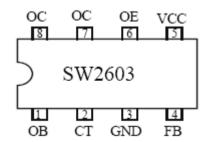


高性能电流模式 PWM 开关电源控制器

概述

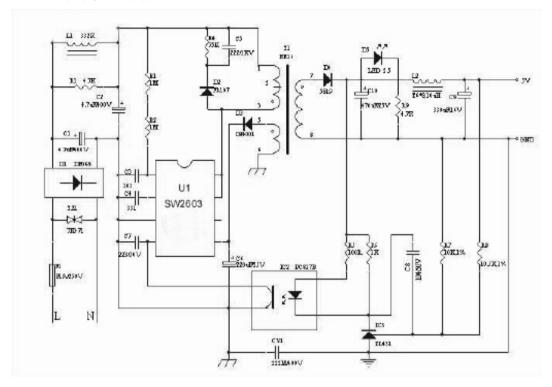
SW2603是一款高性能电流模式PWM 控制器。专为高性价比AC/DC 转换器设计。在85V-256V 的宽电压范围内提供高达5W 的连续输出功率。该电源控制器可工作于典型的反激电路拓扑中,构成简洁的AC/DC转换器。IC 内部的启动电路被设计成一种独特的电流吸入方式,可利用功率开关管本身的放大作用完成启动,这显著地降低了启动电阻的功率消耗;而在输出功率较小时IC 将自动降低工作频率,从而实现了极低的待机功耗。在功率管截止时,内部电路将功率管反向偏置,直接利用了双极型晶体管的CB 高耐压特性,大幅提高功率管的耐电压能力直到700V 的高压,这保证了功率管的安全。IC 内部还提供了完善的防过载防饱和功能,可实时防范过载、变压器饱和、输出短路等异常状况,提高了电源的可靠性。IC 内部还集成了一个2.5V 的电压基准,为时钟电路提供精确的供电电压,而时钟频率则可由外部定时电容进行设定。

特点


- 内置700V高压功率开关管, 极少的外围器件
- 锁存脉宽调制,逐脉冲限流检测
- 低输出降频功能,无输出功耗可低于0.15W
- 内置斜坡与反馈补偿功能
- 独立上限电流检测控制器,实时处理控制器的过流、过载
- 关断周期发射极反偏压,提高了功率管的耐压
- 内置具有温度补偿的电流限制电阻,精确电流限制
- 内置热保护电路
- 利用开关功率管的放大作用完成启动, 启动电阻的功耗减少10倍以上
- 低启动和工作电流、过压自动限制
- 宽电压输出功率可达5W, 窄电压输出功率可达8W

应用

小功率AC/DC开关电源


- 手机、MP3、MP4充电器
- 绿色节能型家电外部电源
- 小功率适配器

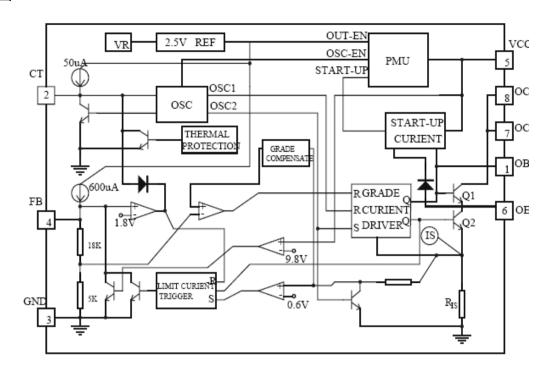
引脚图

- 小家电控制器电源
- 线性调节器/替代RCC 变换器

典型应用

引脚说明

脚号	脚名	说明
1	OB	功率管基极, 启动电流输入, 外接启动电阻
2	CT	振荡电容脚, 外接定时电容
3	GND	接地脚
4	FB	反馈脚
5	VCC	供电脚
6	NC	0E脚, 应用中悬空*
7	OC	输出脚,接开关变压器
8	OC	输出脚,接开关变压器


^{*:}PCB Layout时应将Pin6悬空处理,并与Pin7之间保留足够的安全距离,避免产生放电现象.

典型输出功率能力

产品型号	190—264VAC		85—264VAC		
	适配器	开放式	适配器	开放式	
SW2603	8	9	5	6	

内部框图

极限参数

项目	数值
供电电压VCC	16V
启动输入电压	16V
引脚输入电压	VCC+0.3V
OC集电极承受电压	-0. 3700V
峰值开关电流	300mA
总耗散功率	1000mW
工作温度范围	0+125℃
储存温度范围	-55+150℃
焊接温度	+126℃, 10S

推荐工作条件

项目	最小	典型	最大	单位
供电电压 VCC	4.8	5.5	9	٧
引脚输入电压	-0.3	-	Vcc	٧
峰值反向电压	-	-	500	٧
峰值开关电流	-	-	250	mA
定时电容	270	330	680	PF
振荡频率	21	68	81	KHz
工作温度	0		70	$^{\circ}$

电特性

(TA=25°C, VDD=5.5-7.5V, Ct=330PF)

输出部分

项目	测试条件	最小值	典型值	最大值	单位
开关管最大耐压	Ioc=10mA	700			V
开通饱和压降	Ioc=250mA			1	V
输出上升时间	CL=1nF			75	ns
输出下降时间	CL=1nF			75	ns
输出限制电流		250	270	290	mA
0E 钳位电压	0E=0.001-0.29A		1.5		V

参考部分

项目	测试条件	最小值	典型值	最大值	单位
参考输出电压	Io=1.0mA	2.4	2. 5	2.6	V
电压调整率	Vcc=5. 5-9V		2	20	mV
负载调整率	Io=0.1-1.2mA			3	%
温度稳定性			0.2		mV/℃
输出噪声电压	F=10Hz-10KHz			50	uV
长期稳定性	T=85℃下工作 1000h		5		mV

振荡器部分

项目	测试条件	最小值	典型值	最大值	单位
振荡频率	Ct=330pF		68		KHz
频率随电压变化率	Vcc=5. 5-9V			1	%
频率随温度变化率	Ta=0-85℃			1	%
振荡器振幅(Vp-p)			2. 2		V
振荡器下降沿	Ct=330pF		1200		ns

反馈部分

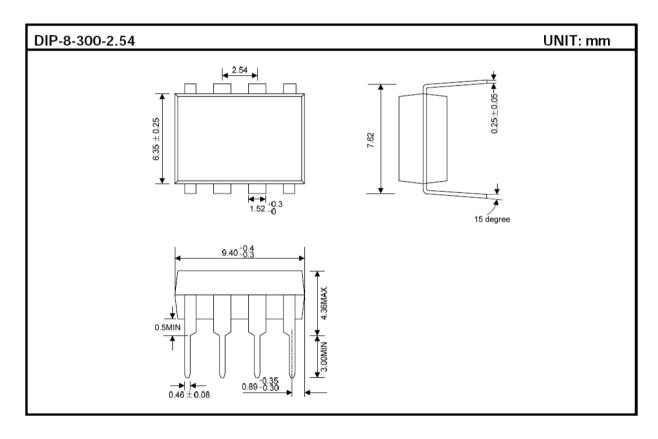
项目		测试条件	最小值	典型值	最大值	单位
输入阻抗	上拉电流			0.50	0.60	mA
	下拉电阻			30		KΩ
电源抑制比		Vcc=5. 5-9V		60	70	dB

电流取样部分

项目	测试条件	最小值	典型值	最大值	单位
电流取样门限		0. 55	0.6	0.65	V
防上限电流		0. 25	0. 27	0. 29	A
电源抑制比			60	70	dB
传输延时			150	250	ns

脉宽调制部分

项目	测试条件	最小值	典型值	最大值	单位
最大占空比		53	57	61	%
最小占空比				3. 5	%



电源电流

项目	测试条件	最小值	典型值	最大值	单位
启动接受电流		1.6	2. 4	3. 2	mA
启动静态电流			55	80	uA
静态电流	Vcc=8V		2.8		mA
启动电压		8	8. 5	9. 0	V
振荡器关闭电压		4. 0	4. 2	4. 5	V
再启动电压			3. 6		V
过压限制门限		9. 4		10	V

注:如电路性能有所更新,电参数有所改动,不作另外说明。

封装尺寸图

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止MOS电路由于受静电放电影 响而引起的损坏:

- 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- 装配过程中使用的工具必须接地。
- 必须采用导体包装或抗静电材料包装或运输。