

UTC UNISONIC TECHNOLOGIES CO., LTD

UT3232

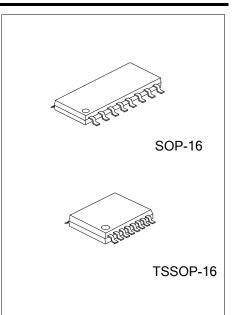
Preliminary

CMOS IC

3.0V TO 5.5V LOW POWER **MULTICHANNEL RS-232 LINE TRANSCEIVERS USING FOR** 0.1µF EXTERNAL CAPACITORS

DESCRIPTION

The UTC UT3232 have two receivers and two drivers, and a dual charge-pump circuit. T he devic e meets the req uirements o f TIA/EIA-232-F and p rovides the el ectrical i nterface be tween a n asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3. 0V to 5. 5V su pply. The device operates at data signaling rates up to 250kbit/s and a maximum of 35V/µs driver output slew rate.

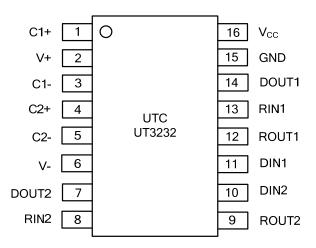

FEATURES

- * Exceeds ±8KV ESD Protection(HBM) for RS-232 I/O Pins
- * Meets the Requirements of TIA/EIA-232-F and ITU V.28 Standards
- * Operates With 3.0V to 5.5V V_{CC} Supply
- * Operates Up To 250kbit/s Data Rate
- * Two Drivers and Two Receivers
- * External Capacitors 4×0.1µF
- * Accepts 5.0V Logic Input With 3.3V Supply

ORDERING INFORMATION

Ordering	Daakaga Daaki		
Lead Free	Halogen Free	Package Packi	ng
UT3232L-P16-T UT	3232G-P16-T	SOP-16	Tube
UT3232L-P16-R UT	3232G-P16-R	SOP-16	Tape Reel

UT3232 <u>L-S16</u> -R	
(1)Packing Type	(1) R: Tape Reel
(2)Package Type	(2) S16: SOP-16, P16: TSSOP-16
(3)Lead Free	(3) L: Lead Free, G: Halogen Free

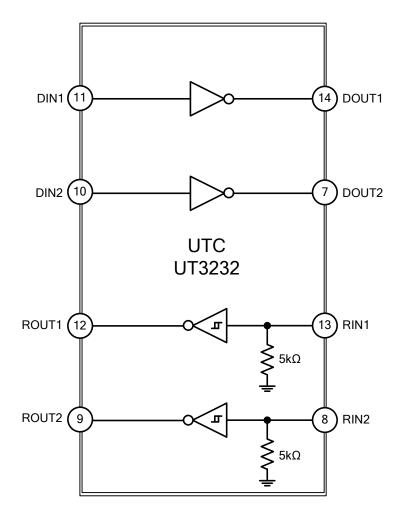


UT3232

MARKING INFORMATION

PACKAGE	MARKING			
SOP-16 TSSOP-16	UTC DDD L: Lead Free UT3232 G: Halogen Free • Lot Code			

PIN CONFIGURATION



PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	C1+	Positive Terminal of Voltage-Doubler Charge-Pump Capacitor
2	V+	+5.5V Generated by the Charge Pump
3	C1-	Negative Terminal of Voltage-Doubler Charge-Pump Capacitor
4	C2+	Positive Terminal of Inverting Charge-Pump Capacitor
5	C2-	Negative Terminal of Inverting Charge-Pump Capacitor
6	V-	-5.5V Generated by the Charge Pump
7 DOU	Т 2	RS-232 Driver Outputs
8	RIN2	RS-232 Receiver Inputs
9	ROUT2	TTL/CMOS Receiver Outputs
10	DIN2	TTL/CMOS Driver Inputs
11	DIN1	TTL/CMOS Driver Inputs
12	ROUT1	TTL/CMOS Receiver Outputs
13	RIN1	RS-232 Receiver Inputs
14 DOL	JT 1	RS-232 Driver Outputs
15 GNE	þ	Ground
16 V	СС	+3.0V to +5.5V Supply Voltage

BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** [Over operating free-air temperature range (unless otherwise noted)]

PARAMETER SYMBOL			RATINGS	UNIT
Supply Voltage Range		V _{CC}	-0.3 ~ +6.0	V
Positive Output Supply Voltage Ran	ge (Note 2)	V+	-0.3 ~ +7.0	V
Negative Output Supply Voltage Ra	nge (Note 2)	V-	+0.3 ~ -7.0	V
Supply Voltage Difference (Note 2)		V+ -V-	+13	V
	Drivers	M	-0.3 ~ +6.0	V
Input Voltage	Receivers	V _{IN}	-25 ~ +25	V
	Drivers	M	-13.2 ~ +13.2	V
Output Voltage	Receivers	V _{OUT}	-0.3 ~ V _{CC} +0.3	V
Operating Virtual Junction Temperature		Т _Ј +	150	°C
Storage Temperature		T _{STG}	-65 ~ + 150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. All voltages are with respect to network GND.

THERMAL DATA

PARAMETER SYMBOL			RATING	UNIT
lun ation to Analyje at	SOP-16		105	°0.00/
Junction to Ambient	TSSOP-16	θ _{JA}	118	°C/W

RECOMMENDED OPERATING CONDITIONS (See Note & Table 1)

PARAMETER SYMBOL		TEST CO	NDITIONS	MIN	TYP	MAX	UNIT		
Supply Voltage	V	V _{CC} =3.3V		3.0 3.3	3.6		V		
Supply Voltage	V _{CC}	V _{CC} =5.0V		4.5 5.0	5.5		V		
Driver and Control High-level Input			V _{CC} =3.3V 2.0				V		
Voltage	V _{IH} DIN		V _{CC} =5.5V 2.4				v		
Driver and Control Low-level Input			V _{II} DIN					0.8	V
Voltage						0.0	v		
Driver and Control Input Voltage	V _{IN} DIN					5.5	V		
Receiver Input Voltage	V _{RIN}			-25		25	V		
Operating Free-Air Temperature	TA			0		70	°C		

Notes: Test conditions are C1~C4=0.1 μ F at V_{CC}=3.3V±0.3V; C1=0.047 μ F, C2~C4=0.33 μ F at V_{CC}=5.0V±0.5V.

■ **ELECTRICAL CHARACTERISTICS** [(over recommende d ran ges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 & Table 1)]

SYMBOL	TEST CONDITIONS	MIN	TYP (Note 1)	MAX	UNIT
I _{IN} DIN			±0.01	±1	μA
I _{CC} No	load		0.3	1.0	mA
V _{OH}	DOUT at $R_L=3k\Omega$ to GND, DIN=GND	+5.0	+5.4		V
V _{OL}	DOUT at $R_L=3k\Omega$ to GND, DIN=V _{CC} -5.	0	-5.4		V
I _{OH}	V _I =V _{CC}		±0.01	±1	μA
I _{OL}	V _I at GND		±0.01	±1	μA
-	V _{CC} =3.6V, V _{OUT} =0V		±35	±60	mA
IOS	V _{CC} =5.5V, V _{OUT} =0V		±35	±60	mA
r _o	V _{CC} , V+ and V- =0V, V _{OUT} =±2.0V 300		10M		Ω
I _{OFF}	V _{CC} =3.0V~5.5V, V _{OUT} =±12V			±25	μA
V _{OH}	I _{OH} =-1.0mA	V _{cc} -0.6V	V _{cc} - 0.1V	V	
V _{OL}	I _{OL} =1.6mA			0.4	V
V	V _{CC} =3.3V		1.5	2.4	V
V _{IT+}	V _{CC} =5.0V		1.8	2.4	V
N/	V _{CC} =3.3V 0.6		1.2		V
V _{IT-}	V _{CC} =5.0V 0.8		1.5		V
V _{HYS}	V _{IT+} ~V _{IT-}		0.3		V
I _{OFF}			±0.05	±10	μA
RI	V _I =±3.0V~±25V	3	5	7	kΩ
	I _{IN} DIN I _{CC} No VOH VOL IOH IOE IOFF VOH VOH VOL VOH VOH VOH VOH VOH VOH VOH VOH VOH VIT+ VHYS IOFF	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c } \mbox{YMBOL} & TEST CONDITIONS & MIN & (Note 1) \\ \hline I_{IN} DIN & & \pm 0.01 \\ \hline I_{CC} NO & Ioad & 0.3 \\ \hline \\ \hline \\ V_{OH} & DOUT at R_L=3k\Omega to GND, DIN=GND & \pm 5.0 & \pm 5.4 \\ \hline \\ V_{OL} & DOUT at R_L=3k\Omega to GND, DIN=V_{CC}-5.0 & -5.4 \\ \hline \\ I_{OH} & V_I=V_{CC} & \pm 0.01 \\ \hline \\ I_{OL} & V_I at GND & \pm 0.01 \\ \hline \\ V_{CC}=3.6V, V_{OUT}=0V & \pm 35 \\ \hline \\ V_{CC}=5.5V, V_{OUT}=0V & \pm 35 \\ \hline \\ V_{CC}=5.0V, V_{OUT}=\pm 2.0V 300 & 10M \\ \hline \\ I_{OFF} & V_{CC}=3.0V \times 5.5V, V_{OUT}=\pm 12V & & & \\ \hline \\ \hline \\ \hline \\ V_{OH} & I_{OH}=-1.0mA & V_{CC}-0.6V & cc^{-}0.1V \\ \hline \\ V_{OL} & I_{OL}=1.6mA & & & & \\ \hline \\ V_{IT^+} & V_{CC}=3.3V & & & & 1.5 \\ \hline \\ V_{IT^-} & V_{CC}=5.0V & & & & & 1.8 \\ \hline \\ V_{CC}=5.0V & 0.8 & & & & & 1.5 \\ \hline \\ V_{HYS} & V_{IT^+} V_{IT^-} & & & & & 0.3 \\ \hline \\ I_{OFF} & & & & & & & & & & & & \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Notes: 1. All typical values are at V_{CC} =3.3V or V_{CC} =5.0V, and T_A =25°C.

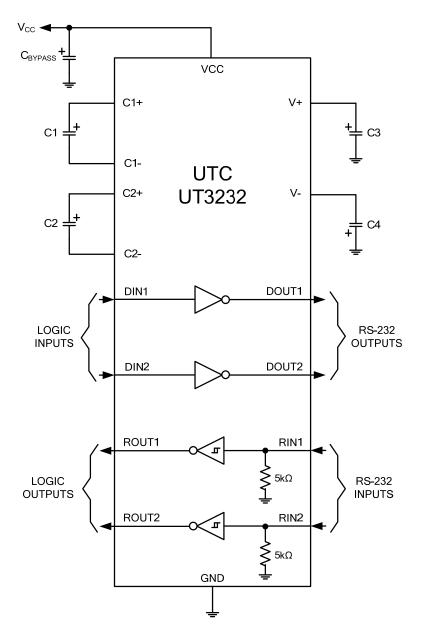
2. Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time.

3. Test conditions are C1~C4=0.1 μ F at V_{CC}=3.3V±0.3V; C1=0.047 μ F, C2~C4=0.33 μ F at V_{CC}=5.0V±0.5V.

4. Pulse skew is defined as $|t_{PLH}-t_{PHL}|$ of each channel of the same device.

SWITCHING CHARACTERISTICS [over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 3 and Table 1)]

	1	1	1		1 1		
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP (Note 1)	MAX L	NIT
DRIVER SECTION							
Maximum Data Rate		C _L =1000pF, R _L =3k Ω , One Driver Switching		150 25	50		Kbit/s
Pulse Skew (Note 4)	t _{SK(p)}	C _L =220pF~250	0pF, R _L =3kΩ~7kΩ	300			ns
Claur Data Transition Design		R _L =3kΩ~7kΩ,	C _L =220pF~1000pF	5		35	
Slew Rate, Transition Region	SR(tr)	V _{CC} =3.3V C _L =220pF~2500pF		3		35	V/µs
RECEIVER SECTION							
Propagation Delay Time, Low- to High-Level Output	t _{PLH}	C∟=150pF			300		ns
Propagation Delay Time, High- to Low-Level Output	t _{PHL}	C _L =150pF			300		ns
Output Enable Time	t _{EN}	C _L =150pF, R _L =3kΩ			200		ns
Output Disable Time	t _{DIS}	C _L =150pF, R _L =3kΩ			200		ns
Pulse Skew (Note 4)	t _{SK(P)} t	PLH-tPHL			300		ns


Notes: 1. All typical values are at V_{CC}=3.3V or V_{CC}=5.0V, and T_A=25°C.

2. Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output should be shorted at a time.

3. Test conditions are C1~C4=0.1 μ F at V_{CC}=3.3V±0.3V; C1=0.047 μ F, C2~C4=0.33 μ F at V_{CC}=5.0V±0.5V.

TYPICAL APPLICATION CIRCUIT

Notes: 1. C3 can be connected to V_{CC} or GND. 2. Resistor values shown are nominal. 3. NC: No internal connection.

4. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

Table1. Typical Op	perating Circuit and	Capacitor Values
--------------------	----------------------	------------------

V _{CC} (V)	C1 (µF)	C2, C3, C4 (µF)	C _{BYPASS} (µF)
3.0~3.6 0.22		0.22	0.22
3.15~3.6 0.1		0.1	0.1
4.5~5.5	0.047 0.33	0.047	
3.0~5.5 0.22		1.0	0.22

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not de signed for us e in life support appliances, de vices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the co pyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

