

RURU15070, RURU15080, RURU15090, RURU150100

January 2002

150A, 700V - 1000V Ultrafast Diodes

Features

- Ultrafast with Soft Recovery.....<125ns
 Operating Temperature+175°C
 Reverse Voltage Up To1000V
- Avalanche Energy Rated
- Planar Construction

Applications

- Switching Power Supplies
- Power Switching Circuits
- General Purpose

Description

RURU15070, RURU15080 and RURU15090 and RURU150100 are ultrafast diodes with soft recovery characteristics (t_{RR} < 125ns). They have low forward voltage drop and are silicon nitride passivated ion-implanted epitaxial planar construction.

These devices are intended for use as freewheeling/clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Their low stored charge and ultrafast recovery with soft recovery characteristic minimizes ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

PACKAGING AVAILABILITY

PART NUMBER	PACKAGE	BRAND
RURU15070	TO-218	RURU15070
RURU15080	TO-218	RURU15080
RURU15090	TO-218	RURU15090
RURU150100	TO-218	RUR150100

NOTE: When ordering, use the entire part number.

Package

JEDEC STYLE SINGLE LEAD TO-218

Symbol

Absolute Maximum Ratings T_C = +25°C, Unless Otherwise Specified

	RURU15070	RURU15080	RURU15090	RURU150100	UNITS
Peak Repetitive Reverse Voltage V _{RRM}	700	800	900	1000	V
Working Peak Reverse Voltage V _{RWM}	700	800	900	1000	V
DC Blocking Voltage	700	800	900	1000	V
Average Rectified Forward Current $I_{F(AV)}$ ($T_C = +65^{\circ}C$)	150	150	150	150	Α
Repetitive Peak Surge CurrentI _{FSM} (Square Wave, 20kHz)	300	300	300	300	Α
Nonrepetitive Peak Surge Current I _{FSM} (Halfwave, 1 Phase, 60Hz)	1500	1500	1500	1500	Α
Maximum Power Dissipation	375	375	375	375	W
Avalanche Energy (L = 40mH) E _{AVL}	50	50	50	50	mj
Operating and Storage Temperature T _{STG} , T _J	-65 to +175	-65 to +175	-65 to +175	-65 to +175	°C

Specifications RURU15070, RURU15080, RURU15090, RURU150100

Electrical Specifications $T_C = +25$ °C, Unless Otherwise Specified

		LIMITS												
		RURU15070		RURU15080		RURU15090			RURU150100					
SYMBOL	TEST CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _F	$I_F = 150A, T_C = +25^{\circ}C$	-	-	1.9	-	-	1.9	-	-	1.9	-	-	1.9	V
V _F	$I_F = 150A, T_C = +150^{\circ}C$	-	-	1.7	-	-	1.7	-	-	1.7	-	-	1.7	V
I _R	$V_R = 700V, T_C = +25^{\circ}C$	-	-	500	-	-	-	-	-	-	-	-	-	μΑ
	$V_R = 800V, T_C = +25^{\circ}C$	-	-	-	-	-	500	-	-	-	-	-	-	μΑ
	$V_R = 900V, T_C = +25^{\circ}C$	-	-	-	-	-	-	-	-	500	-	-	-	μΑ
	$V_R = 1000V, T_C = +25^{\circ}C$	-	-	-	-	-	-	-	-	-	-	-	500	μΑ
I _R	$V_R = 700V, T_C = +150^{\circ}C$	-	-	3.0	-	-	-	-	-	-	-	-	-	mA
	$V_R = 800V, T_C = +150^{\circ}C$	-	-	-	-	-	3.0	-	-	-	-	-	-	mA
	$V_R = 900V, T_C = +150^{\circ}C$	-	-	-	-	-	-	-	-	3.0	-	-	-	mA
	$V_R = 1000V, T_C = +150^{\circ}C$	-	-	-	-	-	-	-	-	-	-	-	3.0	mA
t _{RR}	$I_F = 1A$, $dI_F/dt = 100A/\mu s$	-	-	125	-	-	125	-	-	125	-	-	125	ns
	$I_F = 150A$, $dI_F/dt = 100A/\mu s$	-	-	200	-	-	200	-	-	200	-	-	200	ns
t _A	$I_F = 150A$, $dI_F/dt = 100A/\mu s$	-	100	-	-	100	-	-	100	-	-	100	-	ns
t _B	$I_F = 150A$, $dI_F/dt = 100A/\mu s$	-	75	-	-	75	-	-	75	-	-	75	-	ns
$R_{ heta JC}$		-	-	0.4	-	-	0.4	-	-	0.4	-	-	0.4	°C/W

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%).

 I_R = Instantaneous reverse current.

 t_{RR} = Reverse recovery time (See Figure 2), summation of $t_A + t_B$.

 t_A = Time to reach peak reverse current (See Figure 2).

t_B = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 2).

 $R_{\theta JC}$ = Thermal resistance junction to case.

 $\mathsf{E}_{\mathsf{AVL}}$ = Controlled avalanche energy (See Figures 7 and 8).

pw = pulse width.

D = duty cycle.

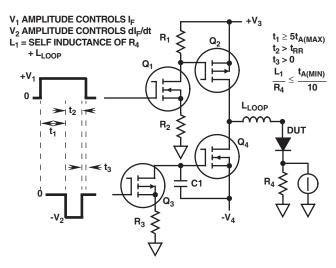


FIGURE 1. t_{RR} TEST CIRCUIT

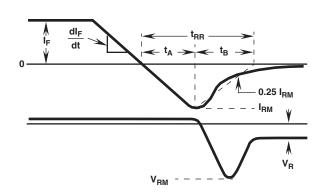
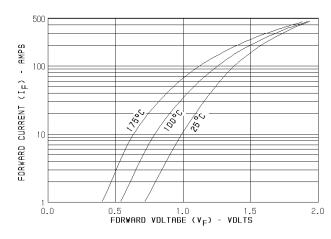



FIGURE 2. t_{RR} WAVEFORMS AND DEFINITIONS

RURU15070, RURU15080, RURU15090, RURU150100

Typical Performance Curves

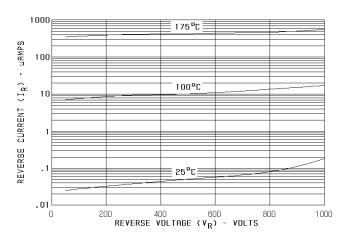
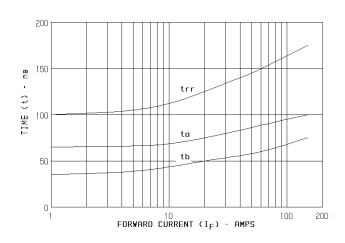



FIGURE 3. TYPICAL FORWARD CURRENT vs FORWARD VOLTAGE DROP

FIGURE 4. TYPICAL REVERSE CURRENT vs VOLTAGE

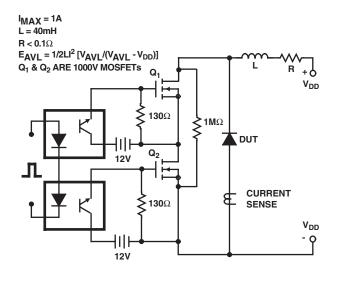



FIGURE 5. TYPICAL t_{RR} , t_{A} AND t_{B} CURVES vs FORWARD CURRENT

FIGURE 6. CURRENT DERATING CURVE FOR ALL TYPES

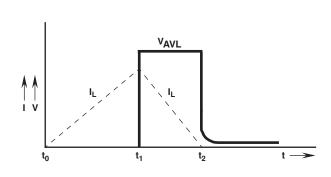


FIGURE 7. AVALANCHE ENERGY TEST CIRCUIT

FIGURE 8. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM}

QT Optoelectronics™

MicroFET™

STAR*POWER is used under license

DISCLAIMER

EnSigna™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

TruTranslation™

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H4