

TEF6624

DRAFT DRAFT DRAFT DRAFT DRAFT Tuner with high integration and high efficiency for radio

Rev. 01.05 — 9 June 2009

Objective data sheet

AT DRAKT

General description 1.

The TEF6624 is an AM/FM radio including Phase-Locked Loop (PLL) tuning system. The system is designed in such a way, that it can be used as a world-wide tuner covering common FM and AM bands for radio reception. All functions are controlled by the l²C-bus. Besides the basic feature set it provides a good weak signal processing function and a dynamic bandwidth control at FM reception.

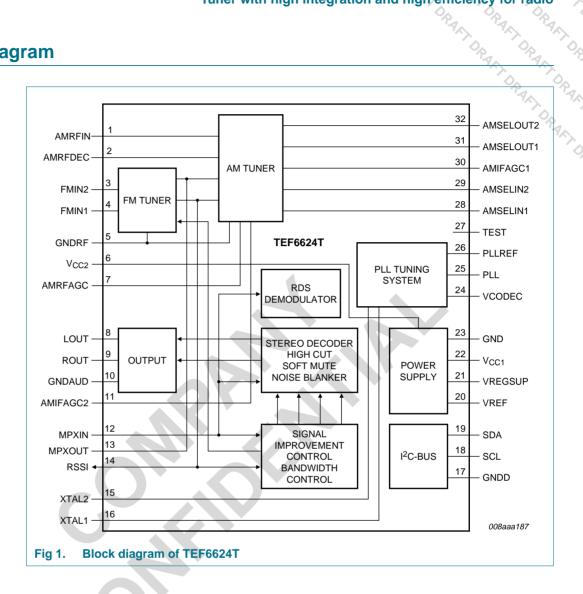
It includes a newly developed demodulator for data reception of Radio Data System (RDS) and Radio Broadcast Data System (RBDS) transmissions.

The TEF6624 has been qualified for aftermarket car radios with reduced temperature range of $T_{amb} = -20$ °C to +85 °C and not according to automotive standards. This product is not designed for automotive Original Equipment Manufacturer (OEM) business.

Features 2.

- Backwards compatible with TEF6621; equal footprint, application and performance
- Fully integrated RDS/RBDS demodulator with improved performance
- RDS demodulator data output via I²C-bus; 32-bit buffer for reduced read out
- RDS data available signalled by I²C-bus bit (polling)
- FM tuner for Japan, Europe, US and OIRT reception
- AM tuner for Long Wave (LW) and Medium Wave (MW) reception
- Integrated AM Radio Frequency (RF) selectivity
- Integrated PLL tuning system; controlled via I²C-bus including automatic low/high side Local Oscillator (LO) injection
- Fully integrated LO
- No alignment needed
- Very easy application on the main board
- No critical RF components
- Fully integrated Intermediate Frequency (IF) filters and FM stereo decoder
- Fully integrated FM noise blanker
- Field strength (LEVEL), multipath [Wideband AM (WAM)], noise [UltraSonic Noise (USN)] and deviation dependent stereo blend
- Field strength (LEVEL), multipath (WAM), noise (USN) and deviation dependent High-Cut Control (HCC)
- Field strength (LEVEL), multipath (WAM) and noise (USN) dependent soft mute
- Adjacent channel and deviation dependent IF bandwidth control [Precision Adjacent Channel Suppression (PACS)]
- Single power supply

3. **Quick reference data**

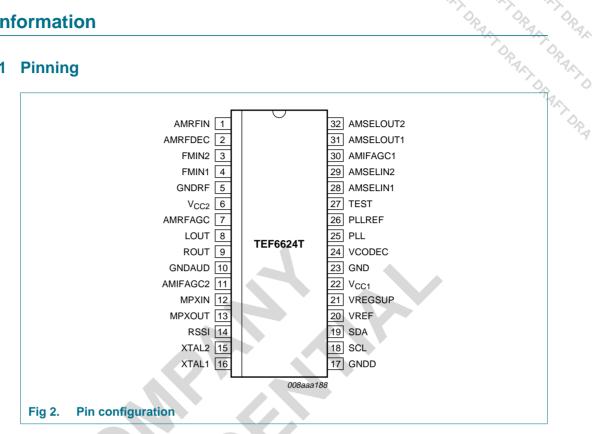

	niconductors			0p		6624
		Tuner with high integ	ration an	d high e	efficiency	for radio
					PAR	Part P
3. Qui	ck reference data				Opy	· Opg
Table 1.	Quick reference data					for radic
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{cc}	supply voltage	on pins V_{CC1} and V_{CC2}	8	8.5	9	V
I _{CC}	supply current	into pins V_{CC1} , V_{CC2} and $VREGSUP$				
		FM	90	120	140	mA
		AM	100	134	150	mA
FM path						
f _{RF}	RF frequency	FM tuning range	65	-	108	MHz
V _{i(sens)}	input sensitivity voltage	(S+N)/N = 26 dB; including weak signal handling	-	5	-	dBμV
		for 50 % block quality RDS reception; $\Delta f_{RDS} = 2$ kHz; AF = stereo; $\Delta f = 22.5$ kHz	-	17	-	dBμV
		for 95 % block quality RDS reception; $\Delta f_{RDS} = 2 \text{ kHz}$; AF = stereo; $\Delta f = 22.5 \text{ kHz}$	-	20	-	dBμV
(S+N)/N	signal plus noise-to-noise ratio	$V_{i(RF)} = 1 \text{ mV}; \Delta f = 22.5 \text{ kHz}$	•	60	-	dB
THD	total harmonic distortion	mono; $\Delta f = 75 \text{ kHz}$; V _{i(RF)} = 1 mV	-	0.4	-	%
α_{image}	image rejection	$f_{RF(image)} = f_{RF(wanted)} \pm 2 \times f_{IF}$	45	60	-	dB
α _{cs}	channel separation	V _{i(RF)} = 1 mV	26	40	-	dB
AM path						
f _{RF}	RF frequency	AM (LW) tuning range	144	-	288	kHz
		AM (MW) tuning range	522	-	1710	kHz
V _{i(sens)}	input sensitivity voltage	S/N = 26 dB; data byte 3h bits DEMP[1:0] = 10				
		MW	-	34	-	dBµV
		LW	-	40	-	dBμV
(S+N)/N	signal plus noise-to-noise ratio	$V_{i(RF)} = 10 \text{ mV}$	-	56	-	dB
THD	total harmonic distortion	$V_{i(RF)} = 1 mV; m = 80 \%$	-	0.7	-	%
α_{image}	image rejection	$f_{RF(image)} = f_{RF(wanted)} \pm 2 \times f_{IF}$	40	55	-	dB

Ordering information 4.

Table 2. **Ordering information**

Type number	Package	Package				
	Name	Description	Version			
TEF6624T	SO32	plastic small outline package; 32 leads; body width 7.5 mm	SOT287-1			

5. Block diagram


DRAFTO

FF66

, OPA

Pinning information 6.

6.1 Pinning

6.2 Pin description

Symbol	Pin	Description
AMRFIN	1	AM RF single-ended input
AMRFDEC	2	AM RF decoupling
FMIN2	3	FM RF differential input 2
FMIN1	4	FM RF differential input 1
GNDRF	5	RF ground
V _{CC2}	6	supply voltage 2
AMRFAGC	7	AM RF Automatic Gain Control (AGC)
LOUT	8	audio left output
ROUT	9	audio right output
GNDAUD	10	audio ground
AMIFAGC2	11	AM IF AGC 2
MPXIN	12	FM Multiplex (MPX) and AM audio input to stereo decoder
MPXOUT	13	FM MPX and AM audio output from tuner part
RSSI	14	Received Signal Strength Indication (RSSI)
XTAL2	15	4 MHz crystal oscillator pin 2
XTAL1	16	4 MHz crystal oscillator pin 1
GNDD	17	digital ground
SCL	18	I ² C-bus clock input

Table 3. Pin	descriptio	ncontinued
Symbol	Pin	Description
SDA	19	I ² C-bus data input and output
VREF	20	reference voltage decoupling
VREGSUP	21	supply voltage internal voltage regulators
V _{CC1}	22	supply voltage 1
GND	23	ground
VCODEC	24	decoupling for Voltage-Controlled Oscillator (VCO) supply voltage
PLL	25	PLL tuning voltage
PLLREF	26	PLL reference voltage
TEST	27	test pin, leave open in normal operation
AMSELIN1	28	AM selectivity input 1
AMSELIN2	29	AM selectivity input 2
AMIFAGC1	30	AM IF AGC 1
AMSELOUT1	31	AM selectivity output 1
AMSELOUT2	32	AM selectivity output 2

7. Functional description

7.1 RDS demodulator

The TEF6624 includes a newly developed full-digital RDS function. Very good RDS sensitivity is achieved by optimized digital filtering and linear signal processing. The MPX signal is converted from analog to digital and then filtered for selection of the 57 kHz RDS signal and data shaping. Synchronous 57 kHz demodulation is realized by means of Costas loop phase control followed by synchronization to the bit phase for sampling of the RDS data.

The RDS demodulator data is provided by the I²C-bus for further data processing in a microcontroller. For reduced data output rate a 32-bit buffer is included.

Availability of new group data is signalled by read bit RDAV (read data byte 0h or read data byte 5h).

To avoid loss of RDS demodulator data the I²C-bus reading shall be done at least every 26 ms.

7.2 FM tuner

The RF input signal is mixed to a low IF with inherent image suppression. The IF signal is filtered and demodulated. The complete signal path is fully integrated.

7.3 AM tuner

The RF signal is filtered and mixed to a low IF with inherent image suppression. The IF signals are filtered and demodulated. The signal path is highly integrated.

7.4 PLL tuning system

The PLL tuning system includes a fully integrated VCO. To avoid problems with unwanted signals on image side, the receiver controls automatically high-side or low-side injection.

7.5 Signal dependent FM IF bandwidth control

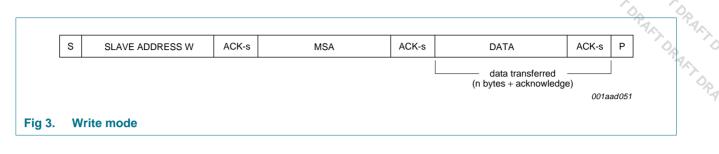
The bandwidth of the FM IF filter will be controlled by an adjacent channel detector and a deviation detector to optimize the reception.

7.6 FM stereo decoder

The MPX signal from the FM tuner is translated by the stereo decoder into a left and right audio channel. Good channel separation is achieved without alignment.

7.7 Weak signal processing and noise blanker

The reception quality of the station received is measured by a combination of detectors: field strength (LEVEL), multipath (WAM) and noise (USN). The audio processing functions soft mute, HCC and stereo blend are controlled accordingly to maintain the best possible audio quality in case of poor signal conditions. Audio disturbances like e.g. ignition noise are suppressed by the noise blanker circuit, using USN detection on MPX and spike detection on the level signal.


7.8 I²C-bus transceiver

The IC can be controlled by means of the I²C-bus including fast mode.

FF66

. Op

8. I²C-bus protocol

S	SLAVE ADDRESS R	ACK-s	DATA	ACK-m	DATA	NA P
			data transferred (n – 1 bytes + acknowled	lge)		001aad049
Fig 4.	Read mode					
Table 4.	Description of I ² C-bus f	ormat				

Table 4. Description of I²C-bus format

Code	Description
S	START condition
SLAVE ADDRESS W	1100 0000b
SLAVE ADDRESS R	1100 0001b
ACK-s	acknowledge generated by the slave
ACK-m	acknowledge generated by the master
NA	not acknowledge
MSA	mode and subaddress byte
DATA	data byte
P	STOP condition

8.1 Read mode

Data byteNameReferenceOhSTATUSSection 8.1.11hLEVELSection 8.1.22hUSN_WAMSection 8.1.33hIFCOUNTERSection 8.1.44hIDSection 8.1.55hRDS_STATUSSection 8.1.66hRDS_DAT3Section 8.1.77hRDS_DAT1Section 8.1.88hRDS_DAT0Section 8.1.99hRDS_DAT0Section 8.1.10	Table 5.	Read register overview		
1hLEVELSection 8.1.22hUSN_WAMSection 8.1.33hIFCOUNTERSection 8.1.44hIDSection 8.1.55hRDS_STATUSSection 8.1.66hRDS_DAT3Section 8.1.77hRDS_DAT2Section 8.1.88hRDS_DAT1Section 8.1.99hRDS_DAT0Section 8.1.10	Data byte		Name	Reference
2hUSN_WAMSection 8.1.33hIFCOUNTERSection 8.1.44hIDSection 8.1.55hRDS_STATUSSection 8.1.66hRDS_DAT3Section 8.1.77hRDS_DAT2Section 8.1.88hRDS_DAT1Section 8.1.99hRDS_DAT0Section 8.1.10	0h		STATUS	Section 8.1.1
3hIFCOUNTERSection 8.1.44hIDSection 8.1.55hRDS_STATUSSection 8.1.66hRDS_DAT3Section 8.1.77hRDS_DAT2Section 8.1.88hRDS_DAT1Section 8.1.99hRDS_DAT0Section 8.1.10	1h		LEVEL	Section 8.1.2
4hIDSection 8.1.55hRDS_STATUSSection 8.1.66hRDS_DAT3Section 8.1.77hRDS_DAT2Section 8.1.88hRDS_DAT1Section 8.1.99hRDS_DAT0Section 8.1.10	2h		USN_WAM	Section 8.1.3
5hRDS_STATUSSection 8.1.66hRDS_DAT3Section 8.1.77hRDS_DAT2Section 8.1.88hRDS_DAT1Section 8.1.99hRDS_DAT0Section 8.1.10	3h		IFCOUNTER	Section 8.1.4
6hRDS_DAT3Section 8.1.77hRDS_DAT2Section 8.1.88hRDS_DAT1Section 8.1.99hRDS_DAT0Section 8.1.10	4h		ID	Section 8.1.5
7hRDS_DAT2Section 8.1.88hRDS_DAT1Section 8.1.99hRDS_DAT0Section 8.1.10	5h		RDS_STATUS	Section 8.1.6
8h RDS_DAT1 Section 8.1.9 9h RDS_DAT0 Section 8.1.10	6h		RDS_DAT3	Section 8.1.7
9h RDS_DAT0 Section 8.1.10	7h		RDS_DAT2	Section 8.1.8
	8h		RDS_DAT1	Section 8.1.9
	9h		RDS_DAT0	Section 8.1.10
Ah RDS_DAIEE <u>Section 8.1.11</u>	Ah		RDS_DATEE	Section 8.1.11

8.1.1 Read mode: data byte STATUS

Read m		Tur		 And A second seco	e	A . co . the	A TALE			
Read m			her with hig	n integra	tion and hig		cy for radio			
	ode: data l	oyte STAT	US			AND DR	0 TASO			
Table 6.	STATUS - c	lata byte 0h	bit allocatior	n						
7	6	5	4	3	2	1	0			
QRS1	QRS0	POR	STIN	-	RDAV	TAS1	TAS0			
							Y			
Table 7.		-	bit descriptio	on						
Bit	Symbol	Descriptio								
7 and 6	QRS[1:0]	quality read								
		00 = no quality data available (tuning is in progress or quality data is settling)								
		01 = quality data (LEVEL, USN and WAM) available; for IF counter check the IFCS status								
		10 = AF update quality data available of LEVEL, USN, WAM and IF counter								
		11 = not used								
5	POR	power-on reset indicator								
		0 = normal operation								
		1 = power on or power dip detected; I^2C -bus settings are lost								
4	STIN	stereo indicator								
		0 = no pilot detected								
		1 = stereo pilot detected								
3	-	not used								
2	RDAV	RDS new c	lata available							
		0 = no data available								
		1 = RDS	new data ava	ilable (via	read data byte	es 5h to Fh)				
1 and 0	TAS[1:0]	tuning action	on state							
		00 = tuni	ng not active;	not muted	l					
		01 = mut	ing in progres	S						
		10 = tuni	na in progress	01 = muting in progress 10 = tuning in progress						

[1] When PLL tuning is ready the quality detectors are reset for fastest result. In FM mode the first reliable quality result of LEVEL, USN and WAM is available from 1 ms after reset. In AM mode the first level result is available from 1 ms, gradually changing from peak LEVEL towards average LEVEL realizing the maximum attenuation of AM modulation influence from 32 ms. The quality result of an AF update tuning is stored and can be read at any time later.

8.1.2 Read mode: data byte LEVEL

Table 8.	LEVEL - dat	ta byte 1h b	it allocation				
7	6	5	4	3	2	1	0
LEV7	LEV6	LEV5	LEV4	LEV3	LEV2	LEV1	LEV0

Table 9.	LEVEL - data byte 1h bit description			
Bit	Symbol	Description		
7 to 0	LEV[7:0]	level detector (RSSI) output signal via fast level detector timing		
		0 to 255 = 0.25 V to 4.25 V		

8.1.3 Read mode: data byte USN_WAM

					Opa	op op	Op Op
tors					in top	ॅर्ट्स	-6624
		Tur	her with hig	gh integrat	on and hig	gh efficiend	cy for radio
						PAN	PAR PAR OP
		oyte USN_				DA	ANT ORAN ORAN
Table 10.		- data byte 2					Op Op
7	6	5	4	3	2	1	0
USN3	USN2	USN1	USN0	WAM3	WAM2	WAM1	WAMO
Table 11.	USN_WAM	- data byte 2	2h bit descr	iption			D _P
Bit	Symbol	Descriptio	n				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7 to 4		EM ultrooor					

Table 11.	USN_WAM	USN_WAM - data byte 2h bit description					
Bit	Symbol	Description					
7 to 4	USN[3:0]	FM ultrasonic noise					
		0 to 15 = 0 % to 100 % equivalent FM modulation at 100 kHz ultrasonic noise content (USN)					
3 to 0	WAM[3:0]	FM wideband AM (multipath)					
		0 to 15 = 0 % to 100 % AM modulation at 20 kHz wideband AM content (WAM)					

8.1.4 Read mode: data byte IFCOUNTER

Table 12.	IFCOUNTER	COUNTER - data byte 3h bit allocation					
7	6	5	4	3	2	1	0
IFCS1	IFCS0	IFCN	IFC4	IFC3	IFC2	IFC1	IFC0

Table 13. IFCOUNTER - data byte 3h bit description

	<u> </u>	
Bit	Symbol	Description
7 and 6	IFCS[1:0]	IF counter status ^[1]
		00 = no first counter result available
		01 = first counter result available from 2 ms count time
		10 = counter result available from 8 ms count time
		11 = counter result available from 32 ms count time
5	IFCN	IF count result negative
		0 = positive RF frequency difference
		1 = negative RF frequency difference
4 to 0	IFC[4:0]	IF counter result; see Table 14

[1] When PLL tuning is ready the IF counter and other quality detectors are reset for fastest result. The first IF counter result is available from 2 ms after reset. Further results are available from 8 ms and 32 ms after reset, reducing the influence of FM modulation on the counter result. Later counter results are available at a count time of 32 ms.

Table 14. IF counter result

IFC4	IFC3	IFC2	IFC1	IFC0	Frequency difference	
					FM	AM
0	0	0	0	0	0 kHz to 5 kHz	0 kHz to 0.5 kHz
0	0	0	0	1	5 kHz to 10 kHz	0.5 kHz to 1 kHz
0	0	0	1	0	10 kHz to 15 kHz	1 kHz to 1.5 kHz
0	0	0	1	1	15 kHz to 20 kHz	1.5 kHz to 2 kHz
0	0	1	0	0	20 kHz to 25 kHz	2 kHz to 2.5 kHz

tors						TEF6624	
				Tune	er with high integration	n and high efficiency for radio	
						ORA ORA ORA	
Tabla	44 10	o o un to	r rooult	a a setim	and the second s	$O_{\bullet} = O_{\bullet} = O_{\bullet} = O_{\bullet}$	
Table		counte					
Table IFC4	14. IF IFC3	IFC2	r result IFC1	IFC0	Frequency difference		
						AM	
					Frequency difference	AM	
			IFC1	IFC0	Frequency difference FM	AM : 15 kHz to 15.5 kHz	

8.1.5 Read mode: data byte ID

Table 15. ID - data byte 4h bit allocation

7	6	5	4	3	2	1	0
TINJ	IFBW2	IFBW1	IFBW0	-	ID2	ID1	ID0

Bit	Symbol	e 4h bit description Description			
Dit	Symbol	Description			
7	TINJ	LO injection			
		0 = low injection LO			
		1 = high injection LO			
6 to 4	IFBW[2:0]	IF bandwidth information			
		000 to 111 = narrow to wide FM IF filter bandwidth			
3	-	not used			
2 to 0	ID[2:0]	device type identification 110 = TEF6624; read data byte 5h bit RID = 0			

8.1.6 Read mode: data byte RDS_STATUS

Table 17. RDS_STATUS - data byte 5h bit allocation

7	6	5	4	3	2	1	0
RDAV	DOFL	-	-	-	-	-	RID

Table 18. RDS_STATUS - data byte 5h bit description

Bit	Symbol	Description
7	RDAV	RDS new data available (duplicate of RDAV at read data byte 0h)
		0 = no data available
		1 = RDS new data available (via read data bytes 5h to Fh)
6	DOFL	data overflow notification ^[1]
		0 = no data loss
		1 = previous data was not read and is replaced by new 32-bit data
5 to 1	-	not used
0	RID	RDS device type identification
		0 = demodulator; see also read data byte 4h bits ID[2:0]
		1 = not used; fixed to logic 0

[1] DOFL = 1 does not indicate a data error, available data is not corrupted and can be used without restriction.

8.1.7 Read mode: data byte RDS_DAT3

ctors					Op		UUZH			
		Tun	er with hig	jh integrati	on and hig	jh efficienc	y for radio			
						OP AN	RAN PAN OP			
Read mode: data byte RDS_DAT3										
Table 19.	RDS_DAT3	- data byte (6h bit alloca	tion						
7	6	5	4	3	2	1	0			
DD31	DD30	DD29	DD28	DD27	DD26	DD25	DD24			

Table 20. RDS_DAT3 - data byte 6h bit description

Bit	Symbol	Description	
-----	--------	-------------	--

7 to 0 DD[31:24] RDS demodulator data; first (oldest) byte of 32-bit buffered data stream

8.1.8 Read mode: data byte RDS DAT2

Table 21.	RDS_DAT2	- data byte	7h bit alloca				
7	6	5	4	3	2	1	0
DD23	DD22	DD21	DD20	DD19	DD18	DD17	DD16

Table 22. RDS_DAT2 - data byte 7h bit description

Bit		Description
7 to 0	DD[23:16]	RDS demodulator data; second byte of 32-bit buffered data stream

8.1.9 Read mode: data byte RDS_DAT1

Table 23. RDS_DAT1 - data byte 8h bit allocation

7	6	5	4	3	2	1	0
DD15	DD14	DD13	DD12	DD11	DD10	DD9	DD8

Table 24. RDS DAT1 - data byte 8h bit description

Bit	Symbol	Description
7 to 0	DD[15:8]	RDS demodulator data; third byte of 32-bit buffered data stream

8.1.10 Read mode: data byte RDS_DAT0

Table 25. RDS_DAT0 - data byte 9h bit allocation

7	6	5	4	3	2	1	0
DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0

Table 26. RDS DAT0 - data byte 9h bit description

Bit	Symbol	Description
7 to 0	DD[7:0]	RDS demodulator data; fourth (newest) byte of 32-bit buffered data stream

8.1.11 Read mode: data byte RDS_DATEE

					ORAN		
tors					Op.	1	-6624
		Tune	r with h	igh integrat	ion and hig	gh efficiend	cy for radio
						PAN	PAR PAR
Read mo	ode: data l	byte RDS_D	ATEE			DA.	PA OP OP
Table 27.	RDS_DATE	E - data byte	Ah bit all	ocation			The The
7	6	5	4	3	2	1	0 4
-	-	-	-	DEE3	DEE2	DEE1	DEE0
Table 28.	RDS_DATE	E - data byte	Ah bit de	scription			C. A.
Bit	Symbol	Description					
7 to 4	-	not used					
3 to 0	DEE[3:0]	RDS demodu	lator data	a error estimat	ion		
		0000 to 11	11 = no e	rror (high rece	ption quality) to high erro	or (no RDS)

8.2 Write mode

Table 29. Write	mode subaddress overview		
Subaddress	Name	Default	Reference
0h	TUNER0	0010 0110b	Section 8.2.2
1h	TUNER1	1111 1010b	Section 8.2.3
2h	TUNER2	0000 0000b	Section 8.2.4
3h	RADIO	1000 0000b	Section 8.2.5
4h	SOFTMUTE0	0000 0000b	Section 8.2.6
5h	SOFTMUTE1	0000 0000b	Section 8.2.7
6h	SOFTMUTE2_FM	0000 0000b	Section 8.2.8
6h	SOFTMUTE2_AM	0000 0000b	Section 8.2.9
7h	HIGHCUT0	0000 0000b	Section 8.2.10
8h	HIGHCUT1	0000 0000b	Section 8.2.11
9h	HIGHCUT2	0000 0000b	Section 8.2.12
Ah	STEREO0	0000 0000b	Section 8.2.13
Bh	STEREO1	0000 0000b	Section 8.2.14
Ch	STEREO2	0000 0000b	Section 8.2.15
Dh	CONTROL	0001 0100b	Section 8.2.16
Eh	LEVEL_OFFSET	0100 0000b	Section 8.2.17
Fh	AM_LNA	0000 0100b	Section 8.2.18
10h	RDS	0100 0000b	Section 8.2.19
11h	EXTRA	0000 0000b	Section 8.2.20

TEF6624

8.2.1 Mode and subaddress byte for write

Mode an	nd subaddr	ess byte fo	or write			ORAKT DR	ORAN ORAN	2
Table 30.	MSA - mode	e and subadd	lress byte l	bit allocatio	n		ny ny	
7	6	5	4	3	2	1	0	5
MODE2	MODE1	MODE0	SA4	SA3	SA2	SA1	SA0	

Table 31.	31. MSA - mode and subaddress byte bit description						
Bit	Symbol	Description					
7 to 5	MODE[2:0]	mode; see Table 32					
4 to 0	SA[4:0]	subaddress; subaddressing with SA4 = 0 can be combined with any of the eight MODE[2:0] settings; subaddressing with SA4 = 1 (data byte 10h or 11h) requires standard mode (MODE[2:0] = 000); the subaddress auto-increments for writing consecutive data bytes in a single transmission					

MODE2	MODE1	MODE0	Symbol	Description
0	0	0	standard	write without tuning action
0	0	1	preset	tune to new station with short mute time; see Figure 5
0	1	0	search	tune to new station and stay muted; see $\frac{\text{Figure 6}}{\text{Figure 7}}$ and $\frac{\text{Figure 7}}{\text{Figure 7}}$
0	1	1	AF update	tune to AF station; store AF quality and tune back to main station; see Figure 8 and Figure 9
1	0	0	AF jump	tune to AF station in minimum mute time; see Figure 10 and Figure 11
1	0	1	AF check	tune to AF station and stay muted; see Figure 12, Figure 13 and Figure 14
1	1	0	mirror test	check current image situation and select injection mode for best result; see Figure 15
1	1	1	end	end; release mute from search mode or AF check mode
	.,			

IXP Se	emiconducto	ors				ORA	TEF6624	PAR
				Tuner wit	h high inte	egration ar	nd high efficiency for radio	
time		1 ms	tuning	32 ms		1 ms	AND TANK	NA.
I ² C-bus	preset freq 1 P						RALTORS	NAL DRA
buffer register	freq x freq 0	freq 1	(freq 0			× Os
control	[↑] preload		swap					4
register .	freq 0		Χ		freq 1			
tuning	freq 0		freq 0> freq 1			freq 1		
TAS	00	01	10	11		χ	00	
QRS	01	(00	×		01		
audio			_ →	l ← 1 ms mute				
, addio								
quality detectors .	continuous	6	reset			continuous		
weak . signal	user define	d		fast settling < 30 ms			user defined	
timing								
level . USN	continuous resul	t freq 0	freq 0 hold	X	conti	nuous result fre	q 1	
WAM '	count		reset	count			count	
IF count	result freq	0	freq 0 hold	0 2 ms freq 1	8 ms freq 1	χ	32 ms freq 1	
				2 ms 8 ms	32 ms	•	32 ms	
IFCS	11 o	r 10 or 01		00 01	10	χ	11	
Fig 5.	Preset mode						001aaf555	

XP Se	miconductors				TEF6	3 ~X3
			Tuner wi	th high integra	ation and high efficiency fo	r radio
					PART PAR	r fadio
time	1 ms	tuning			RACT	RAL PAR
l ² C-bus	search freq 1 P					RANTOR RANTO
buffer - register -	freq x freq 0 freq 1	X		freq 0		
control -	[†] preload	[swap				
register _	freq 0	_X		freq 1		
tuning	freq 0	freq 0 -> freq 1		f	req 1	
TAS -	00 01	10	(11		
QRS	01	00	X	-	01	
audio		→ >	l - −1 ms	mute		
quality -	continuous	reset		cont	inuous	
weak _ signal timing [_]	user defined			fast settling < 30 ms		
level _ USN WAM ⁻	continuous result freq 0	freq 0 hold		continuou	is result freq 1	
	count	reset	count		count	
IF count	result freq 0	freq 0 hold	0 2 ms freq 1	8 ms freq 1	32 ms freq 1	
-		U,	2 ms 8 ms	32 ms	32 ms	
IFCS	11 or 10 or 0	01	00 01	10	11	

NXP Se	emiconducto	ors				TEF6	P P
				uner with high	n integration a	and high efficiency f	for radio
time		tuning			1 ms	NAV.	CAL CAL
I ² C-bus	search freq 1 P	·		er	nd P		- AAT ANT O
buffer register	freq x freq 0 f1	swap		freq 0			
control register	freq 0			freq 1			
tuning	freq 0	freq 0 → freq 1			freq 1		
TAS	11	(10)	(11	χ	00	
QRS	01	00	X		01		
audio			l ≪ 1 ms mute		$-\!<$		
quality detectors	continuous	reset			continuous		
weak signal timing		fast	settling < 30 ms			user defined	
level USN WAM	continuous freq 0	freq 0 hold		continu	ious result freq 1		
IF count	count result freq 0	reset freq 0 hold	count	8 ms freq 1	count 32 ms freq	count	
			2 ms 8 ms	32 ms	32 ms	/∖	
IFCS	11 or 10) or 01	00 01	10		11	001aaf557
Fig 7.	Search mode at	fter search, en	d				

P Se	miconducto	ors					on and high efficie	F6624		
				Tun	er with high i	ntegratio	on and high efficie	ncy for radio		
							on and high efficie	RAND		
								OPAN PAN		
time .		1 ms	tuning	2 ms	tuning	1 ms				
² C-bus	AFU freq 1 P	· · ·					read P	AAT D		
buffer '	freq x freq 0	freq 1	X fre	μ ₁₀ χ			freq 1			
legister .	(preload)	(preload) swap			swap					
control register	freq 0	freq 0 X free		q 1	freq 0					
tuning	freq 0		freq 0 freq 1	freq 1	freq 1 freq 0		freq 0			
TAS	00	01	y 10	(11)	10	γ	00			
		·\	//	/		Λ				
QRS	01		00	01		10	X	01		
			->	1 ms – mute						
audio .						~~~				
quality :	continuous	S	reset	continuous	reset		continuous			
weak .										
signal timing	user define	ed		hold			user defined	d		
level .										
USN	continuous resul	t freq 0	freq 0 hold	cont. freq 1	freq 1	hold until rea	ad Continu	ous result freq 0		
WAM .	count		reset	count	reset	count				
F count	result freq	0	freq 0 hold	0		lt freq 1 hold	until read	esult freq 0		
				2 ms		2 ms	8 ms			
IFCS	11 o	r 10 or 01		00	(01	γ	10 ⁽¹⁾		
					\	(1) de	pends on time between end of t	tuning and read out 001aaf558		

P Ser	niconductors				TEF662
			Tuner with high	n integration a	nd high efficiency for rac
					TEF662 nd high efficiency for rac
time _	1 ms	tuning		tuning	1 ms
2C-bus	check freq 1 P		AFU freq 0 P		² ² 4
buffer _	freq x X freq 1	X	freq 0	<u> </u>	freq 1
control -	frog 0	swap V	from A	swap	for a Q
egister _	freq 0	λ	freq 1	λ	freq 0
tuning	freq 0	freq 0 freq 1	freq 1	freq 1 freq 0	freq 0
TAS -	00 01	χ <u>10</u>	11	(<u>10</u>)	00
_					
QRS _	01 X	00		(10
_ audio			l ← 1 ms mute		
-					
quality	continuous	reset	continuous	reset	continuous
weak _ signal	user defined		hold		user defined
timing -					
level _ USN WAM -	continuous result freq 0	freq 0 hold	continuous result freq 1	freq 1 hold	freq 1 hold until I ² C-bus read
_	count	reset	count	reset	count
count	result freq 0	freq 0 hold	0 2 ms freq 1 8 ms freq 1	8 ms freq 1 hold	freq 1 hold until I ² C-bus read
			2 ms 8 ms		2 ms
IFCS	11 or 10 or 01		00 01		10

Fig 9. AF update mode after check

XP Se	emiconductors					TEF6624	P.
			τι	uner with I	high integratior	and high efficiency for radio	NAX.
						RARTORA	ORALT OR AS
time	1 ms	s tuning	1 ms			RARAR	P.J.
l ² C-bus	jump freq 1 P					RAKTOK	RAAT D RAT DR
buffer register	freq x freq 0 freq 1	_X			freq 0	````	NAT DR
control	[†] (preload)	swap					
register	freq 0	_X			freq 1		
tuning	freq 0	freq 0 -> freq 1			freq 1		
TAS	00 ¥01	X 10			00		
QRS	01	00	X		01		
audio		mute	1 ms	-			
audio							
quality detectors	continuous	reset			continuou	s	
weak signal	user defined	hold			user	defined	
timing							
level USN WAM	continuous result freq 0	freq 0 hold			continuous resu	It freq 1	
	count	reset	count			count	
IF count	result freq 0	freq 0 hold	0	2 ms freq 1	8 ms freq 1	32 ms freq 1	
			2 ms	► 8 ms	32 ms	32 ms	
IFCS		1	00	01	10	11	

Semiconductors					
	Tune	er with high integrat	ion and high e	fficiency for radio	
		er with high integrat		RAND RAND RA	
ime 1 ms	tuning		tuning	1 ms	
bus check freq 1 P		jump freq 0 P	J	^R 4A-	
ffer freq x X freq 1	fre	q 0 (f0	fr	eq 1	
swa	ар		swap		
ster freq 0	fre	q 1	freq 0		
ning freq 0 fre	q 0 → freq 1	freq 1	freq 1 → freq 0	freq 0	
AS 00 X 01 X	10	11	X 10	00	
,,					
IRS 01	00	01	00	01	
idio	→ 1 ms -	mute		1 ms 🕶	
ality continuous	reset	continuous	reset	continuous	
eak					
nal user defined		hold		user defined	
evel SN continuous result freg 0	freq 0 hold Y cont	inuous result freg 1	freg 1 hold	ontinuous result freq 0	
AM	· • •				
count result freq 0	reset count freq 0 hold 0	2 ms freq 1 8 ms freq 1	8 ms freq 1 hold	o V	
		8 ms			
CS 11 or 10 or 01	2 ms	01 10	X 00 V	2 ms 01 10	

XP Se	miconducto	ors					TEF6624			
				т	uner with I	nigh integrat	tion and high efficiency for radio			
time		1 ms	tuning				RAN RAN ORAN			
			<u> </u>				ORA ORA			
I ² C-bus	check freq 1 P									
buffer : register	freq x freq 0	freq 1	X			freq 0				
control -	[†] (preload)		∫swap V							
register .	freq 0		Xfreq 1							
tuning	freq 0		freq 0 freq 1			fre	pq 1			
TAS	00 X	01	<u>10</u>			1	11			
QRS	01		00	<u>x</u>			01			
-				1 ms 🖛		m	ute			
audio		>								
quality •	continuous	i	reset	continuous						
weak .			-							
signal timing	user defined	d				hold				
level . USN WAM ⁻	continuous result	freq 0	freq 0 hold			continuous	result freq 1			
	count		reset	count			count			
IF count	result freq C		freq 0 hold	0	2 ms freq 1	8 ms freq 1	32 ms freq 1			
				2 ms	▶ 8 ms	32 ms	32 ms			
IFCS	11 or	10 or 01		00	01	10	11			
ig 12.	Check mode						001aaf562			

freq 0 X	tuning wap ireq 0 → freq 1		Tuner wi	th high integration 1 ms 1 ms end P freq 0 freq 1 freq 1	and high efficien	F6624 cy for radio
eq x (f1) freq 0 freq 0 f	wap			end P freq 0 freq 1	Rakt Da	RANT RANTORAN
eq x (f1) freq 0 freq 0 f	wap			freq 0 freq 1		Op Op
eq x (f1) freq 0 freq 0 f				freq 0 freq 1		
freq 0				freq 1		
freq 0 X				·		
I	req 0 → freq 1			freq 1		
V						
X	10	(11	χ	00	
01 X	00	X		01		
		mute				
ontinuous	reset			continuous		
		hold			user defined	d
nuous freq 0	freq 0 hold			continuous result freq 1		
count	reset	count			count	count
sult freq 0	freq 0 hold	<u> </u>	2 ms freq 1	8 ms freq 1	32 ms freq 1	(
		2 ms	8 ms	32 ms	→	
11 or 10 or (01	00	01	10	11	001aaf563
n	uous freq 0 count ult freq 0 11 or 10 or 0	ntinuous reset uous freq 0 freq 0 hold count reset ult freq 0 freq 0 hold 11 or 10 or 01	ntinuous reset hold uous freq 0 freq 0 hold count reset count ult freq 0 freq 0 hold 0	mute htinuous reset hold uous freq 0 freq 0 hold count reset count ult freq 0 freq 0 hold 0 2 ms freq 1 2 ms 8 ms 11 or 10 or 01 00 01	mute ntinuous reset continuous hold uous freq 0 freq 0 hold count reset count ult freq 0 freq 0 hold 0 2 ms 8 ms 32 ms 11 or 10 or 01 00 01 10	mute ntinuous reset continuous hold user define uous freq 0 freq 0 hold user define count reset count ult freq 0 freq 0 hold 0 2 ms 7 ms 32 ms 11 or 10 or 01 00 01 10

00	miconducto	ors				DRANDRAN	EF6624		
			Tune	er with high	integration	and high effic	ciency for radio		
						PA	RAN P		
							Op Op		
time		tuning			tuning	32 ms	1 ms		
							PAR		
-bus	check freq 1 P		pres	et freq 2 P			0		
uffer	freq x 1	v	freq 0	freq 1 f2		frog 1			
jister.		swap	lieq 0		freq 1				
ontrol	freq 0	* X	freq 1	Ý.	freq 2				
gister .	/	/		/_					
uning	freq 0	freq 0 - freq 1	freq 1	fi	req 1 → freq 2				
TAS	11	10	11	X	10	11	<u> </u>		
QRS	01	X 00	V 01		00		01		
200	01	<u> </u>	┼─^───				01		
udio ·			mute						
uality ctors	continuous	reset	continuous		reset	contin	nuous		
eak .									
ignal ming			hold		fast settling < 30 ms user defined				
evel .									
USN VAM	continuous freq 0	freq 0 hold	continuous result	freq 1	freq 1 hold	continuous r	result freq 2		
	count	reset	count		reset	count	count		
ount	result freq 0	freq 0 hold	0 2 ms freq 1	8 ms freq 1	freq 1 hold	0 (freq 2) frec	a 2 32 ms freq 2		
			8 ms			 4 32 m 32 m 	ns		
FCS	11 or 10	0 07 01	2 ms 00 01	10			D 11		

NXP Semiconductors

NXP Se	emiconducto	ors					TEF6624 on and high efficiency for radio		
				Т	uner with l	nigh integrati	on and high efficiency for radio		
							RAN RAN RAN		
time		1 ms	tuning	1 ms			RAR RAR ORAR		
I ² C-bus	image test P	J							
buffer register	freq x						The second secon		
control register	freq 0								
tuning	freq 0		freq 0 freq 0			freq	0		
TAS	00	01	10	X		00)		
QRS	01	< <u> </u>	00				01		
audio		>	mute	1 ms	1 ms -				
quality detectors	continuous	S	reset		continuous		uous		
weak signal timing	user define	ed	hold			user de	fined		
level									
USN WAM	continuous resul	lt freq 0	freq 0 hold	Χ		continuous re	esult freq 0		
IF count	count result freq	0	reset freq 0 hold	count 0	2 ms freq 0	8 ms freq 0	count 32 ms freq 0		
ii oouiit					→ 8 ms	32 ms	32 ms		
IFCS	11 o	r 10 or 01		2 ms 00	01	10	11		
Fig 15.	Image test						008aaa077		

8.2.2 Write mode: data byte TUNER0

	822 Writ	e mode: dat	a byte TUNE	Ū		DR.AN	
Table 33.	TUNER0 - data by		-				NAN, NAN, NAN
7	6	5	4	3	2	1	0 3
0	BAND1	BAND0	FREQ12	FREQ11	FREQ10	FREQ9	FREQ8
	0	1	0	0	1	1	0

Table 34.	TUNER0 - data b	UNER0 - data byte 0h bit description				
Bit	Symbol	Description				
7	-	not used, must be set to logic 0				
6 and 5	BAND[1:0]	frequency band ^[1]				
		00 = AM: LW and MW				
		01 = FM: standard Europe, USA and Japan				
		10 = reserved				
		11 = FM: OIRT (eastern Europe)				
4 to 0	FREQ[12:8]	upper byte of tuning frequency word ^[1] ; see Table 37				

[1] For a correct tuning result a change in the BAND or FREQ setting should always be combined with a tuning action of MODE[2:0] = 001 to 101.

8.2.3 Write mode: data byte TUNER1

Table 35. TUNER1 - data byte 1h bit allocation with default setting

7	6	5	4	3	2	1	0
FREQ7	FREQ6	FREQ5	FREQ4	FREQ3	FREQ2	FREQ1	FREQ0
1	1	1	1	1	0	1	0

Table 36.	TUNER1 - data k	byte 1h bit description
Bit	Symbol	Description
7 to 0	FREQ[7:0]	lower byte of tuning frequency word ^[1] ; see <u>Table 37</u>

[1] For a correct tuning result a change in the BAND or FREQ setting should always be combined with a tuning action of MODE[2:0] = 001 to 101.

Table 37. Tuning frequency

BAND	FREQ[12:0] value	Reception frequency	Frequency correlation	Step
AM: LW and MW	144 to 1720	144 kHz to 1720 kHz	$FREQ[12:0] = f_{RF} [kHz]$	1 kHz
FM: standard Europe, USA and Japan	1520 to 2160	76 MHz to 108 MHz	$FREQ[12:0] = f_{RF} [MHz] \times 20$	50 kHz
FM: OIRT (eastern Europe)	6500 to 7400	65 MHz to 74 MHz	$FREQ[12:0] = f_{RF} [MHz] \times 100$	10 kHz

8.2.4 Write mode: data byte TUNER2

7	6	5	4	3	2	1	0 7/
RFAGC1	RFAGC0	INJ1	INJ0	0	FMBW2	FMBW1	FMBW0
0	0	0	0		0	0	0

Bit	Symbol	Description
7 and 6	RFAGC[1:0]	AM RF AGC sensitivity control
		00 = AGC threshold not reduced
		01 = AGC threshold reduced by 2 dB
		10 = AGC threshold reduced by 4 dB
		11 = AGC threshold reduced by 6 dB
		FM RF AGC sensitivity control
		00 = AGC threshold not reduced
	01 = AGC threshold reduced by 2 dB	
		10 = AGC threshold reduced by 4 dB
		11 = AGC threshold reduced by 6 dB
5 and 4	INJ[1:0]	injection ^[1]
		00 = automatic injection
		01 = high injection LO
		10 = low injection LO
		11 = undefined, do not use
3	-	not used, must be set to logic 0
2 to 0	FMBW[2:0]	FM bandwidth control
		000 = dynamic mode (optimum bandwidth is selected depending on reception conditions)
		001 to 111 = narrow to wide FM IF filter bandwidth

[1] For a correct tuning result a change in the INJ setting should always be combined with MODE[2:0] = 110 or a tuning action of MODE[2:0] = 001 to 101.

TEF6624

8.2.5 Write mode: data byte RADIO

7	ADIO - data byte	5	4	3	2	1	0
NBS1	NBS0	LOCUT	MONO	DEMP1	DEMP0	0	OUTA
1	0	0	0	0	0		0

Bit	Symbol	Description
7 and 6	NBS[1:0]	FM noise blanker sensitivity control
		00 = FM noise blanker off
		01 = low FM noise blanker sensitivity
		10 = medium FM noise blanker sensitivity
		11 = high FM noise blanker sensitivity
5	LOCUT	control of audio high-pass filter
		0 = no limitation (-3 dB at 7 Hz)
		1 = high-pass function (-3 dB at 100 Hz)
4	MONO	mono/stereo switch
		0 = FM stereo enabled
		1 = FM stereo disabled (forced mono)
3 and 2	DEMP[1:0]	de-emphasis setting
		00 = 50 μs de-emphasis
		01 = 75 μs de-emphasis
		10 = 103 μs low-pass
		11 = not used
1	-	not used, must be set to logic 0
0	OUTA	audio output gain
		0 = low audio gain at LOUT and ROUT
		1 = high audio gain at LOUT and ROUT

8.2.6 Write mode: data byte SOFTMUTE0

Table 42.	SOFTMUTE0 - data	a byte 4h bit a	allocation with	default setting			
7	6	5	4	3	2	1	0
0	0	0	MAT2	MAT1	MAT0	MRT1	MRT0
			0	0	0	0	0

DRAFT, D

		Tuner with high integration and	high efficiency for radio
Table 43.	SOFTMUTE	E0 - data byte 4h bit description	107 DRA 107 DRA
Bit	Symbol	Description	. · · · · · · · · · · · · · · · · · · ·
7 to 5	-	not used, must be set to logic 0	RANRA
4 to 2	MAT[2:0]	soft mute slow attack time; see Table 44	10, 10
1 and 0	MRT[1:0]	soft mute slow recovery time	AV.
		00 = 2 times attack time	- DR
		01 = 4 times attack time	
		10 = 8 times attack time	
		11 = 16 times attack time	

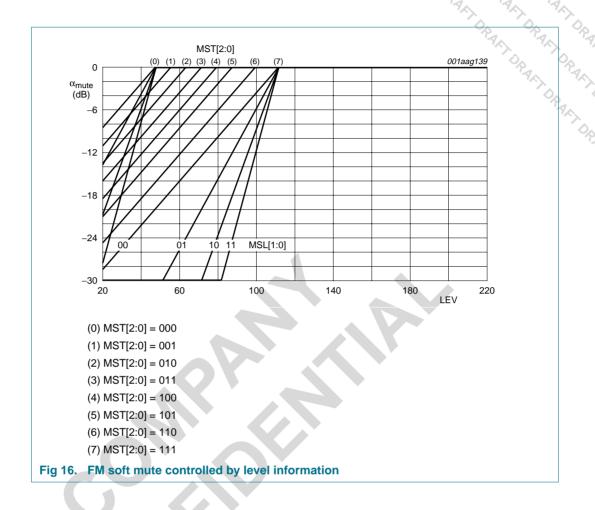
SOFTMUTED - data byte 4b bit description Table 42

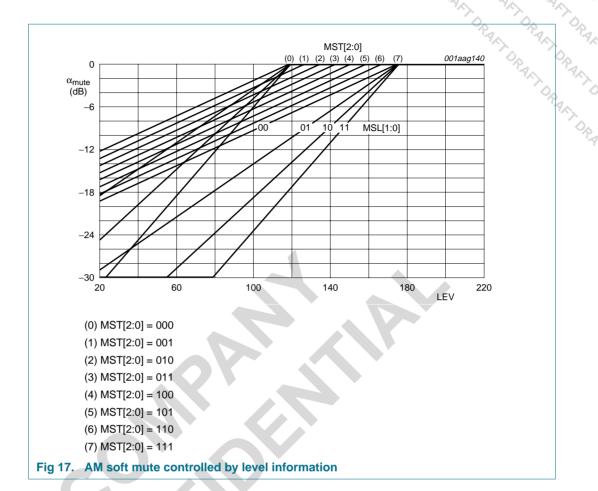
Table 44. Soft mute attack time

MAT2	MAT1	MAT0	Soft mute attack time	
0	0	0	60 ms	
0	0	1	125 ms	
0	1	0	250 ms	
0	1	1	0.5 s	
1	0	0	1 s	
1	0	1	2 s	
1	1	0	4 s	
1	1	1	8 s	

8.2.7 Write mode: data byte SOFTMUTE1

Table 45. SOFTMUTE1 - data byte 5h bit allocation with default setting


7	6	5	4	3	2	1	0
MFOL	MSOL	0	MST2	MST1	MST0	MSL1	MSL0
0	0		0	0	0	0	0


Table 46. SOFTMUTE1 - data byte 5h bit description

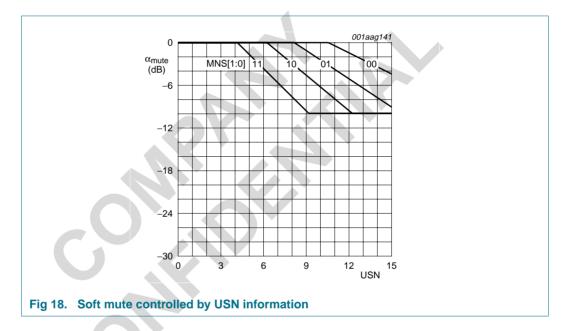
Bit	Symbol	Description
7	MFOL	soft mute fast on level
		0 = no fast control on level
		1 = fast control on level active
6	6 MSOL	soft mute slow on level
		0 = no slow control on level
		1 = slow control on level active
5	-	not used, must be set to logic 0
4 to 2	MST[2:0]	soft mute start on level
		000 to 111 = high threshold to low threshold of weak signal soft mute control; see Figure 16 and Figure 17
1 and 0	MSL[1:0]	soft mute slope on level
		00 to $11 = 100$ steepness to high steepness of slope of weak signal soft mute control; see Figure 16 and Figure 17

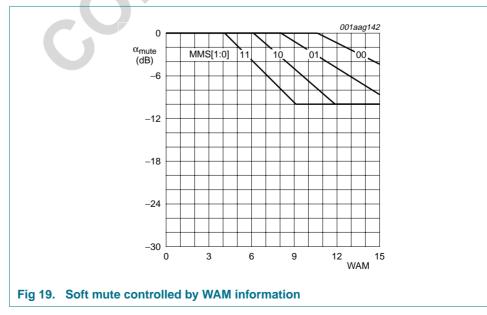
TEF6624_1

6

8.2.8 Write mode: data byte SOFTMUTE2_FM

Table 47. SOFTMUTE2_FM - data byte 6h bit allocation with default setting


7	6	5	4	3	2	1	0
MFON	MSON	MNS1	MNS0	MFOM	MSOM	MMS1	MMS0
0	0	0	0	0	0	0	0


Table 48. SOFTMUTE2_FM - data byte 6h bit description

0	
Symbol	Description
MFON	soft mute fast on noise (USN)
	0 = no fast control on noise (USN)
	1 = fast control on noise (USN) active
MSON	soft mute slow on noise (USN)
	0 = no slow control on noise (USN)
	1 = slow control on noise (USN) active
MNS[1:0]	sensitivity of soft mute on noise (USN)
	00 to 11 = weak to strong soft mute control by FM noise (USN); see Figure 18
	MFON

DRALT DS

Table 48.	SOFTMUTE	E2_FM - data byte 6h bit descriptioncontinued	'Op
Bit	Symbol	Description	
3	MFOM	soft mute fast on multipath (WAM)	PAN
		0 = no fast control on multipath (WAM)	
		1 = fast control on multipath (WAM) active	PAR.
2	MSOM	soft mute slow on multipath (WAM)	- ^ O _O
		0 = no slow control on multipath (WAM)	- ,
		1 = slow control on multipath (WAM) active	
1 and 0	MMS[1:0]	sensitivity of soft mute on multipath (WAM)	
		00 to 11 = weak to strong soft mute control by FM multipath (WAM); see Figure 19	

© NXP B.V. 2009. All rights reserved.

8.2.9 Write mode: data byte SOFTMUTE2_AM

Table 49. SOFTMUTE2_AM - data byte 6h bit allocation with default setting

Write mo	ode: data b	yte SOFT	MUTE2_A	M		RAKT DR	NART DRAFT DRAFT
Table 49.	SOFTMUTE	2_AM - data	a byte 6h bit	allocation w	vith default	setting	0, 0,
7	6	5	4	3	2	1	0
0	0	0	MLIM4	MLIM3	MLIM2	MLIM1	MLIM0
			0	0	0	0	0

Table 50.	SOFTMUTE	SOFTMUTE2_AM - data byte 6h bit description					
Bit	Symbol	Description					
7 to 5	-	not used, must be set to logic 0					
4 to 0	MLIM[4:0]	soft mute limit					
		0 0000 to 1 1110 = soft mute control limited at 0 dB to 30 dB; the soft mute control can be limited to the point at which natural soft mute starts					

8.2.10 Write mode: data byte HIGHCUT0

Table 51. HIGHCUT0 - data byte 7h bit allocation with default setting

7	6	5	4	3	2	, 1	0
HMOD1	HMOD0	HLIM	HAT2	HAT1	HAT0	HRT1	HRT0
0	0	0	0	0	0	0	0

Table 52. HIGHCUT0 - data byte 7h bit description

Bit	Symbol	Description
7 and 6	HMOD[1:0]	high-cut on modulation; see Figure 20
		00 = no modulation control
		$01 = high-cut (50 \ \mu s to 103 \ \mu s) for < 30 \ \% modulation$
		10 = high-cut (50 μ s to 103 μ s) for < 50 % modulation
		11 = high-cut (50 μ s to 165 μ s) for < 50 % modulation
5	HLIM	limitation of high-cut control on level, noise (USN) and multipath (WAM)
		0 = high-cut limit at 165 μ s, –10 dB at 10 kHz (for 50 μ s de-emphasis)
		1 = high-cut limit at 103 μ s, –6 dB at 10 kHz (for 50 μ s de-emphasis)
4 to 2	HAT[2:0]	high-cut slow attack time; see Table 53
1 and 0	HRT[1:0]	high-cut slow recovery time
		00 = 2 times attack time
		01 = 4 times attack time
		10 = 8 times attack time
		11 = 16 times attack time

DRACT DI

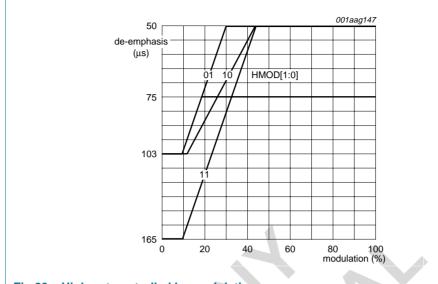
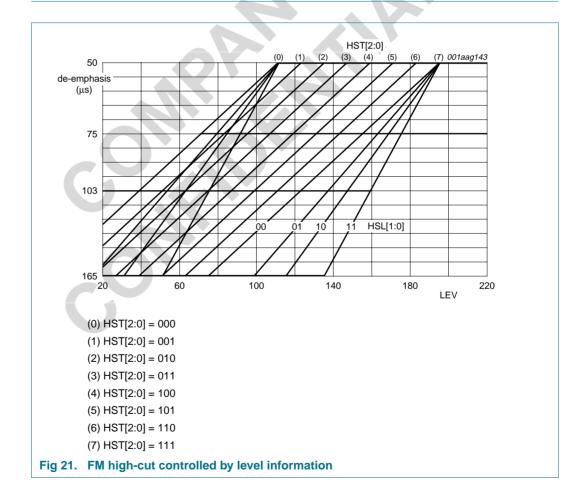
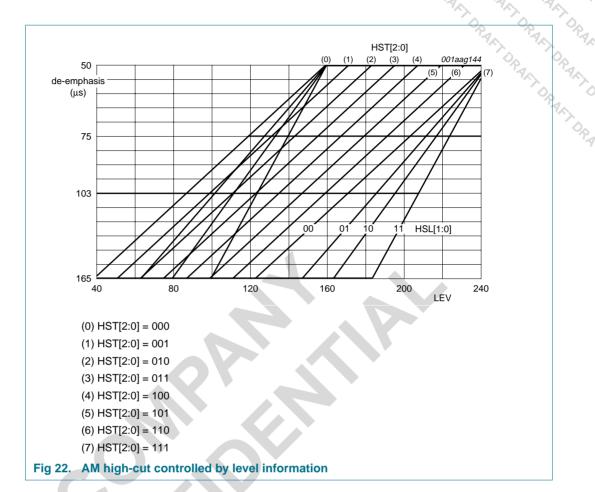


Fig 20. High-cut controlled by modulation

Table 53. High-cut attack time

	gir out attaon this			
HAT2	HAT1	HAT0	High-cut attack time	
0	0	0	60 ms	
0	0	1	125 ms	
0	1	0	250 ms	
0	1	1	0.5 s	
1	0	0	1 s	
1	0	1	2 s	
1	1	0	4 s	
1	1	1	8 s	


8.2.11 Write mode: data byte HIGHCUT1


Table 54. HIGHCUT1 - data byte 8h bit allocation with default setting

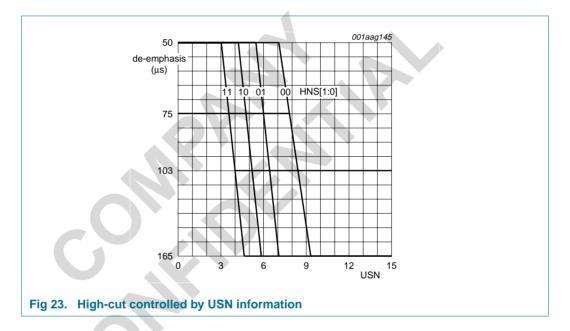
7	6	5	4	3	2	1	0
HFOL	HSOL	0	HST2	HST1	HST0	HSL1	HSL0
0	0		0	0	0	0	0

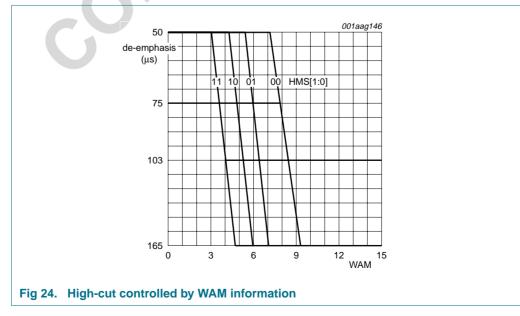
PAR.

Table 55.	HIGHCUT1	- data byte 8h bit description
Bit	Symbol	Description
7	HFOL	high-cut fast on level
		0 = no fast control on level
		1 = fast control on level active
6	HSOL	high-cut slow on level
		0 = no slow control on level
		1 = slow control on level active
5	-	not used, must be set to logic 0
4 to 2	HST[2:0]	high-cut start on level
		000 to $111 =$ high threshold to low threshold of weak signal high-cut control; see Figure 21 and Figure 22
1 and 0	HSL[1:0]	high-cut slope on level
		00 to 11 = low steepness to high steepness of slope of weak signal high-cut control; see Figure 21 and Figure 22.

8.2.12 Write mode: data byte HIGHCUT2

Table 56. HIGHCUT2 - data byte 9h bit allocation with default setting

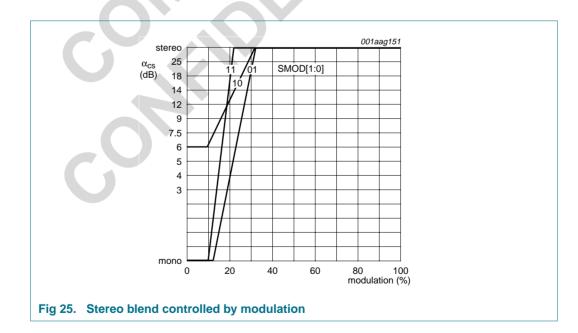

7	6	5	4	3	2	1	0
HFON	HSON	HNS1	HNS0	HFOM	HSOM	HMS1	HMS0
0	0	0	0	0	0	0	0


Table 57. HIGHCUT2 - data byte 9h bit description

Bit	Symbol	Description
7 HF	HFON	high-cut fast on noise (USN)
		0 = no fast control on noise (USN)
		1 = fast control on noise (USN) active
6	HSON	high-cut slow on noise (USN)
		0 = no slow control on noise (USN)
		1 = slow control on noise (USN) active
5 and 4 HNS[1:0]		sensitivity of high-cut on noise (USN)
		00 to 11 = weak to strong high-cut control by FM noise (USN); see Figure 23

ORALT ORALT

Table 57.	HIGHCUT2	- data byte 9h bit description continued	20
Bit	Symbol	Description	4
3	HFOM	high-cut fast on multipath (WAM)	1
		0 = no fast control on multipath (WAM)	\sim
		1 = fast control on multipath (WAM) active	
2	HSOM	high-cut slow on multipath (WAM)	°O _p
		0 = no slow control on multipath (WAM)	5
		1 = slow control on multipath (WAM) active	
1 and 0	HMS[1:0]	sensitivity of high-cut on multipath (WAM)	
		00 to 11 = weak to strong high-cut control by FM multipath (WAM); see Figure 24	


TEF6624_1

8.2.13 Write mode: data byte STEREO0

Table 58. STEREO0 - data byte Ah bit allocation with default setting

		Tun	er with hig	h integrati	on and hig	h efficiend	y for radio			
Write mode: data byte STEREO0										
Table 58.	STEREO0 - d	lata byte Al	n bit allocat	ion with def	ault setting		Do Do			
7	6	5	4	3	2	1	0 4			
SMOD1	SMOD0	0	SAT2	SAT1	SAT0	SRT1	SRT0			
0	0		0	0	0	0	0			

STEREO0 - data byte Ah bit description Table 59. Bit Description Symbol 7 and 6 SMOD[1:0] stereo blend on modulation; see Figure 25 00 = no modulation control 01 = stereo blend (stereo to mono) for < 30 % modulation 10 = stereo blend (stereo to 6 dB channel separation) for < 30 % modulation 11 = stereo blend (stereo to mono) for < 15 % modulation 5 not used, must be set to logic 0 -4 to 2 SAT[2:0] stereo blend slow attack time; see Table 60 1 and 0 SRT[1:0] stereo blend slow recovery time 00 = 2 times attack time 01 = 4 times attack time 10 = 8 times attack time 11 = 16 times attack time

DRAFTOR

Table 60.	Stereo blend attack time		ORA ORA ON	2
SAT2	SAT1	SAT0	Stereo blend attack time	~
0	0	0	60 ms	
0	0	1	125 ms	5
0	1	0	250 ms	
0	1	1	0.5 s	20
1	0	0	1 s	4
1	0	1	2 s	
1	1	0	4 s	
1	1	1	8 s	

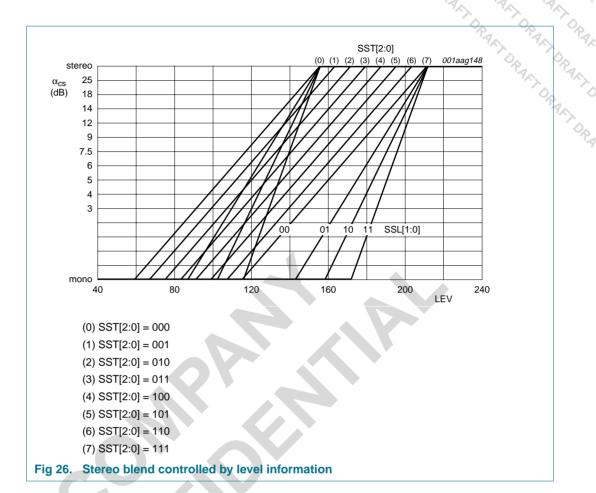

8.2.14 Write mode: data byte STEREO1

Table 61. STEREO1 - data byte Bh bit allocation with default setting

7	6	5	4	3	2	1	0
SFOL	SSOL	0	SST2	SST1	SST0	SSL1	SSL0
0	0		0	0	0	0	0

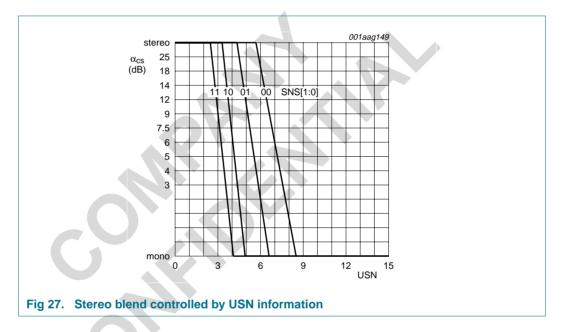
Table 62. STEREO1 - data byte Bh bit description

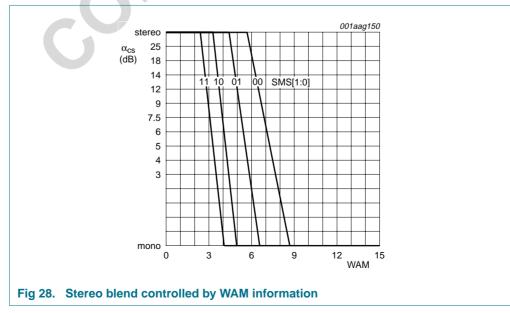
D'/	0	
Bit	Symbol	Description
7	SFOL	stereo blend fast on level
		0 = no fast control on level
		1 = fast control on level active
6	SSOL	stereo blend slow on level
	5	0 = no slow control on level
		1 = slow control on level active
5	-	not used, must be set to logic 0
4 to 2	SST[2:0]	stereo blend start on level
		000 to 111 = high threshold to low threshold of weak signal stereo blend control; see Figure 26
1 and 0	SSL[1:0]	stereo blend slope on level
		00 to 11 = low steepness to high steepness of slope of weak signal stereo blend control; see <u>Figure 26</u>

8.2.15 Write mode: data byte STEREO2

Table 63. STEREO2 - data byte Ch bit allocation with default setting

7	6	5	4	3	2	1	0
SFON	SSON	SNS1	SNS0	SFOM	SSOM	SMS1	SMS0
0	0	0	0	0	0	0	0


Table 64. STEREO2 - data byte Ch bit description


BitSymbolDescription7SFONstereo blend fast on noise (USN)0 = no fast control on noise (USN)0 = no fast control on noise (USN)1 = fast control on noise (USN) active6SSONstereo blend slow on noise (USN)0 = no slow control on noise (USN)0 = no slow control on noise (USN)1 = slow control on noise (USN)1 = slow control on noise (USN)5 and 4SNS[1:0]SNS[1:0]sensitivity of stereo blend on noise (USN)00 to 11 = weak to strong stereo blend control by FM noise (USN); see Figure 27			
0 = no fast control on noise (USN) 1 = fast control on noise (USN) active 6 SSON stereo blend slow on noise (USN) 0 = no slow control on noise (USN) 0 = no slow control on noise (USN) 1 = slow control on noise (USN) 1 = slow control on noise (USN) 5 and 4 SNS[1:0] sensitivity of stereo blend on noise (USN) 00 to 11 = weak to strong stereo blend control by FM noise (USN);	Bit	Symbol	Description
6 SSON stereo blend slow on noise (USN) active 6 SSON 0 = no slow control on noise (USN) 0 = no slow control on noise (USN) 1 = slow control on noise (USN) 5 and 4 SNS[1:0] sensitivity of stereo blend on noise (USN) 00 to 11 = weak to strong stereo blend control by FM noise (USN);	7	SFON	stereo blend fast on noise (USN)
6 SSON stereo blend slow on noise (USN) 0 = no slow control on noise (USN) 0 = no slow control on noise (USN) 1 = slow control on noise (USN) active 5 and 4 SNS[1:0] sensitivity of stereo blend on noise (USN) 00 to 11 = weak to strong stereo blend control by FM noise (USN);			0 = no fast control on noise (USN)
0 = no slow control on noise (USN) 1 = slow control on noise (USN) active 5 and 4 SNS[1:0] sensitivity of stereo blend on noise (USN) 00 to 11 = weak to strong stereo blend control by FM noise (USN);			1 = fast control on noise (USN) active
1 = slow control on noise (USN) active 5 and 4 SNS[1:0] sensitivity of stereo blend on noise (USN) 00 to 11 = weak to strong stereo blend control by FM noise (USN);	6	SSON	stereo blend slow on noise (USN)
5 and 4 SNS[1:0] sensitivity of stereo blend on noise (USN) 00 to 11 = weak to strong stereo blend control by FM noise (USN);			0 = no slow control on noise (USN)
00 to 11 = weak to strong stereo blend control by FM noise (USN);			1 = slow control on noise (USN) active
	5 and 4	SNS[1:0]	sensitivity of stereo blend on noise (USN)

ORAL ORAL

F**F**66

Table 64.	STEREO2	- data byte Ch bit description continued	Op
Bit	Symbol	Description	~ ~
3	SFOM	stereo blend fast on multipath (WAM)	PAN
		0 = no fast control on multipath (WAM)	
		1 = fast control on multipath (WAM) active	2
2	SSOM	stereo blend slow on multipath (WAM)	5
		0 = no slow control on multipath (WAM)	
		1 = slow control on multipath (WAM) active	
1 and 0	SMS[1:0]	sensitivity of stereo blend on multipath (WAM)	
		00 to 11 = weak to strong stereo blend control by FM multipath (WAM); see Figure 28	

TEF6624_1

© NXP B.V. 2009. All rights reserved.

8.2.16 Write mode: data byte CONTROL

Table 65. CONTROL - data byte Dh bit allocation with default setting

	Tuner with high integration and high efficiency for radio											
Write mode: data byte CONTROL												
Table 65.	CONTROL -	data byte Dh	bit allocation	on with defa	ault setting	I	Do Do					
7	6	5	4	3	2	1	0					
0	NBLIM	BWUSN1	BWUSN0	0	1	BWLEV	BWMOD					
	0	0	1			0	0					

Table 66.	CONTROL - d	ata byte Dh bit description
Bit	Symbol	Description
7	-	not used, must be set to logic 0
6	NBLIM	FM noise blanker pulse rate limiter
		0 = pulse rate not limited
		1 = pulse rate limited to 400 Hz
5 and 4	BWUSN[1:0]	dynamic FM bandwidth control as a function of noise
		00 = modulation handling
		01 = intention to modulation handling
		10 = intention to adjacent channel suppression
		11 = adjacent channel suppression
3	-	not used, must be set to logic 0
2	-	not used, must be set to logic 1
1	BWLEV	dynamic FM bandwidth control as a function of low level
		0 = narrow bandwidth (reduced noise)
		1 = wide bandwidth (modulation handling)
0	BWMOD	dynamic FM bandwidth control as a function of modulation
		0 = adjacent channel suppression
		1 = modulation handling

8.2.17 Write mode: data byte LEVEL_OFFSET

Table 67. LEVEL_OFFSET - data byte Eh bit allocation with default setting

7	6	5	4	3	2	1	0
0	LEVO6	LEVO5	LEVO4	LEVO3	LEVO2	LEVO1	LEVO0
	1	0	0	0	0	0	0

Table 68.	LEVEL_OFFSET - data byte Eh bit description					
Bit	Symbol	Description				
7	-	not used, must be set to logic 0				
6 to 0	LEVO[6:0]	level offset control ^[1]				
		0 to 127 = correction of the digital level information equivalent to a level voltage shift of -1 V to $+1$ V				

[1] The level offset can be used to correct for active antenna gain and noise level. The level correction influences the weak signal processing and the LEVEL read data via I²C-bus. The level correction does not influence the analog voltage at pin RSSI.

Tuner with high integration and high efficiency for radio A Contraction of the second seco

8.2.18 Write mode: data byte AM_LNA

Table 69. AM LNA - data byte Fh bit allocation with default setting

							~>>	^N P
7	6	5	4	3	2	1	0	AN.
0	0	AAITT	ALAMT	0	1	0	0	Op O
		0	0					

Table 70. AM LNA - data byte Fh bit description

Bit	Symbol	Description
7 and 6	-	not used, must be set to logic 0
5	AAITT	AM auto-injection test time
		0 = 4 ms AM mirror measurement time at auto-injection tuning
		1 = 8 ms AM mirror measurement time at auto-injection tuning
4	ALAMT	AM LNA AGC mute time; audio mute and fast AGC settling at AM LNA AGC step
		0 = 4 ms
		1 = 7 ms
3	-	not used, must be set to logic 0
2	-	not used, must be set to logic 1
1 and 0	-	not used, must be set to logic 0

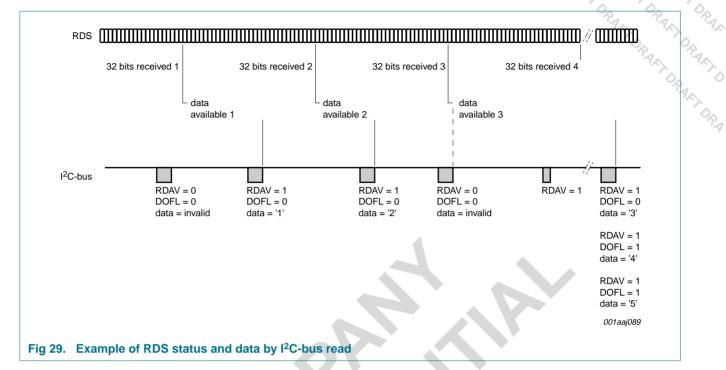

8.2.19 Write mode: data byte RDS

Table 71.	RDS - data b	yte 10h bit	allocation v	vith default	setting		
7	6	5	4	3	2	1	0
NWSY	TUSY	0	0	0	0	0	0
0	1						

Table 72. RDS - data byte 10h bit description

Bit	Symbol	Description
7	NWSY	manual RDS demodulator reset control
		0 = normal operation
		1 = demodulator reset; start new demodulator synchronization, falls back to logic $0^{[1]}$
6	TUSY	automatic RDS demodulator reset control
		0 = no automatic reset
		1 = automatic demodulator reset at tuning ^[1]
5 to 0	-	not used, must be set to logic 0

[1] Fastest demodulator locking to a new RDS transmission can be achieved by RDS reset. TUSY automatic RDS start is active for tuning actions of preset (MODE[2:0] = 001), search (MODE[2:0] = 010), jump (MODE[2:0] = 100) and check (MODE[2:0] = 101).

Two possible application modes of operation are supported by the TEF6624:

1. Non synchronized operation 1:

Repeated I²C-bus read not including RDS data of read data byte 6h and higher, but checking data available status of bit RDAV in read data byte 0h or 5h

After RDAV = 1 is read out, a full I^2 C-bus read including read data byte 6h and higher is performed to read the RDS data

2. Non synchronized operation 2:

Repeated I²C-bus read including RDS data of read data byte 6h and higher

When RDAV = 1 is read out, the RDS data is used, otherwise ignored

To avoid data loss an I²C-bus read should be performed at least every 32 bits of RDS reception, i.e. \leq 26 ms

In case of data loss, indicated by DOFL = 1, a minimum of 32 bits is lost, or a multiple of 32 bits depending on the read timing.

8.2.20 Write mode: data byte EXTRA

					3		
7	6	5	4	3	2	1	0
0	0	0	0	FFL	0	0	0
				0			

AN AN OP

-6624

Table 74.	EXTRA - d	ata byte 11h bit description	02
Bit	Symbol	Description	2
7 to 4	-	not used, must be set to logic 0	PAN
3	FFL	FM fast level mode	
		0 = normal operation	5
		1 = for MODE[2:0] = 011 fast AF update tuning with instant I ² C-bus read data byte 1h bits LEV[7:0] result; only 4 ms full mute time with INJ[1:0] = 01 or 10; WAM, USN and IFC quality read are not supported; for MODE[2:0] = 001 to 110 instant I ² C-bus read data byte 1h bits LEV[7:0] result directly after tuning (QRS[1:0] = 00, TAS[1:0] = 00 or 11), followed by standard averaged LEV[7:0] result after 1 ms (QRS[1:0] = 01)	0
2 to 0	-	not used, must be set to logic 0	

Limiting values 9.

Table 75. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage	on pins V_{CC1} and V_{CC2}	-0.3	+10	V
ΔV_{CCn}	voltage difference between any supply pins	between pins V_{CC1} and V_{CC2}	-0.3	+0.3	V
V _{FMIN1}	voltage on pin FMIN1		-0.3	+6	V
V _{FMIN2}	voltage on pin FMIN2		-0.3	+6	V
$\Delta V_{(FMIN1-FMIN2)}$	voltage difference between pin FMIN1 and pin FMIN2		-1.5	+1.5	V
V _{SCL}	voltage on pin SCL		-0.5	+6	V
V _{SDA}	voltage on pin SDA		-0.5	+6	V
VAMRFDEC	voltage on pin AMRFDEC		-0.3	+6	V
VAMRFIN	voltage on pin AMRFIN		-0.3	+6	V
VAMRFAGC	voltage on pin AMRFAGC		-0.3	+6	V
V _{AMIFAGC2}	voltage on pin AMIFAGC2		-0.3	+6	V
V _{RSSI}	RSSI voltage		-0.3	+6	V
V _{VCODEC}	voltage on pin VCODEC		-0.3	+6	V
V _{PLL}	voltage on pin PLL		-0.3	+6	V
V _{PLLREF}	voltage on pin PLLREF		-0.3	+6	V
V _{TEST}	voltage on pin TEST		-0.3	+6	V
V _{AMIFAGC1}	voltage on pin AMIFAGC1		-0.3	+6	V
V _{VREF}	voltage on pin VREF		-0.3	+6	V
V _n	voltage on any other pin		-0.3	+V _{CC}	V
T _{stg}	storage temperature		-40	+150	°C
T _{amb}	ambient temperature		-20	+85	°C
Tj	junction temperature		-	150	°C
V _{esd}	electrostatic discharge	human body model	<u>[1]</u> –2000	+2000	V
	voltage	machine model	2 –200	+200	V

[1] Class 2 according to JESD22-A114.

[2] Class B according to EIA/JESD22-A115.

TEF6624_1

10. Thermal characteristics

	ermal characteristic		ORANT DRANT DRANT DRA	
Table 76.	Thermal characteristics			7. 7.
Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air; single layer board with a copper thickness of 35 μ m; see Figure 31	[1] 48	K/W
$\Psi_{j\text{-top}}$	thermal characterization parameter from junction to top of package		4.5	K/W

[1] The thermal resistance depends strongly on the PCB design. An application different to Figure 31 must ensure that the thermal resistance is below 54 K/W to avoid violation of the maximum junction temperature; see Table 75.

11. Static characteristics

Table 77. Static characteristics

 V_{CC} = 8.5 V; T_{amb} = 25 °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage	on pins V_{CC1} and V_{CC2}	8	8.5	9	V
I _{CC}	supply current	into pins V_{CC1} , V_{CC2} and VREGS	UP			
		FM	90	120	140	mA
		АМ	100	134	150	mA
V _{VREGSUP}	voltage on pin VREGSUP	V _{CC} = 8.0 V; T _{amb} = -20 °C to +85 °C	6.35	-	-	V
Power-on r	reset					
V _{P(POR)}	power-on reset supply voltage	reset at power-on	-	6.75	-	V
V _{hys(POR)}	power-on reset hysteresis voltage		-	0.2	-	V
t _{start}	start time	series resistance of crystal $R_s = 150 \ \Omega$	-	10	100	ms
Logic pins	SDA and SCL (voltage reference	ced to pin GNDD)				
V _{IH}	HIGH-level input voltage		^[1] 1.58	-	5.5	V
V _{IL}	LOW-level input voltage		<u>[1]</u> –0.5	-	+1.04	V

[1] SDA and SCL HIGH and LOW internal thresholds are specified according to an I²C-bus voltage of 2.5 V \pm 10 % or 3.3 V \pm 5 %. The I²C-bus interface tolerates also SDA and SCL signals from a 5 V I²C-bus, but does not fulfill the 5 V I²C-bus specification completely. The TEF6624 complies with the fast-mode I²C-bus protocol. The maximum I²C-bus communication speed is 400 kbit/s.

12. Dynamic characteristics

Table 78. Dynamic characteristics

 V_{CC} = 8.5 V; T_{amb} = 25 °C; unless otherwise specified.

FM condition: all RF voltages refer to an unterminated RMS voltage with a source impedance 75 Ω ; f_{mod} = 1 kHz, Δf = 22.5 kHz, de-emphasis = 50 μ s, f_{RF} = 97.1 MHz; unless otherwise specified.

AM condition: all RF voltages are RMS values measured at the input of a 15 pF/60 pF dummy aerial; f_{mod} = 400 Hz, m = 30 %, $f_{RF} = 990$ kHz; unless otherwise specified.

All values measured in a test circuit according to Figure 32; default settings; audio signals measured at LOUT and ROUT with IEC tuner filter (200 Hz to 15 kHz; IEC 60315-4); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Crystal osc	illator; pins XTAL1 and XTA	L2				
f _{xtal}	crystal frequency	fundamental frequency	-	4	-	MHz
$\Delta f_{xtal}/f_{xtal}$	relative crystal frequency variation	device inaccuracy	-45	-	+45	10 ⁻⁶
C _i	input capacitance	input capacitance from pin XTAL1 and pin XTAL2 to ground	-	3	-	pF
R _i	input resistance		-	-	-750	Ω
Tuning syst	tem					
C/N _{LO}	LO carrier-to-noise ratio	f _{LO} = 100 MHz; Δf = 10 kHz	-	98	-	dBc/√Hz
t _{tune}	tuning time	FM (Europe/USA/Japan) f _{RF} = 87.5 MHz to 108 MHz	-	1.8	-	ms
		FM (OIRT) f_{RF} = 65 MHz to 74 MHz	-	6.8	-	ms
		AM (MW) f_{RF} = 0.53 MHz to 1.7 MHz	-	9	-	ms
		AM (LW) $f_{RF} = 0.144$ MHz to 0.288 MHz	-	3.5	-	ms
f _{RF}	RF frequency	FM tuning range	65	-	108	MHz
	0	AM (LW) tuning range	144	-	288	kHz
		AM (MW) tuning range	522	-	1710	kHz
f _{tune(step)}	step of tuning frequency	FM (Europe/USA/Japan)	-	50	-	kHz
		FM (OIRT)	-	10	-	kHz
		AM (LW and MW)	-	1	-	kHz
FM path						
V _{i(sens)}	input sensitivity voltage	(S+N)/N = 26 dB; without weak signal handling	-	5.5	-	dBμV
		(S+N)/N = 26 dB; including weak signal handling	-	5	-	dBμV
		(S+N)/N = 46 dB; including weak signal handling	-	16	-	dBμV
NF	noise figure		-	6	-	dB
(S+N)/N	signal plus noise-to-noise ratio	$V_{i(RF)}$ = 1 mV; Δf = 22.5 kHz	-	60	-	dB
α_{ripple}	ripple rejection	$V_{ripple} / V_{audio}; V_{ripple} = 100 \text{ mV};$ $f_{ripple} = 100 \text{ Hz}$	-	44	-	dB
f _{IF}	IF frequency		-	150	-	kHz
α_{image}	image rejection	$f_{RF(image)} = f_{RF(wanted)} \pm 2 \times f_{IF}$	45	60	-	dB
IP3	third-order intercept point		-	113	-	dBμV

PRAK DRAKT D

Table 78. Dynamic characteristics ... continued

 $V_{CC} = 8.5 \text{ V}; T_{amb} = 25 \circ C;$ unless otherwise specified.

FM condition: all RF voltages refer to an unterminated RMS voltage with a source impedance 75 Ω ; $f_{mod} = 1$ kHz, $\Delta f = 22.5$ kHz, de-emphasis = 50 μ s, $f_{RF} = 97.1$ MHz; unless otherwise specified.

AM condition: all RF voltages are RMS values measured at the input of a 15 pF/60 pF dummy aerial; $f_{mod} = 400$ Hz, m = 30 %, $f_{RF} = 990$ kHz; unless otherwise specified.

All values measured in a test circuit according to Figure 32; default settings; audio signals measured at LOUT and ROUT with IEC tuner filter (200 Hz to 15 kHz; IEC 60315-4); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
S _{dyn}	dynamic selectivity	$V_{i(RF)}$ = 10 µV; $\Delta f_{RF(unw)}$ = 22.5 kHz; (S+N)/N = 26 dB; mono; f _{AF} = 1 kHz				
		Δf_{RF} = 100 kHz; PACS disabled	-	3	-	dB
		Δf_{RF} = 200 kHz; PACS disabled	-	55	-	dB
		Δf_{RF} = 100 kHz; PACS enabled	- 24 - - 64 - - 14 - - 64 - - 64 - - 64 - - 64 - - 64 - - 64 - - 64 - - 75 - - 38 - - 73 - - 55 - - 50 - - 90 -	dB		
		$\Delta f_{RF} = 200 \text{ kHz}; \text{ PACS enabled}$	-	64	- - - - - - - - - -	dB
S _{stat}	static selectivity	maximum IF bandwidth; $f_{i(RF)} \pm 100 \text{ kHz}$	-	14	-	dB
		maximum IF bandwidth; $f_{i(\text{RF})}\pm200~\text{kHz}$		64	-	dB
		maximum IF bandwidth; ${\rm f}_{\rm i(RF)}\pm 300~\rm kHz$ (excluding image)		75	-	dB
		minimum IF bandwidth; $f_{i(RF)} \pm 100 \text{ kHz}$	-	38	-	dB
		minimum IF bandwidth; $f_{i(RF)} \pm 200 \text{ kHz}$	-	73	-	dB
$\alpha_{sup(AM)}$	AM suppression	AM: f _{AF} = 1 kHz; m = 30 %				
		$V_{i(RF)} = 0.05 \text{ mV} \text{ to } 20 \text{ mV}$	-	55	-	dB
		$V_{i(RF)} = 20 \text{ mV} \text{ to } 500 \text{ mV}$	-	50	-	dB
V _{start(desens)}	desensitization start voltage	unwanted signal voltage for 6 dB desensitization; $ f_{RF(unw)} - f_{RF(wanted)} > 400 \text{ kHz};$ $V_{i(RF)wanted} = 30 \text{ dB}\mu\text{V};$ data byte 2h bits RFAGC[1:0] = 00	-	90	-	dBμV
V _{sp}	spurious voltage	at antenna input; $R_{source(ant)} = 75 \Omega$				
		30 MHz < f < 1 GHz	-	-	50	dBµV
		1 GHz < f < 12.75 GHz	-	-	60	dBµV
FM front-end;	; pins FMIN1 and FMIN2					
R _{i(dif)}	differential input resistance	f _{RF} = 97.1 MHz; maximum gain	-	300	-	Ω
C _{i(dif)}	differential input capacitance	f _{RF} = 97.1 MHz	-	4	-	pF
FM RF AGC						
V _{start(AGC)}	AGC start voltage	RF input voltage for first AGC step; $V_{i(RF)}$ value, at which the RF gain decreases by 6 dB with increasing $V_{i(RF)}$; data byte 2h				
		bits RFAGC[1:0] = 00	-	86	-	dBµV
		bits RFAGC[1:0] = 01	-	84	-	dBµV
		bits RFAGC[1:0] = 10	-	82	-	dBµV
		bits RFAGC[1:0] = 11	-	80	-	dBμV

AT DRAK

Table 78. Dynamic characteristics ... continued

 $V_{CC} = 8.5 \text{ V}; T_{amb} = 25 \circ C;$ unless otherwise specified.

FM condition: all RF voltages refer to an unterminated RMS voltage with a source impedance 75 Ω ; $f_{mod} = 1$ kHz, $\Delta f = 22.5$ kHz, de-emphasis = 50 μ s, $f_{RF} = 97.1$ MHz; unless otherwise specified.

AM condition: all RF voltages are RMS values measured at the input of a 15 pF/60 pF dummy aerial; f_{mod} = 400 Hz, m = 30 %, f_{RF} = 990 kHz; unless otherwise specified.

All values measured in a test circuit according to Figure 32; default settings; audio signals measured at LOUT and ROUT with IEC tuner filter (200 Hz to 15 kHz; IEC 60315-4); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
FM IF AGC						
V _{i(RF)AGC}	AGC RF input voltage	$V_{i(RF)}$ value, at which the IF gain decreases by 6 dB with increasing $V_{i(RF)}$; start of AGC; first step	-	76	-	dBμV
FM RSSI; pin	RSSI					
V _{RSSI}	RSSI voltage	$V_{i(RF)} = -20 \text{ dB}\mu\text{V}$	0.6	0.8	1.0	V
		$V_{i(RF)} = 20 \text{ dB}\mu\text{V}$	1.6	1.9	2.2	V
		$V_{i(RF)} = 40 \text{ dB}\mu \text{V}$	2.5	2.9	3.3	V
$\Delta V_{RSSI} / \Delta L_{i(RF)}$	RSSI voltage difference to RF input level difference ratio	between $V_{i(RF)} = 20 \text{ dB}\mu\text{V}$ and $V_{i(RF)} = 40 \text{ dB}\mu\text{V}$		50	-	mV/dB
FM IF counter						
f _{IFc(res)}	IF counter frequency resolution		-	5	-	kHz
FM demodulat	tor; pin MPXOUT					
Δf_{max}	maximum frequency deviation	THD = 3 %; $V_{i(RF)}$ = 10 mV	115	140	-	kHz
Vo	output voltage	$\Delta f = 22.5 \text{ kHz}; f_{AF} = 1 \text{ kHz}$	-	230	-	mV
Audio part; pir	MPXIN					
R _i	input resistance	data byte 3h bit LOCUT = 0 (FM or AM)	-	220	-	kΩ
1		data byte 3h bit LOCUT = 1 (AM)	-	16	-	kΩ
$\alpha_{\text{bal(ch)}}$	channel balance	balance between R and L channel	-1	-	+1	dB
$\alpha_{sup(pilot)}$	pilot suppression	9 % pilot; f _{pilot} = 19 kHz; referenced to 91 % FM modulation	-	40	-	dB
m _{pilot}	modulation degree of pilot tone	threshold for pilot detection				
		stereo on	-	3.9	-	%
		stereo off	-	3.1	-	%
$\alpha_{hys(pilot)}$	pilot hysteresis		-	0.8	-	%
t _{det(pilot)}	pilot detection time		-	30	100	ms
Audio output;	pins LOUT and ROUT					
Vo	output voltage	Δf = 22.5 kHz; f _{AF} = 1 kHz				
		data byte 3h bit OUTA = 1	-	290	410	mV
		data byte 3h bit OUTA = 0	-	120	175	mV
α_{AF}	AF attenuation	mono; pre-emphasis = 50 μ s; referenced to f _{AF} = 1 kHz; without IEC 60315-4 tuner filter				
		$f_{AF} = 50 \text{ Hz}$	-0.6	-0.1	+0.4	dB
				-0.5	+1.0	dB

DP .

Table 78. Dynamic characteristics ... continued

 $V_{CC} = 8.5 \text{ V}; T_{amb} = 25 \circ C;$ unless otherwise specified.

FM condition: all RF voltages refer to an unterminated RMS voltage with a source impedance 75 Ω ; $f_{mod} = 1$ kHz, $\Delta f = 22.5$ kHz, de-emphasis = 50 μ s, $f_{RF} = 97.1$ MHz; unless otherwise specified.

AM condition: all RF voltages are RMS values measured at the input of a 15 pF/60 pF dummy aerial; f_{mod} = 400 Hz, m = 30 %, f_{RF} = 990 kHz; unless otherwise specified.

All values measured in a test circuit according to Figure 32; default settings; audio signals measured at LOUT and ROUT with IEC tuner filter (200 Hz to 15 kHz; IEC 60315-4); unless otherwise specified.

	· /	,. I				
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
α_{cs}	channel separation	V _{i(RF)} = 1 mV	26	40	-	dB
THD total harmonic distortion		mono; Δf = 75 kHz; V _{i(RF)} = 1 mV	-	0.4	-	%
		stereo; Δf = 67.5 kHz; L or R	-	0.4	-	%
RL	load resistance		10	-	-	kΩ
CL	load capacitance	4	-	-	20	pF
FM noise bla	anker					
(S+N)/N	signal plus noise-to-noise ratio	noise pulses at RF input signal $t_p = 5$ ns; $t_r < 1$ ns; $t_f < 1$ ns; $f_p = 100$ Hz; $V_p = 500$ mV; $V_{i(RF)} = 40$ dB μ V; quasi peak; audio filter according <i>"ITU-R BS.468-4"</i>		30	-	dB
RDS						
V _{i(sens)}	input sensitivity voltage	for 50 % block quality RDS reception; $\Delta f_{RDS} = 2 \text{ kHz}$; AF = stereo; $\Delta f = 22.5 \text{ kHz}$	-	17	-	dBμV
	_	for 95 % block quality RDS reception; $\Delta f_{RDS} = 2 \text{ kHz}$; AF = stereo; $\Delta f = 22.5 \text{ kHz}$	-	20	-	dBμV
AM path						
V _{i(sens)}	input sensitivity voltage	S/N = 26 dB; data byte 3h bits DEMP[1:0] = 10				
		MW	-	34	-	dBμV
		LW	-	40	-	dBμV
V _{n(i)(eq)}	equivalent input noise voltage	C _{source} = 100 pF	-	1	-	nV/√Hz
(S+N)/N	signal plus noise-to-noise ratio	$V_{i(RF)} = 10 \text{ mV}$	-	56	-	dB
f _{IF}	IF frequency		-	25	-	kHz
α_{image}	image rejection	$f_{\text{RF(image)}} = f_{\text{RF(wanted)}} \pm 2 \times f_{\text{IF}}$	40	55	-	dB
B _{fltr(IF)}	IF filter bandwidth	–3 dB bandwidth	-	6.5	-	kHz
S _{stat}	static selectivity	$f_{tune} \pm 10 \text{ kHz}$	-	48	-	dB
		$f_{tune} \pm 20 \text{ kHz}$	-	78	-	dB
V _{i(RF)(max)}	maximum RF input voltage	THD = 10 %; m = 80 %; active antenna 50 Ω	120	135	-	dBμV
IP2	second-order intercept point		-	170	-	dBμV
IP3	third-order intercept point	$\Delta f = 40 \text{ kHz}$	-	127	-	dBμV

AT DRAK

Table 78. Dynamic characteristics ... continued

 $V_{CC} = 8.5 \text{ V}; T_{amb} = 25 \circ C;$ unless otherwise specified.

FM condition: all RF voltages refer to an unterminated RMS voltage with a source impedance 75 Ω ; $f_{mod} = 1$ kHz, $\Delta f = 22.5$ kHz, de-emphasis = 50 μ s, $f_{RF} = 97.1$ MHz; unless otherwise specified.

AM condition: all RF voltages are RMS values measured at the input of a 15 pF/60 pF dummy aerial; f_{mod} = 400 Hz, m = 30 %, f_{RF} = 990 kHz; unless otherwise specified.

All values measured in a test circuit according to Figure 32; default settings; audio signals measured at LOUT and ROUT with IEC tuner filter (200 Hz to 15 kHz; IEC 60315-4); unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
AM LNA and	I AM RF AGC; input pins AN	RFIN and AMRFDEC					
R _i	input resistance	f _{RF} = 990 kHz		-	20	-	Ω
C _i	input capacitance	AGC maximum gain	[1][2]	-	530	-	pF
MW band wi	ith passive antenna (measur	ed with dummy aerial 15 pF/60 pF)					
V _{i(RF)AGC}	AGC RF input voltage	switched LNA AGC: $V_{i(RF)}$ value, at which the LNA gain decreases with increasing $V_{i(RF)}$; m = 0 %; start of AGC; first step		-	113	-	dBμV
MW band wi	ith active antenna (measured	d with dummy aerial 50 Ω)					
V _{i(RF)AGC}	AGC RF input voltage	switched LNA AGC: $V_{i(RF)}$ value, at which the LNA gain decreases with increasing $V_{i(RF)}$; m = 0 %; start of AGC; first step			81	-	dBμV
LW band wit	h passive antenna (measure	ed with dummy aerial 15 pF/60 pF)					
V _{i(RF)AGC}	AGC RF input voltage	switched LNA AGC: $V_{i(RF)}$ value, at which the LNA gain decreases with increasing $V_{i(RF)}$; $f_{RF} = 207$ kHz; m = 0 %; start of AGC; first step		-	104	-	dBμV
LW band wit	h active antenna (measured	with dummy aerial 50 Ω)					
V _{i(RF)AGC}	AGC RF input voltage	switched LNA AGC: $V_{i(RF)}$ value, at which the LNA gain decreases with increasing $V_{i(RF)}$; f_{RF} = 207 kHz; m = 0 %; start of AGC; first step		-	72	-	dBμV
Continuous /	AM RF AGC						
V _{i(RF)} AGC	AGC RF input voltage	linear RF AGC: $V_{i(RF)}$ at which AGC starts; m = 0 %					
		data byte 2h bits RFAGC[1:0] = 00		-	90	-	dBµV
		data byte 2h bits RFAGC[1:0] = 01		-	88	-	dBµV
		data byte 2h bits RFAGC[1:0] = 10		-	86	-	dBµV
		data byte 2h bits RFAGC[1:0] = 11		-	84	-	dBµV
t _s	settling time	$V_{i(RF)}$ = 10 mV to 200 mV		-	200	-	ms
		$V_{i(RF)} = 200 \text{ mV} \text{ to } 10 \text{ mV}$		-	1.4	-	S
source(AGC)	AGC source current	AGC attack; $V_{i(RF)M}$ = 105 dBµV (peak); normal mode		-	35	-	μΑ
		AGC attack; fast mode after tuning and AGC switching		-	1.4	-	mA
I _{sink(AGC)}	AGC sink current	AGC release; normal mode		-	1	-	μA
		AGC release; fast mode after tuning and AGC switching		-	25	-	μΑ

AT DRAK

Table 78. Dynamic characteristics ... continued

 $V_{CC} = 8.5 \text{ V}; T_{amb} = 25 \circ C;$ unless otherwise specified.

FM condition: all RF voltages refer to an unterminated RMS voltage with a source impedance 75 Ω ; $f_{mod} = 1$ kHz, $\Delta f = 22.5$ kHz, de-emphasis = 50 μ s, $f_{RF} = 97.1$ MHz; unless otherwise specified.

AM condition: all RF voltages are RMS values measured at the input of a 15 pF/60 pF dummy aerial; f_{mod} = 400 Hz, m = 30 %, f_{RF} = 990 kHz; unless otherwise specified.

All values measured in a test circuit according to Figure 32; default settings; audio signals measured at LOUT and ROUT with IEC tuner filter (200 Hz to 15 kHz; IEC 60315-4); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Continuous I	F AGC 1					
V _{i(RF)AGC}	AGC RF input voltage	linear IF AGC 1: $V_{i(RF)}$ at which AGC starts; m = 0 %	-	62	-	dBμV
Isource(AGC)	AGC source current	AGC attack; V _{i(RF)M} = 80 dBµV (peak); normal mode	-	61	-	μA
		AGC attack; fast mode after tuning and AGC switching	-	1.25	-	mA
I _{sink(AGC)}	AGC sink current	AGC release; normal mode	-	1	-	μΑ
		AGC release; fast mode after tuning and AGC switching		25	-	μA
Continuous I	F AGC 2					
V _{i(RF)} AGC	AGC RF input voltage	linear IF AGC 2: $V_{i(RF)}$ at which AGC starts; m = 0 %	-	22	-	dBμV
Isource(AGC)	AGC source current	AGC attack; $V_{i(RF)M}$ = 50 dBµV (peak); normal mode	-	6	-	μA
		AGC attack; fast mode after tuning and AGC switching	-	150	-	μA
I _{sink(AGC)}	AGC sink current	AGC release; normal mode	-	1	-	μΑ
G		AGC release; fast mode after tuning and AGC switching	-	25	-	μA
AM demodul	ator; pin MPXOUT					
Vo	output voltage	m = 30 %	-	230	-	mV
Audio output	; pins LOUT and ROUT					
Vo	output voltage	m = 30 %; f _{AF} = 400 Hz; data byte 3h bits DEMP[1:0] = 10				
		data byte 3h bit OUTA = 1	-	270	355	mV
		data byte 3h bit OUTA = 0	-	115	150	mV
α_{AF}	AF attenuation	referenced to f _{AF} = 400 Hz; 210 mV input at pin MPXIN				
		f _{AF} = 100 Hz; data byte 3h bit LOCUT = 1	-	-3	-	dB
		$f_{AF} = 1.5 \text{ kHz}$; data byte 3h bits DEMP[1:0] = 10	-	-3	-	dB
		f _{AF} = 5 kHz; data byte 3h bits DEMP[1:0] = 10	-	-21	-	dB
THD	total harmonic distortion	V _{i(RF)} = 1 mV; m = 80 %	-	0.7	-	%
α_{ripple}	ripple rejection	V _{ripple} / V _{audio} ; V _{ripple} = 100 mV; f _{ripple} = 100 Hz	-	37	-	dB

DP .

Table 78. Dynamic characteristics ... continued

 $V_{CC} = 8.5 \text{ V}; T_{amb} = 25 \circ C;$ unless otherwise specified.

FM condition: all RF voltages refer to an unterminated RMS voltage with a source impedance 75 Ω ; $f_{mod} = 1$ kHz, $\Delta f = 22.5$ kHz, de-emphasis = 50 μ s, $f_{RF} = 97.1$ MHz; unless otherwise specified.

AM condition: all RF voltages are RMS values measured at the input of a 15 pF/60 pF dummy aerial; f_{mod} = 400 Hz, m = 30 %, f_{RF} = 990 kHz; unless otherwise specified.

All values measured in a test circuit according to Figure 32; default settings; audio signals measured at LOUT and ROUT with IEC tuner filter (200 Hz to 15 kHz; IEC 60315-4); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
AM RSSI; pin	RSSI					
V _{RSSI}	RSSI voltage	$V_{i(RF)}$ = –20 dBµV at dummy aerial input	0.9	1.15	1.35	V
		$V_{i(RF)}$ = 14 dBµV at dummy aerial input	1.6	1.9	2.2	V
		$V_{i(RF)}$ = 34 dBµV at dummy aerial input	2.6	2.9	3.2	V
$\Delta V_{\text{RSSI}} / \Delta L_{i(\text{RF})}$	RSSI voltage difference to RF input level difference ratio	5 μV < V _{i(RF)} < 50 μV	-	50	-	mV/dB
AM IF counter						
f _{IFc(res)}	IF counter frequency resolution			500	-	Hz

[1] The switched input capacitance is part of the switched RF AGC function.

[2] The input impedance of the AM LNA depends on the AGC state.

<u>1</u>ິສ **Application information**

10 nF

╢ 10 nF

╢ 1 μF

╢ Æ 470 μH

470 μH

- TEST 10 nF

╢⊢ 7

100 nF

-11-ᢇ

22 Ω

100 nF

-11- $\overline{}$

→ SDA

SCL

h

4.7 kΩ

10 nF

Ţ

1 μF

╢

hC1

 V_{CC}

Vь

± 100 nF

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

PLL TUNING

SYSTEM

POWER

SUPPLY

I²C-BUS

For list of components see Table 79 and for crystal specification see Table 80.

4 MHz

Fig 30. Application diagram of TEF6624T

© NXP B.V. 2009. All rights reserved. 53 of 64

D1 BAV99

Δ

Φ

 $\frac{100}{100}$

╧

 $\overline{}$

470 kΩ

MΩ

1 nF 2.2 pF

1 MΩ

47 pF

╢

1 μH

+ 12 PF

 \mathcal{H}

1 nF

A

R

 \mathcal{H}

Æ

RSSI -

1 nF

220 nF

3 215 nH

= 18 pF

hт

h

1 μF

1 μF

-11-

1 μF

220 nF

╢

100 nF

-11-

15 pF

X1

4

6

9 -IF

10

12

13

14

15

16

FM TUNER

OUTPUT

AM TUNER

TEF6624T

RDS

DEMODULATOR

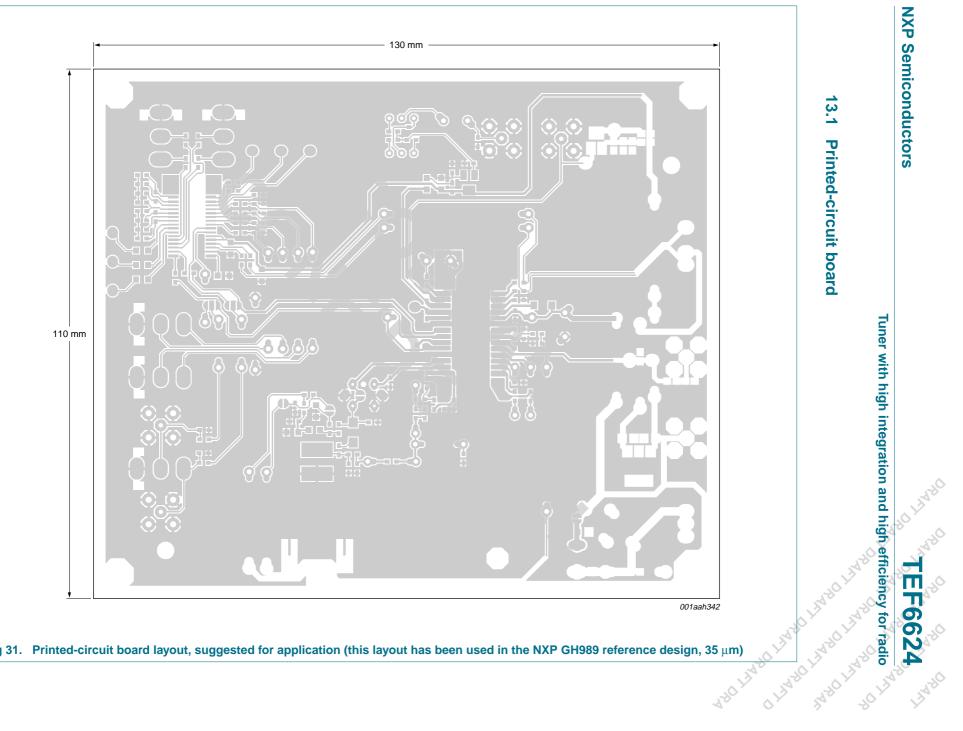
STEREO DECODER

HIGH CUT

SOFT MUTE

NOISE BLANKER

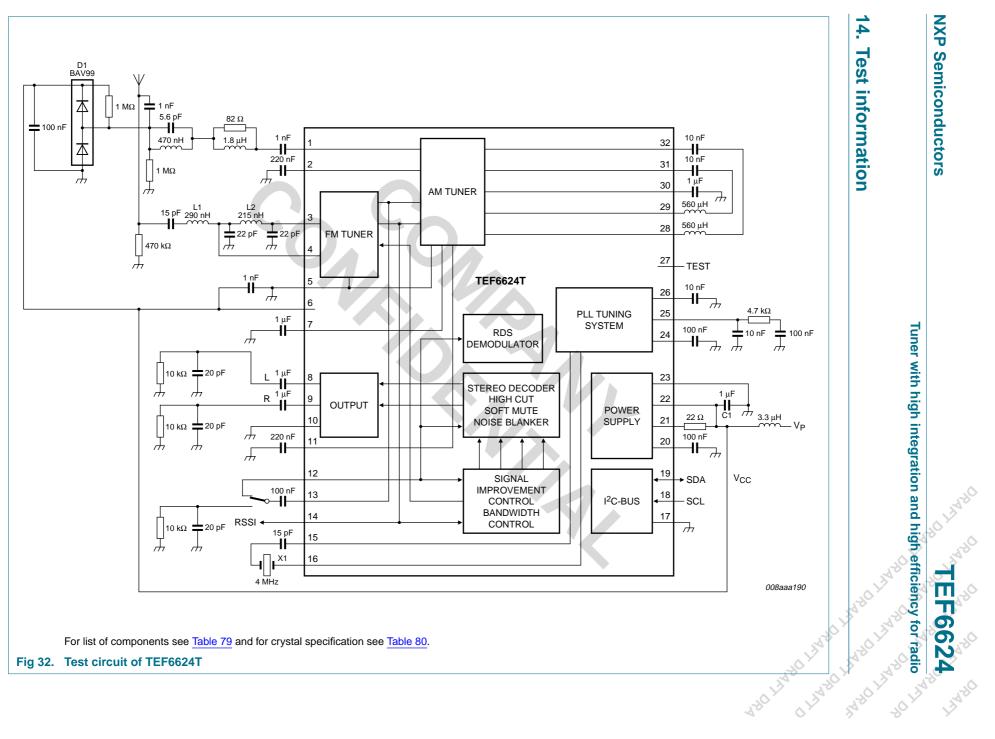
SIGNAL


IMPROVEMENT

CONTROL BANDWIDTH

CONTROL

Ĩ


TEF6624_1 **Objective data sheet**

NXP

Semiconductors

Fig 31. Printed-circuit board layout, suggested for application (this layout has been used in the NXP GH989 reference design, 35 µm)

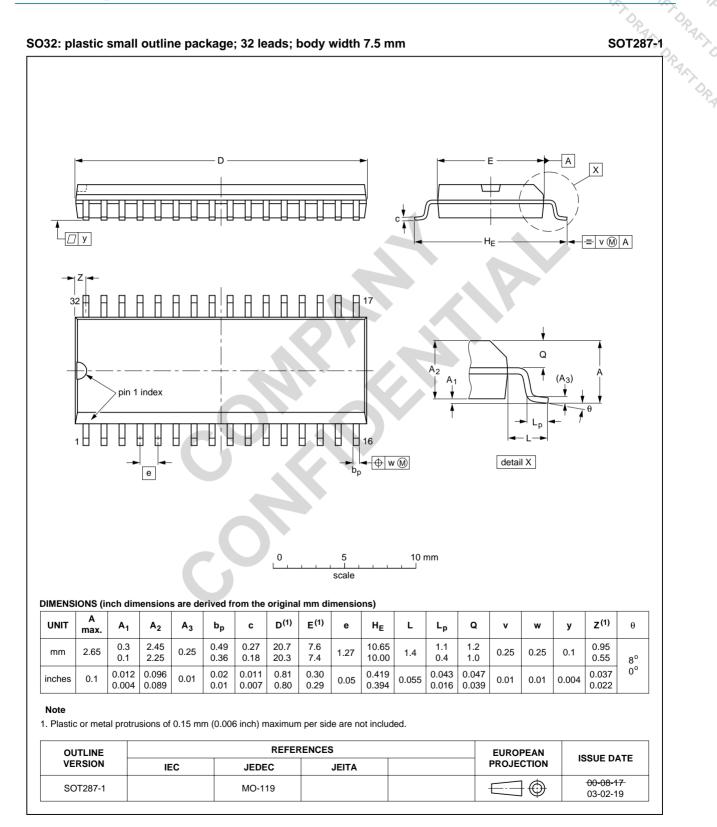
TEF6624_1 Objective data sheet

			71 41 41	
Table 79.	List of components for Figu	ire 30 and <mark>Figure 32</mark>	DRA DRA	22
Symbol	Component	Туре	Manufacturer	~~
C1	decoupling capacitor	1 μF; X7R 0805	any	2
D1	ESD protection diode	BAV99	NXP Semiconductors	6
L1	FM RF input 1	290 nH; LQH31HNR29K03L	Murata	~
L2	FM RF input 2	215 nH; LQH31HNR21K01L	Murata	00
X1	crystal 4 MHz	LN-G102-1413	NDK	4

Table 80. 4 MHz crystal specification for Figure 30 and Figure 32

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{xtal}	crystal frequency	fundamental frequency	-	4.000	-	MHz
CL	load capacitance		-	15	-	pF
C _{shunt}	shunt capacitance		-	-	7	pF
C ₁	motional capacitance		-	10	-	fF
R _s	series resistance		-	-	150	Ω
$\Delta f_{xtal}/f_{xtal}$	relative crystal frequency	at 25 °C	-25	-	+25	10 ^{–6}
	variation	caused by ageing	-5	-	+5	10 ⁻⁶
		caused by temperature	-30	-	+30	10 ⁻⁶
T _{amb}	ambient temperature		-20	-	+85	°C

TEF6624


Table 81. DC operating points

$V_{CC} = 8.5 V: V_{i(RE)} =$	= 0 uV: audio	output gain low:	; unless otherwise specified.

NXP Semio	ond	luctors				DRAKT DA	TEF6624	
NAF Seinic	,0110			Tupor y	uith high integra	tion and high	efficiency for radio	
				Tuner	nti ingri integra	tion and myn	eniciency for radio	
							AN AN AN	
		ating points					PAR PAR	
$V_{CC} = 8.5 V_{i} V_{i_i}$ Symbol	$V_{i(RF)} = 0 \mu V$; audio output gain low; unless otherwise specified. Pin Unloaded DC voltage (V)							
Symbol	r m	AM mode	ollage (V)		FM mode			
		Min	Тур	Max	Min	Тур	Max	
AMRFIN	1	-	2.9	-	-	-	-	
AMRFDEC	2	-	4.2	-	-	-	-	
FMIN2	3	-	-	-	-	3.1	-	
FMIN1	4	-	-	-	-	3.1	-	
GNDRF	5	external GND			external GN	1D		
V _{CC2}	6	external 8.5			external 8.5	5		
AMRFAGC	7	-	1.8	-	-	-	-	
LOUT	8	-	3.8	-	-	3.8	-	
ROUT	9	-	3.8	-		3.8	-	
GNDAUD	10	external GND			external GN	ID		
AMIFAGC2	11	-	-	-	-		-	
MPXIN	12	-	3.7	-	-	3.7	-	
MPXOUT	13	-	4		-	4	-	
RSSI	14	-	1.2		-	0.8	-	
XTAL2	15	-	6	-		6	-	
XTAL1	16	-	6	-	-	6	-	
GNDD	17	external GND			external GN	1D		
SCL	18	external I ² C-bus	s voltage		external I ² C	-bus voltage		
SDA	19	external I ² C-bus	voltage		external I ² C	-bus voltage		
VREF	20	-	4	-	-	4	-	
VREGSUP	21	-	7.1	-	-	7.1	-	
V _{CC1}	22	external 8.5			external 8.5	5		
GND	23	external GND			external GN	ID		
VCODEC	24	-	5.7	-	-	5.7	-	
PLL	25	-	-	-	-	-	-	
PLLREF	26	-	2.25	-	-	2.25	-	
TEST	27	0	-	5.5	0	-	5.5	
AMSELIN1	28	-	1.55	-	-	-	-	
AMSELIN2	29	-	1.55	-	-	-	-	
AMIFAGC1	30	-	3	-	-	-	-	
AMSELOUT1	31	-	6.8	-	-	-	-	
AMSELOUT2	32	-	6.8	-	-	-	-	

DRART D

15. Package outline

Fig 33. Package outline SOT287-1 (SO32)

16. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

16.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

16.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

16.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

16.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 34</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 82 and 83

Table 82. SnPb eutectic process (from J-STD-020C)

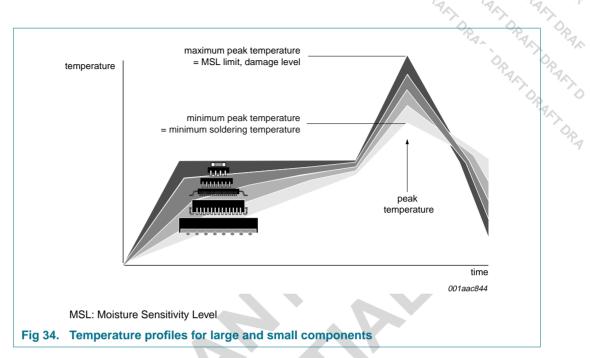

Package thickness (mm	Package reflow temperature (°	Package reflow temperature (°C)			
	Volume (mm ³)				
	< 350	≥ 350			
< 2.5	235	220			
≥ 2.5	220	220			

Table 83. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C) Volume (mm ³)			
	< 350	350 to 2000	> 2000	
< 1.6	260	260	260	
1.6 to 2.5	260	250	245	
> 2.5	250	245	245	

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 34.

For further information on temperature profiles, refer to Application Note *AN10365 "Surface mount reflow soldering description"*.

17. Abbreviations

NXP Semicor	nductors	524
	Tuner with high integration and high efficiency for	radio
	RAN RAN	P
17. Abbrevi	iations	00
		-4
Table 84. Abbre	viations	7
Acronym	Description	
AF	Audio Frequency	1
AGC	Automatic Gain Control	
ESD	ElectroStatic Discharge	
НСС	High-Cut Control	
l ² C-bus	Inter IC bus	
IF	Intermediate Frequency	
LNA	Low-Noise Amplifier	
LO	Local Oscillator	
LW	Long Wave	
MPX	Multiplex	
MW	Medium Wave	
OEM	Original Equipment Manufacturer	
PACS	Precision Adjacent Channel Suppression	
РСВ	Printed-Circuit Board	
PLL	Phase-Locked Loop	
RBDS	Radio Broadcast Data System	
RDS	Radio Data System	
RF	Radio Frequency	
RSSI	Received Signal Strength Indication	
USN	UltraSonic Noise	
VCO	Voltage-Controlled Oscillator	
WAM	Wideband AM	

18. Revision history

Table 85. Revision history								
Document ID	Release date	Data sheet status	Change notice	Supersedes				
TEF6624_1	yyyymmdd	Objective data sheet	-	-				

19. Legal information

19.1 Data sheet status

NXP Semiconduc	tors	TEF6624
		Tuner with high integration and high efficiency for radio
		RAN RAN PAR OR
19. Legal infor	mation	ORA ORA ORA
19.1 Data sheet	status	TORACTORACTO
Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

Please consult the most recently issued document before initiating or completing a design. [1]

[2] The term 'short data sheet' is explained in section "Definitions"

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status [3] information is available on the Internet at URL http://www.nxp.com.

Definitions 19.2

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

19.3 **Disclaimers**

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data - The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

20. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

21. Contents

1	General description 1
2	Features 1
3	Quick reference data 2
4	Ordering information 2
5	Block diagram 3
6	Pinning information 4
6.1	Pinning
6.2	Pin description 4
7	Functional description 5
7.1	RDS demodulator 5
7.2	FM tuner
7.3	AM tuner
7.4	PLL tuning system
7.5 7.6	Signal dependent FM IF bandwidth control 6 FM stereo decoder 6
7.7	Weak signal processing and noise blanker 6
7.8	l ² C-bus transceiver
8	l ² C-bus protocol
8.1	Read mode
8.1.1	Read mode: data byte STATUS
8.1.2	Read mode: data byte LEVEL
8.1.3	Read mode: data byte USN_WAM 9
8.1.4	Read mode: data byte IFCOUNTER 9
8.1.5	Read mode: data byte ID 10
8.1.6	Read mode: data byte RDS_STATUS 10
8.1.7 8.1.8	Read mode: data byte RDS_DAT3
8.1.0 8.1.9	Read mode: data byte RDS_DAT2
8.1.10	Read mode: data byte RDS_DAT1
8.1.11	Read mode: data byte RDS_DATEE 12
8.2	Write mode
8.2.1	Mode and subaddress byte for write 13
8.2.2	Write mode: data byte TUNER0 25
8.2.3	Write mode: data byte TUNER1 25
8.2.4	Write mode: data byte TUNER2
8.2.5	Write mode: data byte RADIO
8.2.6 8.2.7	Write mode: data byte SOFTMUTE0 27
8.2.7 8.2.8	Write mode: data byte SOFTMUTE1 28 Write mode: data byte SOFTMUTE2_FM 30
8.2.9	Write mode: data byte SOFTMUTE2_AM 32
8.2.10	Write mode: data byte HIGHCUT0
8.2.11	Write mode: data byte HIGHCUT1
8.2.12	Write mode: data byte HIGHCUT2
8.2.13	Write mode: data byte STEREO0 37
8.2.14	Write mode: data byte STEREO1
8.2.15	Write mode: data byte STEREO2

		TEF6624			
Tuner with high integration and high efficiency for radio					
		RAA RAA RAA			
. 1	8.2.16	Write mode: data byte CONTROL 41 Write mode: data byte LEVEL OFFSET 41			
. 1	8.2.17	Write mode: data byte LEVEL_OFFSET 41			
. 2	8.2.18	Write mode: data byte AM_LNA 42			
. 2	8.2.19	Write mode: data byte RDS 42			
. 2	8.2.20	Write mode: data byte EXTRA 43			
	9	Limiting values 44			
. 4	10	Thermal characteristics 45			
. 4	11	Static characteristics 45			
. 5	12	Dynamic characteristics 46			
. 5	13	Application information 53			
. 5	13.1	Printed-circuit board			
. 5	14	Test information 55			
. 6	15	Package outline			
. 6	16	Soldering of SMD packages 59			
. 6	16.1	Introduction to soldering 59			
. 6	16.2	Wave and reflow soldering 59			
. 6	16.3	Wave soldering 59			
. 7	16.4	Reflow soldering			
. 7	17	Abbreviations			
. 8 . 8	18	Revision history			
. 0 . 9	19	Legal information 63			
. 9	19.1	Data sheet status 63			
10	19.2	Definitions 63			
10	19.3	Disclaimers			
11	19.4	Trademarks			
11	20	Contact information 63			
11	21	Contents 64			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 9 June 2009 Document identifier: TEF6624_1

All rights reserved.

