (DLD)	0x18[3]	\checkmark	\checkmark	
Current Source DLD (CLD)		\checkmark		
Analog Lock Detect (ALD)		\checkmark		

Digital Lock Detect (DLD)

The Digital Lock Detect function detects a lock when the phase difference of the rising edges at the PFD inputs is less than the Lock Detect Window (3.5ns typical). The lock is indicated when the number of consecutive "lock detection" reaches the threshold of the Lock Detect Counter defined by 0x18<6:5>. The "unlock" is indicated when the DLD function detects the larger phase difference at the PFD inputs than the Lock Detect Window. The unlock threshold is just one value.

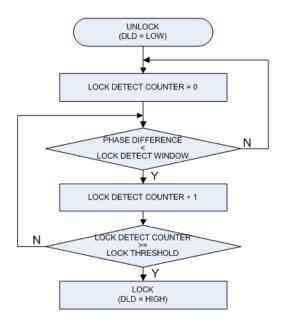


Figure 15. Digital Lock Detect

Current Source Digital Lock Detect (CLD)

The lock indication by the DLD is normally not stable until the PLL gets in lock completely. In some application, it might be required to get a lock detect after the PLL gets solidly locked. The Current Source DLD function (CLD) could be useful for that requirement.

The CLD provides a current of 110uA to LD pin when the DLD detects a lock (DLD = H). While the PLL continues to be in lock state, the voltage of LD is going up with the current. But if the PLL is back to unlock state, the charge on a capacitor externally connected to LD is discharged instantly.

The voltage of LD can be sensed by an internal or external comparator. When the internal LD pin comparator is used (0x1D[3]=1b), its output can be read at STATUS pin (0x17[7:2]) or REFMON pin

(0x1B[4:0]). Selecting a properly value of capacitor allows a lock detect indication to be delayed. The LD pin comparator trip point is shown in Table 16.

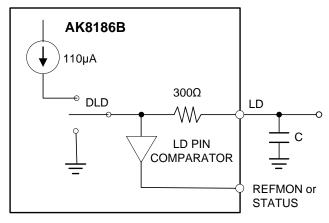


Figure 16. Current Source Lock Detect

Analog Lock Detect (ALD)

When 0x1A[5:0] is set to the value shown below, the Analog Lock Detect is indicated at the LD pin. The ALD function requires a external R-C filter to indicate lock/unlock state.

0x1A[5:0] = 01h : P-channel open drain ALD (Active Low) 0x1A[5:0] = 02h : N-channel open drain ALD (Active High)

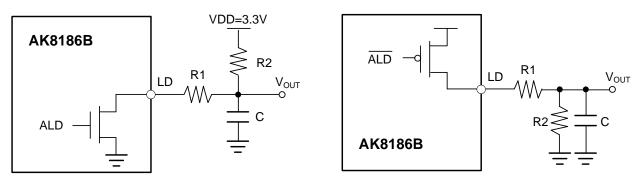


Figure 17. Analog Lock Detect (N/P-channel open drain)

N-channel open drain

The ALD signal is derived from the up/down control outputs of the PFD.

- When the PLL is in lock, the ALD signal is mainly low with minimum high-going pulse. This leads the voltage of LD to getting up to VDD.
- When the PLL in in unlock, the ALD signal has a wider high-going pulse. This leads the voltage of LD to getting down to ground.

P-channel open drain

The ALD signal is the inverting of the ALD.

- When the PLL is in lock, the ALD signal is mainly high with minimum low-going pulse. This leads the voltage of LD to getting down to ground.
- When the PLL in in unlock, the ALD signal has a wider high-going pulse. This leads the voltage of LD getting up to VDD.

HOLDOVER

Some application requires holding the output frequency to be constant even though the REF input is lost out. A holdover function is for such a requirement. In the AK8186B, the holdover function puts the charge pump into high-impedance state so that the VCO keeps its frequency constant. However, any leakage could occur at the charge pump output, which leads the unwanted VCO frequency shift. Adequate capacitive value in the loop filter should be selected to avoid shifting the VCO frequency out of the required limit.

The AK8186B has two modes of holdover function, manual or automatic mode. Manual holdover is activated by the \overline{SYNC} pin. Automatic holdover is activated by the voltage of LD pin. Both holdover modes are enabled with 0x1D[2:0].

Table 21 Setting Holdover

Mode	Holdover Enable 0x1D[2]	Mannual/Automatic 0x1D[1]	Holdover Enable 0x1D[0]
Manual Holdover	1	1	1
Automatic Holdover	1	0	1

Manual Holdover Mode

A manual holdover puts the charge pump into a high impedance state immediately when the \overline{SYNC} pin is asserted low. This is trigged by the falling edge of the \overline{SYNC} .

Getting into the holdover

Condition	: the falling edge of the SYNC
Operation Timing	: immediately
Operation	: puts the charge pump into a high impedance state

Leaving the holdover

Condition	: the $\overline{\text{SYNC}}$ = High
Operation Timing	: synchronous with the first PFD rising edge after the $\overline{\text{SYNC}}$ goes high.
Operation	: puts the charge pump into a normal state, resets the B-counter.

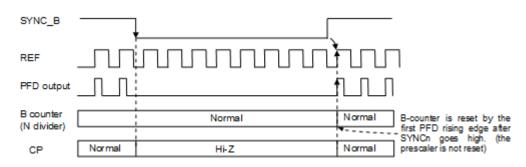


Figure 18. Manual Holdover

Note: Set the channel divider to ignore the \overline{SYNC} pin at least after an initial SYNC event. Otherwise, every time \overline{SYNC} is asserted low to invoke the manual holdover, the distribution outputs become DC output state.

Divider	Nosync	Value to
	register bit	ignore SYNC pin
0	0x191[6]	1
1	0x194[6]	1
2	0x197[6]	1
3	0x19C[3]	1
4	0x1A1[3]	1

Table 22 Setting the channel divider to ignore the SYNC

Automatic Holdover Mode

An automatic holdover puts the charge pump into a high impedance state immediately when the unlock state is detected. A flow chart of the automatic holdover function is shown in Figure 16.

Getting into the holdover

Condition	: LD pin = H when DLD = low (false)
Operation Timing	: immediately
Operation	: puts the charge pump into a high impedance state

Leaving the holdover

Condition	: DLD = High (true)
Operation Timing	: synchronous with a first PFD rising edge after DLD goes high.
Operation	: puts the charge pump into a normal state, resets the B-counter.

LD pin is able to report the status of DLD, ALD and CLD. The CLD is recommended to use for the automatic holdover to avoid re-triggering a holdover due to chattering on the LD. The register 0x1A[5:0] defines the function of the LD.

The auto holdover function uses the LD pin comparator to sense the status of the LD pin. When the register 0x1D[3]=0, the LD comparator is disabled and the LD pin is treated as always high by the automatic holdover function. When 0x1D[3]=1, the LD comparator is enabled and can be used for DLD, ALD and CLD.

The registers shown in Table are required to be set to use the automatic holdover function.

Register	Name	Description
0x18<6:5>	Lock Detect Counter	Select PFD cycles to determine lock.
0x18[3]	Disable Digital Lock Detect	Set 0 to operate normally.
0x1A[5:0]	LD pin Control	Set 04h to select Current source lock detect if using the LD pin comparator.
0x1D[3]	LD pin Comparator Enable	Set 1 if using. When set 0 (disabled), the automatic holdover function treats the LD pin as always high.
0x1D[1]	External Holdover Control	Set 0 to use the automatic holdover function.
0x1D[2][0]	Holdover Enable	Set 1 to enable holdover.

Table 23 Setting Automatic Holdover Function

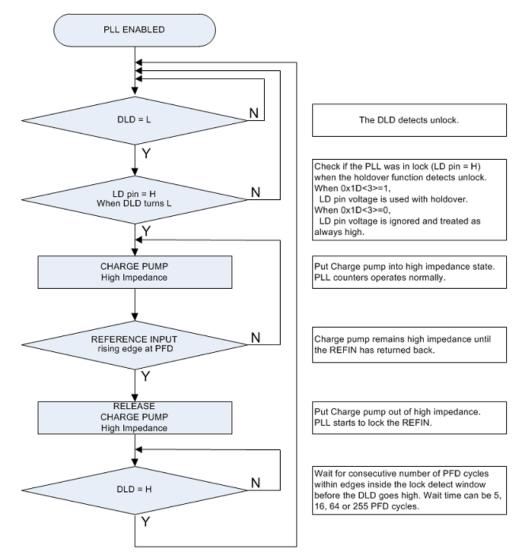


Figure 19. Automatic Holdover

Frequency Status Monitors

The AK8186B has a frequency status monitor to indicate if the REF1/2 and the VCO frequency below a threshold frequency. There are two threshold frequencies such as normal and extended for REF1/2. The VCO frequency is monitored at the output of the prescaler.

Table 24 Setting Fr	equency Status M	onitors	
Monitored	Monitor	Minimum threshold frequency	Status
signal	Enable		indication
	register		register
VCO	0x1B[7]=1	0.5 MHz	0x1F[3]
REF2	0x1B[6]=1	normal 0.5 MHz (0x1A[6]=0)	0x1F[2]
REF1	0x1B[5]=1	extended 4 kHz (0x1A[6]=1)	0x1F[1]

Table 24 Setting Frequency Status Monitors

CLOCK DISTRIBUTION

VCO DIVIDER

The VCO divider provides frequency division between the internal VCO and the clock distribution section. The VCO divider can be set to divide by 2,3,4,5 and 6 (0x1E0[2:0]). The output of the VCO divider has 50% duty even though the division is 3 and 5 due to the duty cycle compensation circuit. VCO divider can be bypassed when using an external VCO/VCXO. When bypassed, the input duty through CLK/CLK pins is not compensated.

Channel Dividers for LVPECL OUTPUTS

There are three channel dividers for LVPECL outputs. Each divider drives a pair of LVPECL outputs. The divider value Dx can be set 1 to 32.

Dx: M + N + 2 (M,N: 0 to 15, Dx = 1 when the bypass bit is set.)

Channel	Low Cycles	High Cycles	Bypass	LVPECL outputs
Divider	М	Ν		
0	0x190[7:4]	0x190[3:0]	0x191[7]	OUT0, OUT1
1	0x193[7:4]	0x193[3:0]	0x194[7]	OUT2, OUT3
2	0x196[7:4]	0x196[3:0]	0x197[7]	OUT4, OUT5

Table 25 Registers for LVPECL Channel Divider 0,1 and 2

The divider has the duty cycle correction. It always operates and outputs 50% duty clocks.

Channel Dividers for LVDS/CMOS OUTPUTS

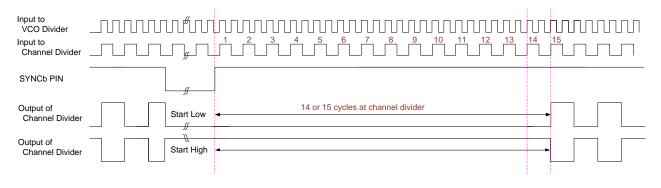
There are two channel dividers for LVDS/CMOS outputs. Each divider drives a pair of LVDS outputs(or two pair of CMOS outputs). The divider value Dx can be set 1 to 32.

Dx : M + N +2	(M,N : 0 to 15,	Dx = 1 when the bypass bit is set.)
---------------	-----------------	-------------------------------------

Table 26 Registers for LVPECE Channel Divider 3 and 4						
	Cha	nnel	Low Cycles	High Cycles	Bypass	LVDS/LVCMOS outputs
	Div	ider	М	Ν		
	3	3.1	0x199[7:4]	0x199[3:0]	0x19C[4]	OUT6(A,B), OUT7(A,B)
		3.2	0x19B[7:4]	0x19B[3:0]	0x19C[5]	
	4	4.1	0x19E[7:4]	0x19E[3:0]	0x1A1[4]	OUT8(A,B), OUT9(A,B)
		4.2	0x1A0[7:4]	0x1A0[3:0]	0x1A1[5]	

Table 26 Registers for LVPECL Channel Divider 3 and 4

The divider has the duty cycle correction. It always operates and outputs 50% duty clocks.



Synchronizing the Outputs: SYNC FUNCTION

The AK8186B clock outputs can be synchronized to each other. The SYNC function starts to operate by the following conditions.

- 1) The SYNCpin is forced low and then released (Manual sync).
- 2) By setting and then resetting the soft sync bit 0x230[0]
- 3) After a VCO calibration is completed.

The channel divider output status depends on the register setting of the channel divider such as Bypass bit, NoSync bit, Force High bit, Start High bit and Phase offset bits.

Figure 20. SYNC timing

Sync function can be disabled by NOSYNC bit. When the NOSYNC bit is set to 1, the SYNC function is disabled.

Channel	NOSYNC bit
Divider	
0	0x191[6]
1	0x194[6]
2	0x197[6]
3.1, 3.2	0x19C[3]
4.1, 4.2	0x1A1[3]

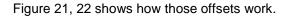
Table 27 SYNC Disable on Channel Divider

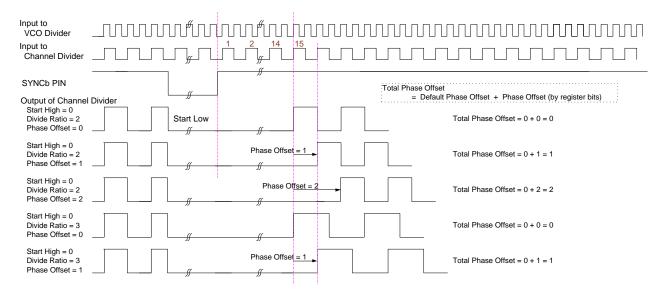
Phase Offset

Each channel divider has a programmable phase offset function. Phase offset means a delay to rising edge of output clock from zero offset output. Two kinds of bits such as Start High bit and Phase Offset bits affect Total Phase Offset. The phase offset is effective when the SYNC function is invoked.

Tuble 20 Otall	riigit and t tidoo onoo	r registers on onanne
Channel	Start High	Phase Offset
Divider		
0	0x191[4]	0x191[3:0]
1	0x194[4]	0x194[3:0]
2	0x197[4]	0x197[3:0]
3.1	0x19C[0]	0x19A[3:0]
3.2	0x19C[1]	0x19A[7:4]
4.1	0x1A1[0]	0x19F[3:0]
4.2	0x1A1[1]	0x19F[7:4]

Table 28 Start High and Phase Offset Registers on Channel Divider




When the Start High bit =1, the default phase offset exists before the phase offset defined by the phase offset bits. The default phase offset varies depending on the divider ratio. When the divider is bypassed, the Default Offset is equal to zero.

Total Phase Offset = Default Phase Offset + Phase Offset bits Default Phase Offset Start High bit = 0 : Zero Start High bit = 1 : Roundup(Divider Ratio/2) where Divider Ratio >=2

Example;

Divider ratio = 3, Phase Offset bits = 2, then Default phase offset = 2 Total Phase Offset = 2 + 2 = 4 clock cycles

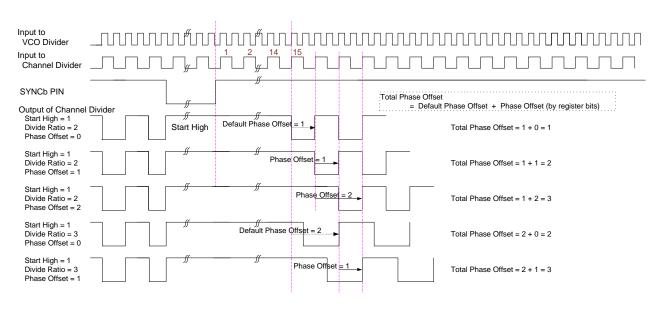


Figure 22 Channel Divider Phase Offset with Start High bit = 1 (Start High)

LVPECL OUTPUTS : OUT0 to OUT5

The AK8186B has three pair of LVPECL buffers. Each pair has dedicated VDD supply pin, VDD_LVPECL, allowing for a separate power supply to be used. VDD_LVPECL can be from 2.5V to 3.3V.

Table 29 LVPECL OUTPUTS Control Register

Control Item	Register
Invert Polarity	0xF0 to F5 [4]
Differential Voltage	0xF0 to F5 [3:2]
Power down*	0xF0 to F5 [1:0]

*)LVPECL outputs Hi-Z.

There are two modes of power down.

- Partial power down
- Power down

In Partial power down, an output stage is off but a differential input stage is on.

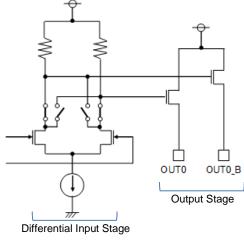


Figure 23. LVPECL Equivalent Circuit

LVDS/CMOS OUTPUTS : OUT6 to OUT9

OUT6 to OUT9 can be configured as an LVDS output or a pair of CMOS outputs.

Table 30 LVDS/CMOS outputs control register	
Control Item	Register
Output Polarity	0x140 to 143 [7:5]
CMOS B turn on/off	0x140 to 143 [4]
Select LVDS/CMOS	0x140 to 143 [3]
LVDS Output Current	0x140 to 143 [2:1]
Power down*	0x140 to 143 [0]

*)LVDS outputs Hi-Z. CMOS outputs Low.

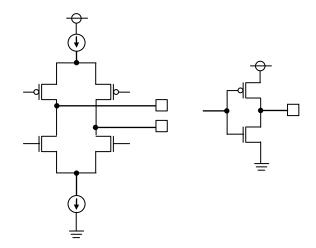


Figure 24. LVDS/CMOS Equivalent Circuit

RESET

The AK8186B has three types of reset as below.

- 1) Power-on reset
- 2) Asynchronous reset by $\overline{\text{RESET}}$ pin
- 3) Soft Reset by 0x00[5]

Power-on reset (POR)

At power on, an internal power-on reset signal is generated which initializes the register to the default settings. Note that the AK8186B does not execute the SYNC operation after power-on reset. To synchronize the clock outputs by SYNC function after power-up, SYNC_B pin must be released more than 0.5µs after starting a VCO calibration.

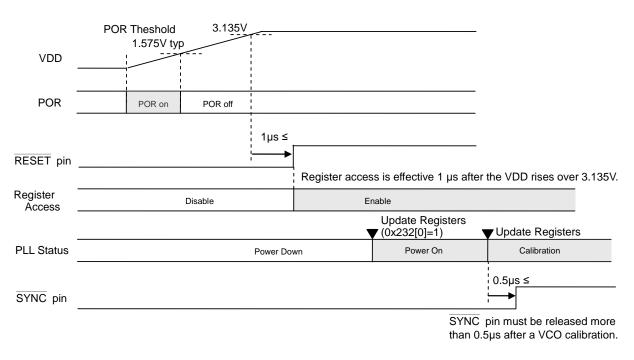


Figure 25. Recommended Power-up Sequence

Asynchronous reset by **RESET** pin

When the RESET pin is asserted, the AK8186B is immediately initialized to the default settings.

Soft reset by 0x00[5]

When the Soft reset bits 0x00[5] and [2] are set to 1, the AK8186B is immediately initialized to the default settings except the Soft reset bits without setting the update register 0x232[0] to 1. Both soft reset bits must be cleared by setting 0 since they are not self-cleaning bits.

POWER DOWN MODES

The AK8186B has two modes of power down.

- 1) Chip power down
- 2) Block power down (PLL, REF1/2, VCO, VCO divider, CLK Input, OUT0 to 9)

Chip Power Down by PDn pin

Operation: Puts all the blocks except the bias to the analog block into power down mode.Condition: PDn pin is asserted lowOperation Timing: immediatelyNote: The registers are not reset. Serial Control Port is active. If the AK8186B clock outputs
must be synchronized to each other, a SYNC is required upon exiting power down (see
the SYNCHRONIZING THE OUTPUTS – SYNC FUNCTION). A VCO calibration is not
required when exiting power down.

PLL Power Down

 Operation
 : The PLL goes into power-down.

 Condition
 : Write 0x10[1:0] = 01b or 11b, then updates the register (0x232[0] =1b).

 Operation Timing
 :

 Asychronous power-down mode : 0x10[1:0] = 01b immediately after the register update is executed.

 Synchronous power-down mode : 0x10[1:0] = 11b synchronized with the up/down signal for the CP after the register update is executed.

This is for preventing the unwanted frequency jumps.

REF1, REF2 Power Down

Operation	: The REF1and/or REF2 goes into power-down.
Condition	: REF1: Write 0x1C[1] = 0b, then updates the register (0x232[0] =1b).
	REF2: Write $0x1C[2] = 0b$, then updates the register ($0x232[0] = 1b$).
Operation Timing	: immediately after the register update is executed.
Note	: The REF1/REF2 can not be powered down when Automatic Switchover is active.

VCO and CLK Input Power Down

Operation: The VCO, VCO divider and CLK input section can be power down by 0x1E1[4:1].Condition: Set 0x1E1[4:1] to the adequate value depending on your need, then updates the
register (0x232[0] =1b). See the register map function description of VCO, VCO divider
and CLK Input register (0x1E1).

Operation Timing : immediately after the register update is executed.

Distribution Power Down

Operation	: All of output buffers go into power-down.
Condition	: Write $0x230[1] = 1b$, then updates the register ($0x232[0] = 1b$).
Operation Timing	: immediately after the register update is executed.

Individual Clock Output Power Down (OUT0 to OUT9)

Operation: Any of the clock outputs goes into power-down.Condition: Write the appropriate registers below, then updates the register (0x232[0] =1b).

Operation Timing : immediately after the register update is executed.

Table 31 Power down register for OUTPUTS

Output	Port	Register
LVPECL	OUT0	0xF0[1:0]
	OUT1	0xF1[1:0]
	OUT2	0xF2[1:0]
	OUT3	0xF3[1:0]
	OUT4	0xF4[1:0]
	OUT5	0xF5[1:0]
LVDS/	OUT6	0x140[0]
CMOS	OUT7	0x141[0]
	OUT8	0x142[0]
	OUT9	0x143[0]

SERIAL CONTROL PORT

The AK8186B has a 3 or 4-wire serial control port which is compatible with both the Motorola SPI[®] and Intel SSR[®] protocols. The function of the serial control port is as follows.

- Read/write access to all registers
- Single/Multiple byte access
- MSB/LSB first transfer format
- Data output on SDIO pin (3-wire access: default) or SDO pin (4-wire access)
- Long instruction only (16 bits)

SERIAL CONTROL PORT PIN DESCRIPTIONS

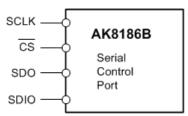
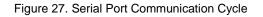


Figure 26. Serial Control Port

Table 32 Serial Control Port Pin Descriptions

Pin No.	Pin Name	Descriptions
16	SCLK	Serial Clock Input.
		Write data bits are sampled at the rising edge of this clock.
		Read data bits are sampled at the falling edge of this clock.
		Pulled down by an internal $30k\Omega$ resistor.
17	CS	Chip Select. An active low input.
		When $\overline{\text{CS}}$ =low, read/write access is allowed.
		When $\overline{\text{CS}}$ =high, SDIO and SDO become high impedance.
		Pulled up by an internal $30k\Omega$ resistor.
21	SDO	Serial Data Output.
		Used only in the unidirectional mode (0x00[7]=1,[0]=1).
22	SDIO	Serial Data Input/Output.
		When 0x00[7]=0,[0]=0, this works in the bidirectional mode.
		When 0x00[7]=1,[0]=1, this works in the unidirectional mode.


GENERAL DESCRIPTION OF SERIAL CONTROL PORT

The following section describes the function of the serial control port.

Communication Cycle

Serial communication cycle consists of two parts. The first one is a 16-bit instruction section. The second one is a data section. Multibyte data can be transferred.

				/	/	
SDIO	16-bit Instruction Word	Data Byte 1	Data Byte 2)	Data Byte n
					\square	

Since the AK8186B supports only the long instruction (16 bits) mode, the register 0x00[4:3] must be 11b.

The Instruction Word (16 bits)

The instruction consists of 3 parts; Read/Write command, Byte to transfer and Address. See below.

MSB

MSB															LSB	
l15	l14	I13	l12	l11	l10	19	18	17	16	15	14	13	12	I 1	10	
R/W	W1	W0	A12=0	A11=0	A10=0	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	

Figure 28. 16-bit Instruction Word

Table 33 16-bit Instruction Word

Bit	Name	Description
l15	R/Ŵ	Read or Write
14 - 13	W1 - W0	Length of a transfer in bytes (See Table 34)
112 - 10	A12 - A0	Address
		For multibyte transfers, this address is the starting byte address.

Table 34 Byte Transfer Count

W1	W0	Byte to transfer
0	0	1
0	1	2
1	0	3
1	1	Streaming mode

Streaming mode is to transfer more than three bytes. It does not skip over reserved or blank registers.

WRITE

When I15=0, write operation is executed. The timing chart of 2-byte data write is shown below. Write data is sampled at the rising edge of SCLK.

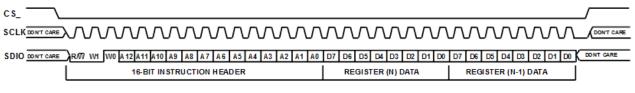
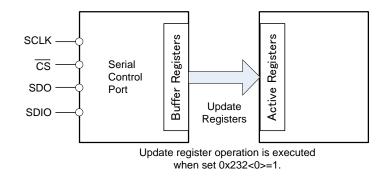


Figure 29. Serial Contorl Port - WRITE - MSB First


Write in Streaming mode

When data is transferred in streaming mode, the reserved and blank registers are not skipped over. Any data written to those registers does not affect the operation of the AK8186B.

Update Register

The serial control port has a two-step registers. It consists of a buffer register and an active register. When data is transferred to the serial control port, the data is written into the buffer register. At this point, the written data is not active. To make this data active, an update register operation is needed. When set 0x232[0]=1, the data in the buffer register is transferred to the active register. This is called "update register" and makes the data active. Any number of data can be written into the buffer register before executing the update register. 0x232[0] is self-clear bit register.

The serial control port configuration registers of 0x00 and 0x04 does not require the update register. The written data is immediately effective.

READ

When I15=1, read operation is executed. The timing chart of 3-byte data read is shown below. Read data is valid at the falling edge of SCLK.

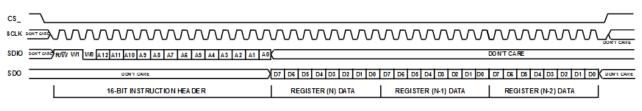
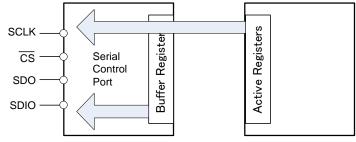
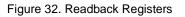




Figure 31. Serial Control Port - READ - MSB First

The serial control port can read back the data in the buffer registers or in the active registers. 0x04[0] selects which register is read.

Readback of the buffer registers or the active registers

Read in Streaming mode

When data is transferred in streaming mode, the reserved and blank registers are not skipped over.

Bidirectional/Unidirectional mode

By default, the serial control port operates in the bidirectional mode. Both write data and readback data are transferred on the SDIO pin. In unidirectional mode, the readback data is on the SDO pin. 0x00[7][0] enables the SDO pin.

BUS STALLING IN READ/WRITE ACCESS

When 1, 2 or 3-byte transfer, but not streaming, \overline{CS} can rise up on boundary of every data byte to stall the bus. While \overline{CS} is high, read/write operation is suspended and the state machine of the serial control port stays in wait state. The operation resumes after \overline{CS} goes down.

SDIO or SDO	16bit Instruction Header	\triangleright	Data Byte 1	Data Byte 2	Data Byte 3
			1 Acc) xess can be suspended a] t every data byte.
CS_B	In access	Access susupended	Access resumes		

Figure 33. Bus Stalling

If the system gets out of the wait state, the state machine should be reset by the following procedure. Return \overline{CS} low and complete the transfer of remained data.

Return \overline{CS} low for at least one complete SCLK cycle (but less than 8 cycles).

If \overline{CS} goes high on non-boundary area, the read/write access is immediately cancelled.

MSB/LSB FIRST TRANSFERS

The AK8186B serial control port transfer the data by MSB first or LSB first. 0x00[6][1] selects one of which. Default is MSB first.

MSB first

The instruction and data are transferred from MSB. When the AK8186B executes multibyte access, the address included in the instruction is the start address. Address decrements at every data byte access.

са в				
SCLK DON'T CARE	$\dots \dots $	\sim	\sim	DON'T CARE
SDIO DON'I CARE	R/07 V/I V/0 A 12 A 11 A 10 A 3 A 8 A 7 A 6 A 5 A 4 A 3 A 2 A 1 A	0 D7 D6 D5 D4 D3 D2 D1 D0	D7 D6 D5 D4 D3 D2 D1 D0	DON'I CARE
	16-BIT IN STRUCTION HEADER	REGISTER (N) DATA	REGISTER (N-1) DATA	í

Figure 34. MSB First Transfers

LSB first

The instruction and data are transferred from LSB. When the AK8186B executes multibyte access, the address included in the instruction is the start address. Address increments at every data byte access.

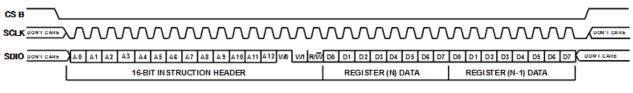


Figure 35. LSB First Transfers

In both MSB and LSB first modes, streaming mode stops at the address of 0x232. Note that the reserved and blank registers are not skipped.

Table 35 Stop Sequence in Streaming mode

Mode	Address Direction	Stop Sequence
LSB first	Increment	0x230, 0x231, 0x232, Stop
MSB first	Decrement	0x001, 0x000, 0x232, Stop

The serial control port is configured by the register 0x00[7:4]. 0x00[3:0] should be mirrored to 0x00[7:4]. This makes it no matter whether the data is written from MSB or LSB.

REGISTER MAP

Addr (HEX)	Parameter	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default Value
	Control Port	1	•				•	•		
00	Serial Port Configuration	SDO Active	LSB First	Soft Reset	Long Instruction	Long Instruction	Soft Reset	LSB First	SDO Active	18
01						Blank				
02						Reserved				
03					Part ID (I	read only)				43
04	Read Back Control				Blank				Read Back Active Registers	00
PLL										
10	PFD & CP	PFD Polarity	CI	narge Pump Curro	ent	Charge P	ump Mode	PLL Pov	ver Down	7D
11	R Counter				14-bit R Divi	der Bits<7:0>				01
12		Bla	ank			14-bit R Divid	ler Bits<13:8>			00
13	A Counter	Bla	Blank			6-bit A counter				00
14	B Counter				13-bit B cour	nter Bits<7:0>				03
15			Blank			13-bi	t B counter Bits<	12:8>		00
16	PLL Control 1	Set CP Pin To VDD/2	Reset R Counter	Reset A&B Counters	Reset All Counters	B Counter Bypass		Prescaler P		06
17	PLL Control 2			STATUS	Pin Control			Rese	erved	00
18	PLL Control 3	Reserved	Lock Dete	ect Counter	Digital Lock Detect Window	Disable Digital Lock Detect	VCO Calibra	ation Divider	VCO Cal Now	06
19	PLL Control 4	R,A,B Cour Pin F	Reset		Reserved			Reserved		00
1A	PLL Control 5	Reserved	Reference Frequency Monitor Threshold			LD Pin	Control			00
1B	PLL Control 6	VCO Frequency Monitor	REF2 Frequency Monitor	REF1 Frequency Monitor		R	EFMON Pin Cont	rol		00
1C	PLL Control 7	Blank	Select REF2	Use REF_SEL Pin	Automatic Reference Switchover	Stay on REF2	REF2 Power On	REF1 Power On	Differential Reference	00
1D	PLL Control 8	Reserved PLL Status Register Disable Comparator Enable Holdover Enable External Holdover Enable Holdover Control Holdover						Holdover Enable	00	
1E	PLL Control 9		Reserved							00
1F	PLL Readback	Reserved	VCO Cal Finished	Holdover Active	REF2 Selected	VCO Frequency Threshold	REF2 Frequency Threshold	REF1 Frequency Threshold	Digital Lock Detect	
20 to 4F						Blank				

A0DarkDarkPeerved01A1BlarkBlarkReserved01A2HarrisReserved01A3Image: Stand	Addr (HEX)	Parameter	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default Value
A2 Bink Reserved 00 A3 Bink Reserved 01 A4 Bink Reserved 01 A5 Bink Reserved 01 A6 Bink Reserved 01 A7 Bink Reserved 01 A8 Bink Reserved 00 A8 Bink Reserved 00 A9 Bink Reserved 00 A9 Bink Reserved 00 A9 Bink Reserved 00 A9 D470 Bink Reserved 00 A9 D470 Bink 00/70 D0/70 00/71 Proser-Down 04 F1 01/2 Bink 01/71 D0/71 Proser-Down 04						Blank Reserved					
A3 A4 Bank Bank Reserved 01 A4 Blank Blank Reserved 00 A5 Blank Reserved 01 A6 Blank Reserved 01 A7 Blank Reserved 01 A8 Blank Reserved 01 A9 Blank Reserved 01 A9 Blank Reserved 01 A9 Blank Reserved 01 A1 Blank Reserved 01 A1 Blank OUT0 Blank Reserved 01 A1 Blank OUT0 Blank OUT0 DUT0 0171 (VPECL IVPECL Blank OUT2 OUT2 DUT2 DUT2 DUT2 DUT2 </td <td>A1</td> <td></td> <td>Bla</td> <td>ink</td> <td></td> <td colspan="6">Reserved</td>	A1		Bla	ink		Reserved					
Ad Blank Reserved 00 AS Blank Reserved 00 AS Blank Blank Reserved 00 AS Blank Blank Reserved 00 AS Blank Reserved 00 AC IO Blank Reserved 00 CVPECL OutputS Blank OUTO (VFEC), DIFFECIA OUTO (VFEC), DIFFECIA OUTO ROWED COM 0A F1 OUTO Blank OUTO (VFEC), DIFFECIA OUTO ROWED COM 0A F2 OUTO Blank OUTO (VFEC), DIFFECIA OUTO ROWED COM 0A F3 OUTO Blank OUTO ROWED COM 0A 0B F4 OUTO Blank OUTO ROWED COM 0A 0B F4 OUTO Blank OUTO	A2		Bla	ink		Reserved					
AS Blank Reserved 00 AB Blank Reserved 01 A7 Blank Reserved 00 A8 Blank Reserved 00 A9 UTPEU Blank OUTO VIPEU 00TO VIPEU FB 0UT2 Blank OUT3 OUT3 VIPECL 0UT3 VIPECL 0UT3 VIPECL FF1 0UT3 Blank OUT3 OUT3 VIPECL 0UT3 VIPECL 0UT3 Prese-Down 0.A FF3 OUT3 Blank OUT3 OUT3 VIPECL OUT4 Prese-Down 0.A FF3 OUT3 </td <td>A3</td> <td></td> <td></td> <td></td> <td></td> <td>Blank</td> <td></td> <td></td> <td></td> <td>Reserved</td> <td>01</td>	A3					Blank				Reserved	01
AB Image: Control of the second of the	A4		Bla	ink			Rese	rved			00
A7 Binnk Reserved 00 A8 Binnk Reserved 00 A8 Binnk Reserved 01 A8 Binnk Reserved 01 A8 Binnk Reserved 01 A8 Binnk Reserved 00 A8 Binnk Reserved 00 AC 10 Binnk Reserved 00 AC 10 Binnk Reserved 00 AC 10 UVPECL Outputs UVPECL 0UT0 0UT0 NPECL 0UT1 NPECL 0UT1 NPECL 0UT1 NPECL 0UT1 NPECL 0UT2 NPECL 0UT2 NPECL 0UT2 NPECL 0UT3 NPECL	A5		Bla	ink			Rese	rved		T	00
A8 Blank Reserved 00 A9 Blank Reserved 01 AA Blank Reserved 00 A8 Blank Reserved 00 AB Blank Reserved 00 AC to EF Blank Reserved 00 AC to EF Blank OUTO LVPECL UNPUS OUTO LVPECL 00 F0 OUT0 Blank OUT1 OUTO LVPECL 00 F1 OUT2 Blank OUT1 OUT1 LVPECL 00 F2 OUT2 Blank OUT2 DUT2 Blank OUT3 F3 OUT3 Blank OUT3 OUT3 OUT3 Power-Down 0A F4 OUT4 Blank OUT3 OUT3 LVPECL OUT3 Power-Down 0A F5 OUT5 Blank OUT3 DUT3 LVPECL OUT3 Power-Down 0A F6-13 E Blank OUT3 LVPECL OUT3 Power-Down 0A F6					1	Blank				Reserved	
Ab Image: Control of the second											
AA Bank Reserved 00 AB Blank Reserved 00 AC to EF Blank Blank 00 LVFECL Outputs Blank OUT0 Blank 00 F0 OUT0 Blank OUT0 OUT0 Power-Down 06 F1 OUT2 Blank OUT1 LVFECL OUT1 Power-Down 08 F2 OUT2 Blank OUT2 OUT2 Power-Down 08 F3 OUT3 Blank OUT3 OUT3 Vector 00 F4 OUT4 Blank OUT3 OUT3 Vector 00 F4 OUT4 Blank OUT6 OUT6 Vector 00 F6-13 F OUT5 Blank OUT6 OUT6 Vector 00 F6 OUT5 OUT6 CMOS Output OUT6 CMOS Output OUT6 CMOS Output OUT6 CMOS Output OUT7 VESHONS OUT7 Vector OUT7 Vector 42 140 OUT5 OUT5 CMOS Output OUT6 CMOS Output OUT7 VESHONS <td></td> <td></td> <td>Bla</td> <td>ink</td> <td></td> <td></td> <td>Rese</td> <td>rved</td> <td></td> <td></td> <td></td>			Bla	ink			Rese	rved			
AB Blank Reserved 00 AC to 0 Blank Blank Blank Blank Blank Blank Blank Blank Blank CVT0 0/10 0/10 0/10 0/10 0/10 0/10 DVT0 Blank DVT0 DVT0 0/11 DVT1 DVT2 DVT2 DVT3 DVT3 DVT3 DVT3 DVT3 DVT3 DVT3 DVT6 DVT6 DVT6 DVT5 DVT5 Blank DVT6 DVT6 <td></td> <td></td> <td>i</td> <td></td> <td></td> <td>Blank</td> <td></td> <td></td> <td></td> <td>Reserved</td> <td></td>			i			Blank				Reserved	
AC to EF Blank OUTO Blank OUTO OUTO 00 F0 0UT0 Blank OUT0 OUT0 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00											
LFF UVPECL Outputs F0 OUT0 Blank DUT1 Differential Votage OUT0 Power-Down 08 F1 OUT2 Blank DUT1 Differential Votage OUT0 Power-Down 08 F2 OUT2 Blank DUT1 Differential Votage OUT1 Power-Down 08 F3 OUT3 Blank DUT2 Differential Votage OUT3 Power-Down 08 F4 OUT4 Blank DUT3 OUT3 Power-Down 08 F4 OUT4 Blank OUT3 OUT3 Power-Down 08 F5 OUT5 Blank OUT4 OUT4 Power-Down 08 F6-13 OUT5 Power-Down 0A F7 OUT6 OUT6 CMOS Output OUT6 Power-Down 0A F8 OUT6 OUT6 CMOS Output UVDS/CMOS OUT7 OUT6 Power-Down 0A F4 OUT6 OUT6 CMOS Output L/VDS/CMOS OUT7 OUT7 Power-Down 42 140 OUT6 OUT6 C			Dia					Ived			00
F0 OUT0 Blank OUT0 Invert DUT0 UPECL Differential Voltage OUT0 Power-Down 68 F1 OUT2 Blank OUT1 Dutrential Voltage OUT0 Power-Down 60 F2 OUT2 Blank OUT1 Differential Voltage OUT1 Power-Down 60 F3 OUT3 Blank OUT3 OUT3 Power-Down 60 F4 OUT4 Blank OUT3 OUT3 Power-Down 60 F4 OUT4 Blank OUT3 OUT3 Power-Down 60 F5 OUT5 Blank OUT6 OUT6 OUT6 Power-Down 60 F6 OUT6 OUT6 CMOS Output OUT6 OUT6 OUT6 Ower-Down 64 LVDS/CMOS Outputs OUT6 CMOS Output OUT6 OWER OWER OUT6 OWER OWER-Down 64 140 OUT6 OUT6 CMOS Output UVDS/CMOS OUT7 OWER OWER OWER OWER OWER OWER OWER OWER							Didilk				
PO OUT0 Baink Invert Differential Voltage OUT1 Power-Down 0A F1 OUT2 Biank OUT2 Biank OUT2 OUT1 Power-Down 0A F2 OUT2 Biank OUT2 Differential Voltage OUT2 Power-Down 0A F3 OUT3 Biank OUT3 OUT3 OUT3 Power-Down 0A F4 OUT4 Biank OUT4 Differential Voltage OUT3 Power-Down 0A F6 OUT5 Biank OUT5 OUT5 OUT5 OUT5 OUT6 OUT7 OUT7 OUT7 OUT7		-				OUTO	OUTOL	VPECI	[
P1 OU12 Biank Invert Differential Voltage OU11 Power-Down OA F2 OUT2 Biank OUT2 Differential Voltage OUT2 Power-Down 06 F3 OUT3 Biank OUT3 OUT3 Power-Down 06 F4 OUT4 Biank OUT3 OUT3 Power-Down 06 F4 OUT5 Biank OUT4 OUT4 Power-Down 08 F6-13 Differential Voltage OUT5 Power-Down 0.4 F6-14 Power-Down 0.4 Differential Voltage OUT5 Power-Down 0.4 F6-13 DUT5 Biank OUT5 OUT5 Power-Down 0.4 F6-14 Power-Down Power-Down 0.4 Power-Down 0.4 F6 Power-Down Power-Down 0.4 Power-Down 0.4 Power-Down 4.2 140 OUT6 OUT6 CMOS Colput L/DSCMOS OUT6 CMOS B OUT6 L/DS Output Power-Down 4.2 141 OUT7 OUT7 CMOS	F0	OUT0		Blank		Invert	Differentia	I Voltage	OUT0 Pc	ower-Down	08
P2 OUT2 Blank Invert Differental Voltage OUT3 Protect. Differental Voltage OUT3 Protect. OUT3 Protect. OUT3 Protect. OUT5 Prooter. OUT5 Protect. <	F1	OUT2		Blank					OUT1 Pc	ower-Down	0A
F3 OUT3 Blank Invert Differential Voltage OUT3 logge OUT3 Power-Down DA F4 OUT4 Blank OUT4 Blank OUT4 OUT5 OUT3 Power-Down 08 F55 OUT5 Blank Invert OUT5 LVPECL OUT5 Power-Down 0A F6-13 Invert OUT5 LVPECL OUT5 Power-Down 0A F6 OUT6 OUT6 Note-Down 0A F40 OUT6 OUT6 Note-Down OUT6 OUT6 Note-Down 0A F410 OUT6 OUT6 Note-Down OUT6 Note-Down OUT6 Note-Down 42 141 OUT7 OUT7 CMOS Output Polarity OUT7 CMOS Output Polarity OUT7 CMOS Output Polarity OUT7 CMOS Output Polarity OUT7 Select OUT7 LVDS Output Power-Down 43 142 OUT6 OUT6 CMOS Output Polarity OUT7 Select OUT7 Select OUT7 LVDS Output Power-Down 42 143 OUT6 OUT6 CMOS Output Polarity OUT9 OUT9	F2	OUT2		Blank					OUT2 Po	ower-Down	08
P4 OUT4 Blank Invert Differential Voltage OUT3 Voltage OUT3 Power-Lown Dis F5 OUT5 Blank OUT5 OUT5 OUT5 Voltage OUT5 Press OUT5 Press OUT5 Press OUT5 Press OUT6 Press OUT7 Press OUT8 Press OUT8 Press OUT8 Press OUT7 Press OUT8 Press OUT9 Press O	F3	OUT3		Blank					OUT3 Power-Down		0A
Instruct Differential Voltage OUTS PollePLOWR OA F6-13 F	F4	OUT4		Blank					OUT4 Power-Down		08
F6-13 F Blank LVDS/CMOS Outputs 140 OUT6 OUT6 CMOS Output Polarity LVDS/CMOS LVDS/CMOS Polarity OUT6 LVDS/CMOS Polarity OUT6 CMOS B LVDS/CMOS OUT7 Select LVDS/CMOS OUT6 LVDS Output Current OUT7 Power-Down 42 141 OUT7 OUT7 CMOS Output Polarity OUT7 CMOS Output Polarity OUT7 Select LVDS/CMOS OUT7 LVDS Output LVDS/CMOS OUT7 LVDS Output Current OUT7 Power-Down 43 142 OUT8 OUT8 CMOS Output Polarity OUT8 CMOS Output LVDS/CMOS OUT8 Select LVDS/CMOS OUT8 LVDS Output Current OUT8 Power-Down 42 143 OUT8 OUT9 CMOS Output Polarity OUT8 CMOS Output LVDS/CMOS OUT8 Select LVDS/CMOS OUT8 LVDS Output Current OUT8 Power-Down 43 144.1 F Blank Blank OUT9 CMOS Output Current OUT9 Power-Down 43 144.1 Divider 0 Divider 0 Low Cycles Divider 0 Phase Offset 00 190 Divider 0 Divider 1 Low Cycles Divider 0 Phase Offset 80 192 Blank Reserved Reserved 00 193 Divider 1 Divider 1 Sync Divider 1 Sixt High Divider 1 Phase Offset 00 194	F5	OUT5		Blank			OUT5 LVPECL OUT5 Box			ower-Down	0A
LVDS/CMOS Outputs OUT6 OUT6 CMOS Output Polarity LVDS/CMOS Output Polarity OUT6 LVDS/CMOS Output Polarity OUT6 CMOS B LVDS/CMOS OUT6 Select CMOS B LVDS/CMOS OUT6 Sulput Current OUT6 Power-Down 42 141 OUT7 OUT7 CMOS Output Polarity LVDS/CMOS UVDS/CMOS OUT7 Select LVDS/CMOS OUT7 LVDS Output Current OUT7 Power-Down 43 142 OUT8 OUT8 CMOS Output Polarity OUT8 UVDS/CMOS OUT7 CMOS B OUT7 Select LVDS/CMOS OUT7 LVDS Output Current OUT8 Power-Down 43 142 OUT8 OUT8 CMOS Output Polarity OUT8 OUT9 CMOS Output Polarity OUT8 OUT9 CMOS Output Polarity OUT8 OUT9 CMOS Output Polarity OUT8 CMOS Output OUT9 CMOS Output Polarity OUT8 CMOS Output OUT9 CMOS Output Polarity OUT9 CMOS Output Polarity OUT8 CMOS Output OUT9 CMOS Output Polarity OUT8 CMOS Output OUT9 CMOS Output Polarity OUT9 CMOS Output Polarity OUT9 CMOS Output Polarity OUT9 CMOS Output OUT9 CMOS Output Polarity OUT9 CMOS Output Polarity OUT9 CMOS Output OUT9 CMOS Output OUT8 CMOS Output Current OUT8 CMOS Output OUT9 Current OUT8 CMOS Output Current OUT9 CMOS Output OUT9 Current OUT9 CMOS Output Current OUT9 CMOS Output Current OUT9 CMOS Output Current OUT9								0			
140 OUT6 OUT6 CMOS Output Polarity LVDS/CMOS Output Polarity OUT6 CMOS B OUT6 LVDS Output UDS/CMOS OUT6 LVDS Output Current OUT6 Power-Down 42 141 OUT7 OUT7 CMOS Output Polarity OUT7 Polarity OUT7 VDS/CMOS OUT7 Select LVDS/CMOS OUT7 LVDS Output Current OUT7 Power-Down 43 142 OUT8 OUT8 OUT8 LVDS Output Polarity OUT8 LVDS/CMOS OUT7 Select LVDS/CMOS OUT7 LVDS Output Current OUT7 Power-Down 43 142 OUT8 OUT8 CMOS B Polarity OUT8 CMOS Output LVDS/CMOS OUT8 LVDS Output Current OUT8 Power-Down 42 143 OUT6 OUT9 CMOS Output Polarity LVDS/CMOS Dutput Polarity OUT9 Select LVDS/CMOS OUT9 LVDS Output Current OUT9 Power-Down 43 144-1 8F Divider 0 Polarity OUT9 CMOS B OUT9 Select LVDS/CMOS OUT9 LVDS Output Current OUT9 Power-Down 43 190 IVPECL Channel Divider 0 (PECL) Divider 0 Low Cycles Divider 0 Start High Divider 0 High Cycles 00 191 Divider 1 (PECL) Blank		CMOS Outputs									
141 OUT7 OUT7 CMOS Output Polarity LVDS/CMOS Output Polarity OUT7 CMOS B OUT7 Select LVDS/CMOS OUT7 Select LVDS/CMOS OUT7 LVDS Output Current OUT7 Power-Down 43 142 OUT8 OUT8 OUT8 CMOS Output Polarity UVB OUT8 OUT8 OUT8 Select LVDS/CMOS OUT8 LVDS Output Current OUT8 Power-Down 42 143 OUT6 OUT9 CMOS Output Polarity UVDS/CMOS OUT9 OUT9 CMOS B OUT9 Select LVDS/CMOS OUT9 LVDS Output Current OUT9 Power-Down 43 144-1 8F OUT6 OUT9 CMOS Output Polarity UVDS/CMOS UUPU Polarity OUT9 CMOS B OUT9 Select LVDS/CMOS OUT9 LVDS Output Current OUT9 Power-Down 43 144-1 8F OUT9 CMOS Output Polarity OUT9 LVDS/CMOS B OUT9 Select LVDS/CMOS OUT9 LVDS Output Current OUT9 Power-Down 43 144-1 8F DUT9 CMOS B OUT9 Select LVDS/CMOS OUT9 LVDS Output Current OUT9 Power-Down 60 190 Ivider 0 (PECL) Divider 0 Low Cycles Divider 0 Start High Divider 0 Phase Offset 80 192 Blank Reserved Reserved Reserved 00 193 Divider 1 Bpaas Divider 1 No Sync Divider 1 Force High Divider 2 S	140	OUT6			LVDS/CMOS Output						42
142 OUT8 OUT8 CMOS Output Polarity LVDS/CMOS Output Polarity OUT8 CMOS B OUT8 Elect LVDS/CMOS OUT8 LVDS Output Current OUT8 Power-Down 42 143 OUT6 OUT9 CMOS Output Polarity OUT9 U0T9 Polarity OUT9 OUT9 CMOS B OUT9 Select LVDS/CMOS OUT9 LVDS Output Current OUT9 Power-Down 43 144-1 BF Image: Comparity OUT9 CMOS Output Polarity OUT9 Polarity OUT9 CMOS B OUT9 LVDS Output LVDS/CMOS OUT9 LVDS Output Current OUT9 Power-Down 43 144-1 BF Image: Comparity Out9 Polarity OUT9 Polarity OUT9 CMOS B OUT9 LVDS Output LVDS/CMOS OUT9 LVDS Output Current OUT9 Power-Down 43 144-1 BF Image: Comparity Image: Comparity Out9 Polarity OUT9 CMOS B OUT9 LVDS Output LVDS/CMOS OUT9 LVDS Output Current OUT9 Power-Down 43 144-1 BF Image: Comparity Image: Comparity Image: Comparity Out9 Polarity OUT9 CMOS B OUT9 LVDS/CMOS OUT9 LVDS/CMOS Divider 0 High Cycles 00 190 Image: Comparity Image: Comparity Image: Comparity Image: Comparity Image: Comparity 00 192 Image: Comparity Image: Comparity Image: Comparity Image: Comparity Image: Comparity Image: Comparity	141	OUT7			LVDS/CMOS Output Polarity						43
143 OUT6 OUT9 CMOS Output Polarity LVDS/CMOS Output Polarity OUT9 CMOS B OUT9 LVDS/CMOS OUT9 LVDS Output Current OUT9 Power-Down 43 144-1 8F Image: Comparison of the compari	142	OUT8			LVDS/CMOS Output Polarity						42
144-1 8F Image: Second se	143	OUT6			LVDS/CMOS Output						43
LVPECL Channel Dividers 190 Divider 0 Divider 0 Low Cycles Divider 0 00 191 Divider 0 Divider 0 Divider 0 Divider 0 00 191 Divider 0 Divider 0 Divider 0 Divider 0 Baok Divider 0 192 Divider 1 Divider 1 Divider 1 Divider 1 80 193 Divider 1 Divider 1 Divider 1 Baok Reserved Reserved 00 193 Divider 1 Divider 1 Divider 1 Divider 1 BB Divider 1 BB 194 Divider 1 Divider 1 Divider 1 Divider 1 Divider 1 BB 195 Divider 1 Divider 1 Divider 1 Force High Start High Divider 1 Phase Offset 00 196 Divider 2 Divider 2 Low Cycles Divider 2 Divider 2 High Cycles 00 197 Divider 2 Divider 2 Divider 2 Divider 2 Divider 2 00 197 Divider 2 Divider 2 Divider 2 Divider 2 Divider 2 00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Blank</td> <td></td> <td></td> <td></td> <td></td>							Blank				
191 Divider 0 (PECL) Divider 0 Bypass Divider 0 No Sync Divider 0 Force High Divider 0 Start High Divider 0 Divider 0 Divider 0 Phase Offset 80 192 Blank Reserved Reserved 00 193 Divider 1 Divider 1 Divider 1 Divider 1 00 194 Divider 1 Divider 1 Divider 1 Divider 1 Divider 1 BB 194 Divider 1 195 Divider 2 Divider 2 Divider 2 Divider 2 Divider 2 00 196 Divider 2 Divider 2 Divider 2 Divider 2 Divider 2 Divider 2 00 197 Divider 2 00		L Channel Div	iders								
191 Divider 0 (PECL) Divider 0 Bypass Divider 0 No Sync Divider 0 Force High Divider 0 Start High Divider 0 Divider 0 Divider 0 Parce High Divider 0 Start High 192 Divider 1 Blank Reserved Reserved 00 193 Divider 1 Divider 1 Low Cycles Divider 1 BB 194 Divider 1 Divider 1 Divider 1 Divider 1 Divider 1 195 Divider 1 Divider 1 Divider 1 Divider 1 Divider 1 195 Divider 2 Divider 2 Divider 2 Reserved Reserved 196 Divider 2 Divider 2 Divider 2 Divider 2 Divider 2 Divider 2 197 Divider 2	190			Divider 0 I	ow Cycles			Divider 0 H	ligh Cycles		00
192 Blank Reserved Reserved 00 193 Divider 1 Divider 1 Low Cycles Divider 1 High Cycles BB 194 Divider 1 Divider 1 Divider 1 Divider 1 Divider 1 BB 195 Divider 1 Blank Porce High Divider 1 Divider 2 Divider 2 <td>191</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Divider 0 P</td> <td>hase Offset</td> <td></td> <td>80</td>	191							Divider 0 P	hase Offset		80
194 Divider 1 (PECL) Divider 1 Bypass Divider 1 No Sync Divider 1 Force High Divider 1 Start High Divider 1 Divider 2 Divider 1 Phase Offset 00 196 Image: Start High	192				,	Ū	erved		Res	erved	00
194 (PECL) Bypass No Sync Force High Start High Divider 1 Phase Offset 00 195 Blank Reserved Reserved 00 196 Divider 2 Divider 2 Low Cycles Divider 2 High Cycles 00 197 Divider 2 Divider 2 Divider 2 Divider 2 00 197 Divider 2 Divider 2 Divider 2 Divider 2 00	193			Divider 1 I	ow Cycles			Divider 1 H	ligh Cycles		BB
195 Blank Reserved Reserved 00 196 Divider 2 Divider 2 Low Cycles Divider 2 High Cycles 00 197 Divider 2 Divider 2 Divider 2 Divider 2 00 197 Divider 2 Divider 2 Divider 2 Divider 2 00	194							Divider 1 P	hase Offset		00
197 Divider 2 (PECL) Divider 2 Bypass Divider 2 No Sync Divider 2 Force High Divider 2 Start High Divider 2 Divider 2 Start High Divider 2 Divider 2 Start High	195					Ū	erved		Res	erved	00
T97 (PECL) Bypass No Sync Force High Start High Divider 2 Phase Offset 00	196			Divider 2 I	ow Cycles			Divider 2 H	ligh Cycles		00
	197							Divider 2 P	hase Offset		00
	198				Ŭ	Ū	erved		Res	erved	00

Addr (HEX)	Parameter	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default Value
LVDS/0	CMOS Channel	Dividers								
199			Low Cycles	s Divider 3.1		High Cycle Divider 3.1				22
19A	Divides 2		Phase Offs	et Divider 3.2		Phase Offset Divider 3.1				00
19B	Divider 3 (LVDS/CMO S)		Low Cycle	s Divider 3.2			High Cycles	s Divider 3.2		11
19C	3)	Rese	erved	Bypass Divider3.2	Bypass Divider 3.1	Divider 3 No Sync	Divider 3 Force High	Start High Divider 3.2	Start High Divider 3.1	00
19D		Bla	ank			Reserved		I	Reserved	00
19E			Low Cycles	s Divider 4.1			High Cycle	Divider 4.1	1	22
19F			Phase Offs	et Divider 4.2		Phase Offset Divider 4.1			00	
1A0	Divider 4 (LVDS/CMO		Low Cycles	s Divider 4.2			High Cycles	s Divider 4.2		11
1A1	S)	Rese	erved	Bypass Divider4.2	Bypass Divider 4.1	Divider 4 No Sync	Divider 4 Force High	Start High Divider 4.2	Start High Divider 4.1	00
1A2		Bla	ank			Reserved	•	•	Reserved	00
1A3						Reserved			•	
1A4 to 1DF						Blank				
VCO D	ivider and CLK	Input								
1E0	VCO Divider		BI	ank		Reserved		VCO Divider		02
1E1	Input CLKs		Reserved		Power-Down Clock Input Section	Power-Down VCO clock interface	Power-down VCO & CLK	Select VCO or CLK	Bypass VCO Divider	00
1E2 to 22A		Blank								
System	ı									
230	Power Down and Sync.	Reserved					Power-Down Sync	Power-Down Distribution	Soft Sync	00
231		Blank Reserved					00			
Update	All Registers									
232	Update all Registers				Blank				Update All Registers	00

REGISTER MAP FUNCTION DESCRIPTIONS

Serial Port Configuration

Register Address (Hex)	Bit(s)	Name	Description		
	7	SDO Active	 Selects unidirectional or bidirectional data transfer mode. 0: Bidirectional mode: (default) SDIO pin used for write and read; SDO set high impedance. 1: Unidirectional mode: SDO pin used for read; SDIO pin used for write. 		
	6 LSB First		MSB or LSB data orientation 0: data-oriented MSB first: addressing decrements. (default) 1: data-oriented LSB first: addressing increments.		
0x000	0x000 5 Soft Reset		Soft Reset 1: Soft Rest (not self-clearing); restores default values to internal registers. Must be cleared to "0" to complete operation.		
	4	Long Instruction	Should be always "1": 16bit instruction(long).		
	3:0	Mirror[7:4]	Bit[3:0] should be always mirror [7:4] so that it does not matter whether the part is in MSB or LSB first mode(see Register 0x00[6]). User should set bits as follows. [0]=[7] [1]=[6] [2]=[5] [3]=[4]		
0x003	7:0	Part ID	Part ID of the AK8186B. (read only) AK8186B : 0x43		
0x004	0	Read Back Active Reg.	Select register bank used for read back. 0: read back buffer registers (default) 1: read back active registers		

PLL Configuration

Register Address (Hex)	Bit(s)	Name	Description			
	7	PFD Polarity	Sets the PFD Polarity. The on-chip VCO requires positive polarity. 0 : Positive ; higher control voltage produces higher frequency (default) 1 : Negative; higher control voltage produces lower frequency			
0x010	6:4	CP Current	Charge Pump current (with CPRSET= $5.1k\Omega$). [6:5:4] lcp(mA) 0 0 0 0.6 0 0 1 1.2 0 1 0 1.8 0 1 1 2.4 1 0 0 3.0 1 0 1 3.6 1 1 0 4.2 1 1 1 4.8 (default)			
	3:2	CP Mode	Charge pump operating mode.[3:2]Charge pump mode0High impedance state010Force source current (pump up)101Normal operation. (default)			
	1:0	PLL Power Down	PLL operating mode. [1:0] PLL Mode 0 0 Normal operation. 0 1 Asynchronous power-down. (default) 1 0 Normal operation. 1 1 Synchronous power-down.			
0x011	7:0	14-Bit R Divider Bits[7:0] (LSB)	R divider LSBs, lower eight bits (default=0x01).			
0x012	5:0	14-Bit R Divider Bits[13:8] (MSB)	R divider MSBs, upper six bits (default=0x00).			
0x013	5:0	6-Bit A Counter	A counter (part of N divider) (default=0x00).			
0x014	7:0	13-Bit B Counter Bits[7:0]	B counter (part of N divider). Lower eight bits (default=0x03).			
0x015	4:0	13-Bit B Counter Bits[12:8]	B counter (part of N divider). Upper eight bits (default=0x00).			
0.010	7	Set CP pin To VDD/2	Sets the CP pin to one-half of the VDD supply voltage. 0: CP normal operation (default). 1: CP pin set to VDD/2.			
0x016	6	Rest R Counters	Resets R counter (R divider) 0: normal (default) 1: reset R counter.			

Register Address (Hex)	Bit(s)	Name	Description			
	5 Reset A&B Counters		Resets A&B counters (part of N divider) 0: normal (default) 1: reset A & B counter.			
	4	Reset All Counters	Resets R, A&B counters. 0: normal (default) 1: reset R, A & B counter.			
	3	B Counter Bypass	 B counter bypass. This is valid only when operating the prescaler in FD mode. 0: normal mode (default) 1: B counter is set to divide-by-1. This allows the prescaler setting to determine the divide for the N divider. 			
0x016	2:0	Prescaler P	Prescaler: DM=Dual modulus and FD = fixed divide.External VCO/VCXO ; $1E1[1]=0$ [2:1:0]ModePrescaler0 0 0FDDivide-by-10 0 1FDDivide-by-20 1 0DMDivide-by-2 (2/3 mode)0 1 1DMDivide-by-4 (4/5 mode)1 0 0DMDivide-by-4 (4/5 mode)1 0 1DMDivide-by-8 (8/9 mode)1 0 1DMDivide-by-16 (16/17 mode)1 1 0DMDivide-by-32 (32/33 mode) (default)1 1 1FDDivide-by-32Internal VCO ; $1E1[1]=1$ [2:1:0]ModePrescaler0 X XDMDivide-by-32 (32/33 mode)1 0 1DMDivide-by-16 (16/17 mode)1 1 XDMDivide-by-32 (32/33 mode)			
0x017	7:2	STATUS Pin Control	Selects the signal that is connected to the STATUS pin. Level or Dynamic [7:6:5:4:3:2] Signals Signal at STATUS Pin 0 0 0 0 0 0 LVL Ground(dc) (default). 0 0 0 0 0 1 DYN N divider output 0 0 0 0 1 0 DYN R divider output 0 0 0 0 1 0 DYN R divider output. 0 0 0 1 0 0 DYN Prescaler output. 0 0 0 1 0 1 DYN PFD up pulse 0 0 0 1 1 0 DYN PFD down pulse 0 0 0 1 1 0 DYN PFD down pulse 0 0 0 1 1 0 DYN PFD down pulse 0 x x x x LVL Ground(dc); for all other cases 0xxxxx not specified Above. The selections that follow are the same as REFMON. 1 0 0 0 0 1 DYN REF1 clock 1 0 0 0 1 0 DYN REF2 clock (N/A differential mode) 1 0 0 0 1 1 DYN Selected reference to PLL 1 0 0 1 0 1 DYN Unselected reference to PLL 1 0 0 1 0 1 LVL Status of selected reference 1 0 0 1 1 0 LVL			

Register Address (Hex)	Bit(s)	Name	Description			
				Level or		
				Dynamic		
			[7:6:5:4:3:2]	-	Signal at STATUS Pin	
			101000	LVL	Status REF2 frequency. (active high)	
			101001	LVL	(Status REF1 Freq.) AND (Status REF2 Freq.)	
			101010	LVL	(DLD) AND (Status of selected reference)	
					AND (status of VCO)	
			101011	LVL	Status of VCO Frequency (active high)	
			101100	LVL	Selected reference (Low=REF1,High=REF2)	
			101101	LVL	Digital Lock Detect(DLD); active High	
			101110	LVL	Holdover active(active high)	
			101111	LVL	LD pin comparator output (active high).	
			110000	LVL	VDD (PLL supply)	
		OTATUO	110001	DYN	(REF1 Clock)n	
0x017	7:2	STATUS Pin Control	110010	DYN	(REF2 Clock)n	
			110011	DYN	(Selected reference to PLL)n	
			110100	DYN	(Unselected reference to PLL)n	
			110101	LVL	Status of selected reference: active low	
			110110	LVL	Status of unselected reference: active low	
			110111	LVL	Status of REF1 frequency(active low)	
			111000	LVL	Status of REF2 frequency(active low)	
			111001	LVL	((Status REF1 Freq.) AND (Status REF2 Freq.))n	
			111010	LVL	((DLD) AND (Status of selected reference) AND (status of VCO))n	
			111011	LVL	Status of VCO Frequency (Active low)	
			111100	LVL	Selected reference (Low=REF2,High=REF1).	
			111101	LVL	Digital Lock Detect(DLD): Active Low	
			111110	LVL	Holdover active(active low)	
			111111	LVL	LD Pin comparator output(Active low)	
			[6:5] PF	D Cvcles D	etermine Lock	
				default)		
	6:5	Lock Detect	01 16	,		
		Counter	10 64			
0x018			11 25	5		
			Digital Lock De	etect Window	w Size	
	,	Digital Lock		Lock	Unlock	
	4	Detect Window	0 : High Ran	ge 7.5ns	15ns (default)	
			1 : Low Rang	-	7ns	

Register Address (Hex)	Bit(s)	Name	Description		
	3	Disable DLD	Digital Lock Detect operation 0: normal lock detect operation (default) 1: disable lock detect		
0x018	2:1VCO Cal Dividerfrom the PLL reference clock.[2:1]VCO Calibration Clock Divider0 020 141 08		[2:1]VCO Calibration Clock Divider0 020 14		
	0	VCO Cal Now	Bit used to initiate the VCO calibration. This bit must be toggled from 0 to 1 in the active registers. The sequence to initiate a calibration is: program to 0, followed by an update bit(Register 0x232[0]),; then programmed to 1, followed by another update bit(Register 0x232[0]). This sequence gives complete control over when the VCO calibration occurs relative to the programming of other registers that can impact the calibration.		
0x019	7:6	R,A,B Counters SYNC Pin RESET	[7:6]Action0 0Do nothing on SYNC(default)0 1Asynchronous reset1 0Synchronous reset1 1Do nothing on SYNC		
0x01A	6	Reference Frequency Monitor Threshold	 Sets the reference (REF1/REF2) frequency monitor's detection threshold frequency. This does not affect the VCO frequency monitor's detection threshold. See Table 16: REF1, REF2 and VCO Frequency Status Monitor parameter. 0: frequency valid if frequency is above the higher frequency threshold (default). 1: frequency valid if frequency is above the lower frequency threshold. 		

Register Address (Hex)	Bit(s)	Name	Description			
			Selects the sig	gnal that is	connected to the LD pin.	
			[5:4:3:2:1:0]	Signals	Signal at LD Pin	
			000000	LVL	DLD (High=lock, Low=unlock) (default)	
			000001	DYN	P-Channel, open-drain lock detect(analog LD)	
			000010	DYN	N-Channel, open-drain lock detect(analog LD)	
			000011	HIZ	High-Z LD pin.	
			000100	CUR	Current source LD(110uA when DLD is true).	
			0 x x x x x	LVL	Ground(dc);for all other cases 0xxxxx not specified Above.	
			The selection 111111.	s that foll	ow are the same as REFMON except 101111 and	
			100000	LVL	Ground(dc).	
			100001	DYN	REF1 clock	
			100010	DYN	REF2 clock (N/A differential mode)	
			100011	DYN	Selected reference to PLL	
			100100	DYN	Unselected reference to PLL	
			100101	LVL	Status of selected reference	
			100110	LVL	Status of unselected reference	
			100111	LVL	Status REF1 frequency.(active high)	
			101000	LVL	Status REF2 frequency.(active high)	
		D LD Pin Control	101001	LVL	(Status REF1 Freq.) AND (Status REF2 Freq.)	
			101010	LVL	(DLD) AND (Status of selected reference)	
0x01A	5:0				AND (status of VCO)	
			101011	LVL	Status of VCO Frequency (Active high)	
			101100	LVL	Selected reference (Low=REF1,High=REF2)	
			101101	LVL	Digital Lock Detect(DLD): Active High	
			101110	LVL	Holdover active(active high)	
			101111	LVL	N/A do not use.	
			110000	LVL	VDD (PLL supply)	
			110001	DYN	(REF1 Clock)n	
			110010	DYN	(REF2 Clock)n	
			110011	DYN	(Selected reference to PLL)n	
			110100	DYN	(Unselected reference to PLL)n	
			110101	LVL	Status of selected reference: active low	
			110110	LVL LVL	Status of unselected reference: active low Status of REF1 frequency(active low)	
			110111	LVL	Status of REF2 frequency(active low)	
			111000		((Status REF1 Freq.) AND (Status REF2 Freq.))n	
			111010		((DLD) AND (Status of selected reference)	
				L V L	AND (status of VCO))n	
			111011	LVL	Status of VCO Frequency (active low)	
			111100	LVL	Selected reference (Low=REF2,High=REF1).	
			111101	LVL	Digital Lock Detect(DLD): active low	
			111110	LVL	Holdover active (active low)	
			111111	LVL	N/A do not use.	

Register Address (Hex)	Bit(s)	Name	Description				
	7	VCO Frequency Monitor	Enable or disable VCO frequency monitor. 0: disable VCO frequency monitor (default). 1: enable VCO frequency monitor.				
	6	REF2(REFINn) Frequency Monitor	0: disable R	EF2 freque	? frequency monitor. ency monitor (default). ency monitor.		
	5	REF1(REFIN) Frequency Monitor	0: disable R	Enable or disable REF1(REFIN) frequency monitor. 0: disable REF1(REFIN) frequency monitor (default). 1: enable REF1(REFIN) frequency monitor.			
0x01B	4:0	REFMON Pin Control	[4:3:2:1:0] 00000 00010 00010 00010 00010 00011 00010 00101 00101 00101 00101 00101 00101 01011 01011 01011 01011 01011 01011 01011 01001 10001 10011 10101 10101 10101 10101 10101 11011 11001 11011 11011 11011 11011 11011 11101 11101	Signals LVL DYN DYN DYN LVL LVL LVL LVL LVL LVL LVL LV	Signal at REFMON Pin Ground(dc) (default). REF1 clock REF2 clock (N/A differential mode) Selected reference to PLL Unselected reference to PLL Status of selected reference Status of unselected reference Status REF1 frequency.(active high) Status REF2 frequency.(active high) (Status REF1 Freq.) AND (Status REF2 Freq.) (DLD) AND (Status of selected reference) AND (status of VCO) Status of VCO Frequency (Active high) Selected reference (Low=REF1,High=REF2) Digital Lock Detect(DLD): Active High Holdover active(active high) LD Pin comparator output(Active high) VDD (PLL supply) (REF1 Clock)n (REF2 Clock)n (Selected reference to PLL)n (Unselected reference to PLL)n Status of selected reference: active low Status of unselected reference: active low Status of REF1 frequency(active low) (Status REF1 Freq.) AND (Status REF2 Freq.))n ((DLD) AND (Status of selected reference) Status of REF1 frequency(active low) ((Status REF1 Freq.) AND (Status REF2 Freq.))n ((DLD) AND (Status of selected reference) Status of VCO Frequency (Active low) Status of VCO Frequency (Active low) Status of VCO Frequency (Active low) Selected reference (Low=REF2,High=REF1). Digital Lock Detect(DLD): Active Low Holdover active(active low) LD Pin comparator output(Active low)		

Register Address (Hex)	Bit(s)	Name	Description		
	6	Select REF2	If Register 0x1C[5]=0, select reference for PLL. 0: select REF1 (default) 1: select REF2		
	5	Use REF_SEL Pin	If Register 0x1C[4]=0, set method of PLL reference selection. 0: use Register 0x1C[6] (default). 1: use REF_SEL pin.		
	4	Automatic Reference Switchover	Automatic or manual reference selection switchover. Single-ended reference mode must be selected by Register 0x1C[0]=0. 0: manual reference switchover (default). 1: automatic reference switchover.		
0x01C	3	Stay on REF2	Stays on REF2 after switchover 0: return to REF1 automatically when REF1 status good again (default). 1: stay on REF2 after switchover. Do not automatically return to REF1.		
	2	REF2 Power On	 When automatic reference switchover is disabled, this bit returns the REF2 power on. 0: REF2 Power off (default). 1: REF2 Power on. 		
	1	REF1 Power On	When automatic reference switchover is disabled, this bit returns the REF1 power on.0: REF1 Power off (default).1: REF1 Power on.		
	0	Differential Reference	Selects the PLL reference mode, differential or single-ended. Single-ended must be selected for the automatic switchover or REF1 and REF2 to work. 0: single-ended reference mode (default). 1: differential reference mode.		

Register Address (Hex)	Bit(s)	Name	Description
	4	PLL Status Register Disable	Disable the PLL status register read-back. 0: enable (default) 1: disable
	3	LD Pin Comparator Enable	Enable the LD pin voltage comparator, This function is used with the LP pin current source lock detect mode. When in the automatic holdover mode, this enables the use of the voltage on the LD pin to determine if the PLL was previously in a locked state. Otherwise, this can be used with the REFMON and STATUS pins to monitor the voltage on this PIN. 0: disable (default) 1: enable
0x01D	2	Holdover Enable	Along with[0] enables the holdover function. 0: holdover disabled (default) 1: holdover enabled
	1	Manual Holdover Control	Enable the manual hold control through the SYNC pin. (This disables the automatic holdover mode.) 0: automatic holdover mode-holdover controlled by automatic holdover circuit. (default) 1: manual holdover mode-holdover controlled by SYNC pin.
	0	Holdover Enable	Analog with[2] enables the holdover function. 0: holdover disabled (default) 1: holdover enabled

Register Address (Hex)	Bit(s)	Name	Description		
	6	VCO Cal Finished	Read-only register: status of the VCO calibration. 0: VCO calibration not finished 1: VCO calibration finished		
	5	Holdover Active	Read-only register: indicates if the part is in the holdover state(see Fig.19). This is not same as holdover enable. 0: not in holdover. 1: holdover state active.		
	4	REF2 Selected	Read-only register: indicates which PLL reference is selected as the input to PLL. 0: REF1 selected (or differential reference if in differential mode.) 1: REF2 selected.		
0x01F	3	VCO Frequency > Threshold	 Read-only register: indicates if the VCO frequency is greater than the threshold (see Table 16, REF1, REF2, and VCO Frequency Status Monitor.). 0: VCO frequency is less than threshold frequency. 1: VCO frequency greater the threshold frequency. 		
	2	REF2 Frequency > Threshold	Read-only register: indicates if the frequency REF2 is greater than the threshold frequency set by Register 0x1A[6]. 0: REF2 frequency is less than threshold frequency. 1: REF2 frequency greater the threshold frequency.		
	1	REF1 Frequency > Threshold	Read-only register: indicates if the frequency REF1 is greater than the threshold frequency set by Register 0x1A[6]. 0: REF1 frequency is less than threshold frequency. 1: REF1 frequency greater the threshold frequency.		
	Digital Read-only register: digital lock detect 0 Lock 0: PLL is not locked. Detect 1: PLL is locked.				

LVPECL Outputs

Register Address (Hex)	Bit(s)	Name	Description			
	4 Output Invert		Selects the output polarity. 0: non-inverting (default) 1: inverting			
0x0F0	OUT0 LVPECL 3:2 Differential Voltage		Sets the LVPECL output differential voltage(Vod) [3:2] Vod(mV) 0 400 0 1 0 780 (default) 1 960			
	1:0	OUT0 Power-Down	LVPECL power-down modes.[1:0]OutMode0OnNormal operation (default)01OffPartial Power-down (Outputs Hi-Z).10OffPartial Power-down (Outputs Hi-Z).11OffPower-down (Outputs Hi-Z)			
	4	Output Invert	Selects output polarity. 0: non-inverting (default) 1: inverting			
0x0F1	3:2	OUT1 LVPECL Differential Voltage	Sets the LVPECL output differential voltage(Vod) [3:2] Vod(mV) 0 400 0 1 0 780 (default) 1 960			
	1:0	OUT1 Power-Down	LVPECL power-down modes.[1:0] Out Mode0 0 On Normal operation0 1 Off Partial Power-down (Outputs Hi-Z).1 0 Off Partial Power-down (Outputs Hi-Z). (default)1 1 Off Power-down (Outputs Hi-Z).			
	4	Output Invert	Selects output polarity. 0: non-inverting (default) 1: inverting			
0x0F2	3:2	OUT2 LVPECL Differential Voltage	Sets the LVPECL output differential voltage(Vod) [3:2] Vod(mV) 0 400 0 1 600 1 0 780 (default) 1 1 960			
	1:0	OUT2 Power-Down	LVPECL power-down modes.[1:0] Out Mode0 0 On Normal operation (default)0 1 Off Partial Power-down (Outputs Hi-Z).1 0 Off Partial Power-down (Outputs Hi-Z).1 1 Off Power-down (Outputs Hi-Z).			

Register Address (Hex)	Bit(s)	Name	Description
	4	Output Invert	Selects output polarity. 0: non-inverting (default) 1: inverting
0x0F3	3:2	OUT3 LVPECL Differential Voltage	Sets the LVPECL output differential voltage(Vod) [3:2] Vod(mV) 0 400 0 1 0 780 (default) 1 960
	1:0	OUT3 Power-Down	LVPECL power-down modes.[1:0] Out Mode0 0 On Normal operation0 1 Off Partial Power-down (Outputs Hi-Z).1 0 Off Partial Power-down (Outputs Hi-Z). (default)1 1 Off Power-down (Outputs Hi-Z).
	4	Output Invert	Selects output polarity. 0: non-inverting (default) 1: inverting
0x0F4	3:2	OUT4 LVPECL Differential Voltage	Sets the LVPECL output differential voltage(Vod) [3:2] Vod(mV) 0 400 0 1 0 780 (default) 1 960
	1:0	OUT4 Power-Down	LVPECL power-down modes.[1:0] Out Mode0 0 On Normal operation (default)0 1 Off Partial Power-down (Outputs Hi-Z).1 0 Off Partial Power-down (Outputs Hi-Z).1 1 Off Power-down (Outputs Hi-Z).
	4	Output Invert	Selects output polarity. 0: non-inverting (default) 1: inverting
0x0F5	3:2	OUT5 LVPECL Differential Voltage	Sets the LVPECL output differential voltage(Vod) [3:2] Vod(mV) 0 400 0 1 0 780 (default) 1 960
	1:0	OUT5 Power-Down	LVPECL power-down modes.[1:0] Out Mode0 0 On Normal operation0 1 Off Partial Power-down (Outputs Hi-Z).1 0 Off Partial Power-down (Outputs Hi-Z). (default)1 1 Off Power-down (Outputs Hi-Z).

LVDS/CMOS Outputs

Register Address (Hex)	Bit(s)	Name	Description
	7:5	OUT6 Output Polarity	In CMOS mode,[7:5] select the output polarity of each CMOS output.In LVDS mode, only [5] determines LDVS polarity.[7:6:5]OUT6(CMOS)OUT6n(CMOS)OUT6(LVDS)0 0 0Non-inverting.Inverting.Non-inverting.0 1 0Non-inverting.Non-inverting.Non-inverting (default)1 0 0Inverting.Inverting.Non-inverting1 1 0Inverting.Non-inverting.Non-inverting0 1 1Inverting.Non-inverting.Inverting0 1 1Inverting.Inverting.Inverting1 0 1Non-inverting.Inverting.Inverting1 1 1Non-inverting.Inverting.Inverting1 1 1Non-inverting.Inverting.Inverting
0x140	4	OUT6 CMOS B	In CMOS mode, turn on/off the OUT6n output. There is no effect in LDVS mode. 0: turn off the OUT6n output. (default) 1: turn on the OUT6n output
	3	OUT6 Select LVDS/CMOS	Selects LVDS or CMOS logic levels. 0: LVDS. (default) 1: CMOS.
	2:1	OUT6 LVDS Output Current	Sets output current level in LVDS mode. This has no effect CMOS mode, [2:1] Current (mA) Recommend Termination (Ω) 0 1.75 100 0 1.75 100 (default) 1 5.25 50 1 1 7.0 50
	0	OUT6 Power-Down	Power-down output(LVDS/CMOS). 0: Power on. 1: Power off. (default) LVDS: Outputs Hi-Z CMOS: Outputs Low
	7:5	OUT7 Output Polarity	In CMOS mode,[7:5] select the output polarity of each CMOS output.In LVDS mode, only [5] determines LDVS polarity.[7:6:5]OUT7(CMOS)OUT7n(CMOS)OUT7(LVDS)0 0 0Non-inverting.Inverting.Non-inverting.0 1 0Non-inverting.Non-inverting.Non-inverting (default)1 0 0Inverting.Inverting.Non-inverting1 1 0Inverting.Non-inverting.Non-inverting0 1 1Inverting.Non-inverting.Inverting0 1 1Inverting.Inverting.Inverting0 1 1Inverting.Inverting.Inverting1 0 1Non-inverting.Inverting.Inverting1 1 1Non-inverting.Inverting.Inverting1 1 1Non-inverting.Inverting.Inverting
0x141	4	OUT7 CMOS B	In CMOS mode, turn on/off the OUT7n output. There is no effect in LDVS mode. 0: turn off the OUT7n output. (default) 1: turn on the OUT7n output
	3	OUT7 Select LVDS/CMOS	Selects LVDS or CMOS logic levels. 0: LVDS. (default) 1: CMOS.
	2:1	OUT7 LVDS Output Current	Sets output current level in LVDS mode. This has no effect CMOS mode, [2:1] Current (mA) Recommend Termination (Ω) 0 1.75 100 0 1.75 100 (default) 1 5.25 50 1 7.0 50

Register Address (Hex)	Bit(s)	Name	Description
141	0	OUT7 Power-Down	Power-down output(LVDS/CMOS). 0: Power on. 1: Power off. (default) LVDS: Outputs Hi-Z CMOS: Outputs Low
	7:5	OUT8 Output Polarity	In CMOS mode,[7:5] select the output polarity of each CMOS output.In LVDS mode, only [5] determines LDVS polarity.[7:6:5]OUT8(CMOS)OUT8n(CMOS)OUT8(LVDS)0 0 0Non-inverting.Inverting.Non-inverting.0 1 0Non-inverting.Inverting.Non-inverting (default)1 0 0Inverting.Inverting.Non-inverting1 1 0Inverting.Inverting.Non-inverting0 1 1Inverting.Non-inverting.Inverting0 1 1Inverting.Inverting.Inverting0 1 1Inverting.Inverting.Inverting1 0 1Non-inverting.Inverting.Inverting1 1 1Non-inverting.Inverting.Inverting1 1 1Non-inverting.Inverting.Inverting
0x142	4	OUT8 CMOS B	In CMOS mode, turn on/off the OUT8n output. There is no effect in LDVS mode. 0: turn off the OUT8n output. (default) 1: turn on the OUT8n output
	3	OUT8 Select LVDS/CMOS	Selects LVDS or CMOS logic levels. 0: LVDS. 1: CMOS.
	2:1	OUT8 LVDS Output Current	Sets output current level in LVDS mode. This has no effect CMOS mode, [2:1] Current (mA) Recommend Termination (Ω) 0 0 1.75 100 0 1 3.5 100 (default) 1 0 5.25 50 1 1 7.0 50
	0	OUT8 Power-Down	Power-down output(LVDS/CMOS). 0: Power on. 1: Power off. (default) LVDS: Outputs Hi-Z CMOS: Outputs Low
0x143	7:5	OUT9 Output Polarity	In CMOS mode,[7:5] select the output polarity of each CMOS output.In LVDS mode, only [5] determines LDVS polarity.[7:6:5]OUT9(CMOS)OUT9n(CMOS)OUT9(LVDS)0 0 0Non-inverting.Inverting.Non-inverting.0 1 0Non-inverting.Inverting.Non-inverting (default)1 0 0Inverting.Inverting.Non-inverting1 1 0Inverting.Inverting.Non-inverting0 1 1Inverting.Non-inverting.Inverting0 1 1Inverting.Inverting.Inverting0 1 1Inverting.Inverting.Inverting1 0 1Non-inverting.Inverting.Inverting1 1 1Non-inverting.Inverting.Inverting1 1 1Non-inverting.Inverting.Inverting
	4	OUT9 CMOS B	In CMOS mode, turn on/off the OUT9n output. There is no effect in LDVS mode. 0: turn off the OUT9n output. (default) 1: turn on the OUT9n output
	3	OUT9 Select LVDS/CMOS	Selects LVDS or CMOS logic levels. 0: LVDS. (default) 1: CMOS.

Register Address (Hex)	Bit(s)	Name			Description
0x143	2:1	OUT9 LVDS Output Current	Sets outpu [2:1] 0 0 0 1 1 0 1 1	ut current level in Current (mA) 1.75 3.5 5.25 7.0	LVDS mode. This has no effect CMOS mode, Recommend Termination (Ω) 100 100 (default) 50 50
	0	OUT9 Power-Down	0: Powe		CMOS). .VDS: Outputs Hi-Z CMOS: Outputs Low

LVPECL Channel Dividers

Register Address (Hex)	Bit(s)	Name	Description
0x190	7:4	Divider 0 Low Cycles M	Number of Low clock cycles (M) and High clock cycles (N) of the divider input define a frequency division, Dx, of the Divider 0. $Dx = M+N+2$.
0x190	3:0	Divider 0 High Cycles N	Note) The M and N does not affect the duty of LVPECL output. The DCC(Duty Cycle Correction) always works.
	7	Divider 0 Bypass	Bypasses and power-down the divider; route input to divider output. 0: use divider. 1: bypass divider. (default)
	6	Divider 0 Nosync	Nosync. 0: obey chip-level SYNC signal. (default) 1: ignore chip-level SYNC signal.
0x191	5	Divider 0 Force High	Forces divider output to high. This requires that nosync also be set. 0: divider output force to low. (default) 1: divider output force to high.
	4	Divider 0 Start High	Selects clock output to start high or start low. 0: start low. (default) 1: start high.
	3:0	Divider 0 Phase Offset	Phase offset. (default=0x0)
0.400	7:4	Divider 1 Low Cycles M	Number of Low clock cycles (M) and High clock cycles (N) of the divider input define a frequency division, Dx, of the Divider 1. $Dx = M+N+2$.
0x193	3:0	Divider 1 High Cycles N	Note) The M and N does not affect the duty of LVPECL output. The DCC(Duty Cycle Correction) always works.
	7	Divider 1 Bypass	Bypasses and power-down the divider; route input to divider output. 0: use divider. (default) 1: bypass divider.
0x194	6	Divider 1 Nosync	Nosync. 0: obey chip-level SYNC signal. (default) 1: ignore chip-level SYNC signal.
	5	Divider 1 Force High	Forces divider output to high. This requires that nosync also be set. 0: divider output force to low. (default) 1: divider output force to high.

Register Address (Hex)	Bit(s)	Name	Description
0x194	4	Divider 1 Start High	Selects clock output to start high or start low. 0: start low. (default) 1: start high.
	3:0	Divider 1 Phase Offset	Phase offset. (default=0x0)
0x196	7:4	Divider 2 Low Cycles M	Number of Low clock cycles (M) and High clock cycles (N) of the divider input define a frequency division, Dx, of the Divider 2. $Dx = M+N+2$.
0x196	Alightarrow Divider 2 Note) The M and N does not affect the duty of Correction) always works.	Note) The M and N does not affect the duty of LVPECL output. The DCC(Duty Cycle Correction) always works.	
	7	Divider 2 Bypass	Bypasses and power-down the divider; route input to divider output. 0: use divider. (default) 1: bypass divider.
	6	Divider 2 Nosync	Nosync. 0: obey chip-level SYNC signal. (default) 1: ignore chip-level SYNC signal.
0x197	5	Divider 2 Force High	Forces divider output to high. This requires that nosync also be set. 0: divider output force to low. (default) 1: divider output force to high.
	4	Divider 2 Start High	Selects clock output to start high or start low. 0: start low. (default) 1: start high.
	3:0	Divider 2 Phase Offset	Phase offset. (default=0x0)

LVDS/CMOS Channel Dividers

Register Address (Hex)	Bit(s)	Name	Description
0100	7:4	Divider 3.1 Low Cycles M	Number of Low clock cycles (M) and High clock cycles (N) of the divider input define a frequency division, Dx, of the Divider 3.1. $Dx = M+N+2$.
0x199	3:0	Divider 3.1 High Cycles N	Note) The M and N does not affect the duty of LVDS/CMOS output. The DCC(Duty Cycle Correction) always works.
0.404	7:4	7:4 Divider 3.2 Phase Offset	Refer to LVDS/CMOS channel divider function description.
0x19A	3:0	Divider 3.1 Phase Offset	Refer to LVDS/CMOS channel divider function description.
0x19B	7:4	Divider 3.2 Low Cycles	Number of Low clock cycles (M) and High clock cycles (N) of the divider input define a frequency division, Dx, of the Divider 3.2. $Dx = M+N+2$.
0X19B	3:0	Divider 3.2 High Cycles	Note) The M and N does not affect the duty of LVDS/CMOS output. The DCC(Duty Cycle Correction) always works.
	5	Divider 3.2 Bypass	Bypasses (and power-down)3.2 divider logic, route input to 3.2 output. 0: do not bypass. (default) 1: bypass.
	4	Divider 3.1 Bypass	Bypasses (and power-down)3.1 divider logic, route input to 3.2 output. 0: do not bypass. (default) 1: bypass.
0.400	3	Divider 3 Nosync	Nosync. 0: obey chip-level SYNC signal. (default) 1: ignore chip-level SYNC signal.
0x19C	2	Divider 3 Force High	Forces divider 3 output to high. Requires that nosync also be set. 0: force low. (default) 1: force high.
	1	Divider 3.2 Start High	Divider3.2 start high or start low. 0: start low. (default) 1: start high.
	0	Divider 3.1 Start High	Divider3.1 strat high or start low. 0: start low. (default) 1: start high.

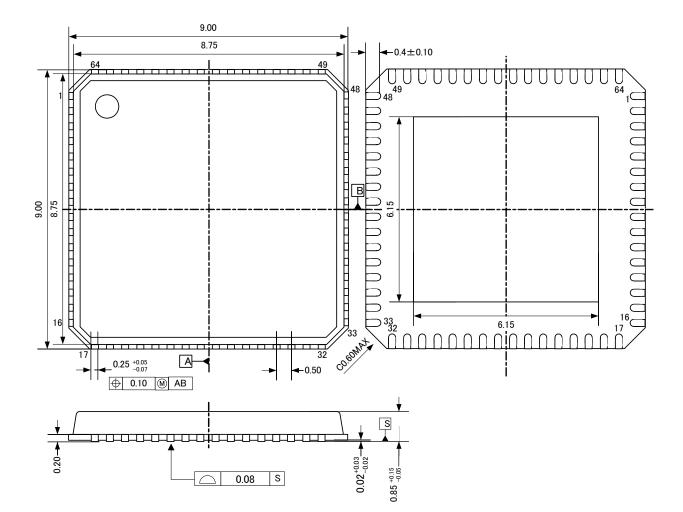
Register Address (Hex)	Bit(s)	Name	Description
0.405	7:4	Divider 4.1 Low Cycles M	Number of Low clock cycles (M) and High clock cycles (N) of the divider input define a frequency division, Dx, of the Divider 4.1. $Dx = M+N+2$.
0x19E	3:0	Divider 4.1 High Cycles N	Note) The M and N does not affect the duty of LVDS/CMOS output. The DCC(Duty Cycle Correction) always works.
0.405	7:4	Divider 4.2 Phase Offset	Refer to LVDS/CMOS channel divider function description.
0x19F	3:0	Divider 4.1 Phase Offset	Refer to LVDS/CMOS channel divider function description.
0.440	7:4	Divider 4.2 Low Cycles	Number of Low clock cycles (M) and High clock cycles (N) of the divider input define a frequency division, Dx, of the Divider 4.2. $Dx = M+N+2$.
0x1A0	3:0	Divider 4.2 High Cycles	Note) The M and N does not affect the duty of LVDS/CMOS output. The DCC(Duty Cycle Correction) always works.
	5	Divider 4.2 Bypass	Bypasses (and power-down)4.2 divider logic, route input to 4.2 output. 0: do not bypass. (default) 1: bypass.
	4	Divider 4.1 Bypass	Bypasses (and power-down)4.1 divider logic, route input to 4.2 output. 0: do not bypass. (default) 1: bypass.
0x1A1	3	Divider 4 Nosync	Nosync. 0: obey chip-level SYNC signal. (default) 1: ignore chip-level SYNC signal.
UXTAT	2	Divider 4 Force High	Forces divider 4 output to high. Requires that nosync also be set. 0: force low. (default) 1: force high.
	1	Divider 4.2 Start High	Divider4.2 start high or start low. 0: start low. (default) 1: start high.
	0	Divider 4.1 Start High	Divider4.1 strat high or start low. 0: start low. (default) 1: start high.

VCO Divider and CLK Input

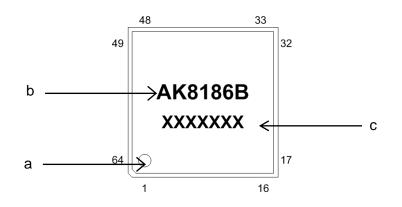
Register Address (Hex)	Bit(s)	Name	Description
0x1E0	2:0	VCO Divider	[2:1:0] Divide 0 0 0 2 0 0 1 3 0 1 0 4 (default) 0 1 1 5 1 0 0 6 1 0 1 Output Static 1 1 0 Output Static 1 1 1 Output Static
	4	Power-Down Clock Input Section	Powers down the clock input section (including CLK buffer, VCO dividers and CLK tree). 0 : normal operation (default). 1 : Power-down.
	3	Power-Down VCO clock interface	Powers down the interface block between VCO and clock distribution. 0 : normal operation (default). 1 : power-down.
0x1E1	2	Power-Down VCO and CLK	Powers down both VCO and CLK input. 0 : normal operation (default). 1 : power-down.
	1	Select VCO or CLK	 Powers down the clock input section (including CLK buffer, VCO dividers and CLK tree). 0 : Selects external CLK as input to VCO divider (default). 1 : Selects VCO as input to VCO divider; cannot bypass VCO divider when this is selected.
	0	Bypass VCO divider	Bypasses or uses the VCO divider. 0 : Uses VCO divider (default). 1 : Bypasses VCO divider; cannnot select VCO as input when this is selected.

System

Register Address (Hex)	Bit(s)	Name	Description
	2	Power-Down SYNC	Powers down the SYNC function.0: normal operation of SYNC function (default).1: Power-down SYNC circuitry.
0x230	1	Power down distribution reference	Powers down the output buffers. 0 : normal operation (default). 1 : power down the output buffers. Buffers output as follows in power down. LVPECL: Hi-Z (same state with 0xFn[1:0]=01 or 10b, n=0 to 5) LVDS: Hi-Z CMOS: Low
	0	Soft SYNC	The soft SYNC works the same as the <u>SYNC</u> pin. Expect that the polarity of the bit is reversed. That is, a high level forces selected channels into a predetermined static state, and 1-to-0 transition triggers a SYNC. 0: same as <u>SYNC</u> high (default). 1: same as <u>SYNC</u> low.


Update All Registers

Register Address (Hex)	Bit(s)	Name	Description
0x232	0	Update All Registers	 This bit must be set to 1 to transfer the contents of the buffer registers into the active registers. This happens on the next SCLK rising edge. This bit is self-cleaning; that is, it does not have to be set back to 0. 1: (self-cleaning); update all active registers to the contents of the buffer registers.


PACKAGE INFORMATION

Mechanical data


Marking

- a: #1 Pin Index
- b: Part number
- c: Date code

RoHS Compliance

All integrated circuits form Asahi Kasei Microdevices Corporation (AKM) assembled in "lead-free" packages* are fully compliant with RoHS.

(*) RoHS compliant products from AKM are identified with "Pb free" letter indication on product label posted on the anti-shield bag and boxes.

REVISION HISTORY

31/August/2012 Draft-E00 to E01

- P.3 Adds Table of contents.
- P.8 Change to On chip VCO.
- P.9 Change to Input Capacitance.
- P.25 Change to Prescaler division in FD and DM mode.
- P.27 Change to p-channel open drain in Figure 17.
- P.49 Change to Lock Detect Counter.

28/September/2012 Draft-E01 to E02

P.12-15 Change to Table 8,9,10,12 and 13.

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei
- Microdevices Corporation (AKM) or authorized distributors as to current status of the products.
 Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information contained by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official
 approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,
 or strategic materials.
- AKM products are neither intended nor authorized for use as critical components_{Note1} in any safety, life support, or other hazard related device or system_{Note2}, and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:
 - Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
 - Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.