Ι,

53/63S281/A

High Performance 256x8 PROM TiW PROM Family

FEATURES/BENEFITS

- 28-ns maximum access time
- Reliable titanium-tungsten fuses (TiW) guarantee greater than 98% programming yields
- Low-voltage generic programming
- PNP inputs for low input current
- · Three-state outputs

APPLICATIONS

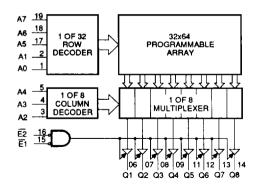
- · Microprogram control store
- Microprocessor program store
- Look-up table
- Character generator
- Code converter
- Programmable Logic Element (PLE™) with 8 Inputs, 8 Outputs, and 256 product terms

GENERAL DESCRIPTION

The 53/63S281/A are 256x8 bipolar PROMs featuring low input current PNP inputs, full Schottky clamping, and three-state outputs. The titanium-tungsten fuses store a logical low and are programmed to the high state. Special on-chip circuitry and extra fuses provide preprogramming testing which assures high programming vields and high reliability.

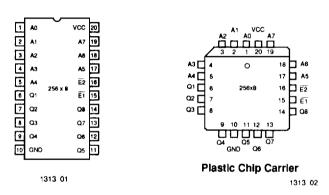
The 63 series is specified for operation over the commercial temperature and voltage range. The 53 series is specified for the military ranges.

PROGRAMMING


The 53/63S281/A PROMs are programmed with the same programming algorithm as all other Advanced

Micro Devices generic TiW PROMs. For details contact the factory.

SELECTION GUIDE


Memory			Package			Part Number		
Size	Organization	Output	Pins	Туре	Performance	0°C to +75°C	-55°C to +125°C	
32K	4096x8	TS	24	CD 024 PD 024	Standard	63S3281	53S3281	
JZN	409686	13	(28)	CFM 024 PL 028 CL 028	Enhanced	63S3281A	53S3281A	
					Super Speed	_	53S3281B	

BLOCK DIAGRAM DIP Pinout

1313 03

PIN CONFIGURATIONS

Note: LCC pinout identical to PLCC.

ABSOLUTE MAXIMUM RATINGS

	Operating	Programming
Supply voltage V _{cc}	0.5 V to 7 V .	12 V
Input voltage	–1, 5 V to 7 V	7 V
Input current3	0 mA to +5 mA	
Off-state output voltage	-0.5 V to 5.5 V	12 V
Storage temperature -6		

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect reliability. Absolute Maximum Ratings are for system design reference; parameters given are not tested.

Operating Conditions

Symbol	Parameter	Milltary†			Commercial			
Cymbo,		Min.	Nom.	Max.	Min.	Nom.	Max.	Unit
V _{cc}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
T _A	Operating temperature*	-55		125	0		75	°C

^{*} This is defined as the instant-on case temperature.

DC Electrical Characteristics Over Operating Conditions. For APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted.

Symbol	Parameter	Test Conditions				Min.	Typ.†	Max	Unit
VIL	Low-level input voltage**							0.8	V
V _{IH}	High-level input voltage**					2			v
V _{IC}	Input clamp voltage	V _{cc} = MIN I _i = -18 mA				-1.5	V		
I _{IL}	Low-level input current	V _{cc} = MAX	cc = MAX V _i = 0.4 V					-0.25	mA
l _{in}	High-level input current	V _{cc} = MAX	V _i = V _{cc} MAX					40	μА
	Low-level output voltage	V _{cc} = MIN	I _{OL} = 16 mA Mil				0.45	v	
							0.5		
	High-level output voltage	V _{cc} = MIN	Com	rl I _{oн} = −3.2 mA					
V _{oH}			Mil		= −2 mA	2.4			V
l _{ozı}	0#	V _{cc} = MAX	V _o = 0.4 V			1		-40	
l _{ozh}	Off-state output current		V _o = 2.4 V				40	- μ Α	
los	Output short-circuit current*	V _{cc} = 5 V V _o = 0 V			-20		-90	mA	
cc	Supply current	V _{cc} = MAX. All inputs grounded. All outputs open.					90	140	mΑ

^{*} Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

Military burn-in is in accordance with the current revision of MIL-STD-883, Test Method 1015, Conditions A through E. Test conditions are selected at AMD's option.

^{**} V_{IL} and V_{IH} are input conditions of output tests and are not themselves directly tested. V_{IL} and V_{IH} are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

Switching Characteristics Over Operating Conditions (See standard test load). For APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted.^{††}

Operating Conditions	Device Type	t _{AA} (ı Address Ac	ns) cess Time	t _{ea} ANI Enable Ad Recove	Unit		
		Typ.†	Max.	Typ.†	Max.		
	63S281A	21	28	18	25		
Commercial	63S281	21	45	18	25	ns	
Military	53S281A	21	40	18	30		
	53S281	21	50	18	30		

[†] Typicals at 5.0 V V_{cc} and 25°C T_A.

^{††} Subgroups 7 and 8 apply to Functional tests.

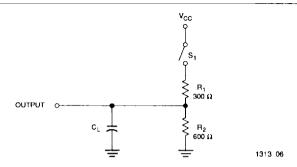


Figure 3. Switching Test Load

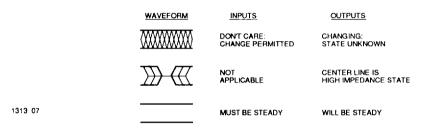
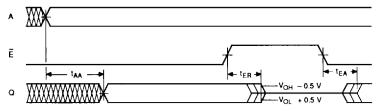



Figure 4. Definition of Timing Diagram

NOTES: 1. INPUT PULSE AMPLITUDE 0 V TO 3.0 V.

- 2. INPUT RISE AND FALL TIMES 2-5 ns FROM 0.8 V TO 2.0 V.
 - . INPUT ACCESS MEASURED AT THE 1.5 V LEVEL.
- 4. TAA IS TESTED WITH SWITCH S 1 CLOSED. CL = 30 pF AND MEASURED AT 1.5 V OUTPUT LEVEL.
- 5 1EA IS MEASURED AT THE 1.5 VIOUTPUT LEVEL WITH CL = 30 pF. S1 IS OPEN FOR HIGH IMPEDANCE TO "1" TEST, AND CLOSED FOR HIGH IMPEDANCE TO "0" TEST.

 τ_{ER} is tested with C $_L$ = 5 pf. $_S$ is open for "1" to high impedance test, measured at v_{OH} = 0.5 y output level; s_1 is closed for "0" to high impedance test, measured at v_{OL} = 0.5 y output level.

1313 08

Figure 5. Definition of Waveforms