

The Future of Analog IC Technology

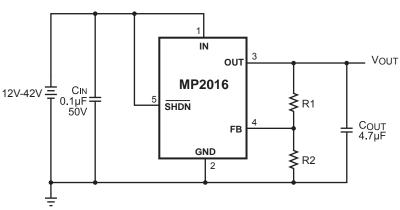
# DESCRIPTION

The MP2016 is a low power linear regulator that supplies po wer to syst ems with h igh voltage batteries. It includes a wide 4V to 42V input range, low dropout voltage and lo w quiescent supply current.

The MP201 6 provides excellent line transient response time and 50dB power supply rejection ratio (PSRR). The MP2016 c an be set externally from 1.2V to 40V through a simple resistor divider network.

The MP201 6 also inclu des thermal shutdown and current limiting fault protection. It is available in TSOT23-5 and QFN-8 packages.

## FEATURES


- 4V to 42V Input Range
- 12µA Quiescent Supply Current
- <1.5µA Shutdown Current
- 1.2V to 40V Adjustable Output
- 30mA Output Current with 50mA Peak
  Current Limit
- ± 2% Accuracy
- Thermal Shutdown
- Available in Tiny TSOT23-5 and QFN-8 Packages

### **APPLICATIONS**

- Notebook Computers
- Sm art-Battery Packs
- PDAs
- Handheld Devices
- Battery-Powered Systems

For MPS green status, pl ease vis it MP S we bsite un der Quality Assu rance. "MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

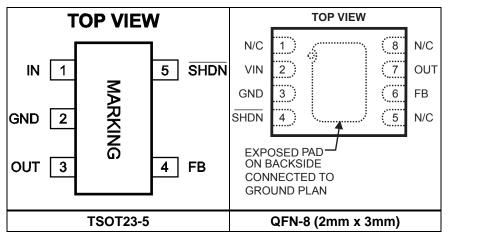
### **TYPICAL APPLICATION**





### **ORDERING INFORMATION**

| Part Number | Package         | Top Marking | Free Air Temperature (T <sub>A</sub> ) |
|-------------|-----------------|-------------|----------------------------------------|
| MP2016DJ*   | TSOT23-5        | R2          | -40°C to +85°C                         |
| MP2016DD**  | QFN-8 (2 x 3mm) | R2          | -40°C to +85°C                         |


\* For Tape & Reel, add suffix –Z (g. MP2016DJ–Z).

For RoHS compliant packaging, add suffix –LF (e.g. MP2016DJ–LF–Z)

\*\* For Tape & Reel, add suffix -Z (g. MP2016DD-Z).

For RoHS compliant packaging, add suffix -LF (e.g. MP2016DD-LF-Z)

## PACKAGE REFERENCE



## ABSOLUTE MAXIMUM RATINGS (1)

| IN, SHDN                                                  |                 |  |  |  |
|-----------------------------------------------------------|-----------------|--|--|--|
| FB                                                        |                 |  |  |  |
| Continuous Power Dissipation $(T_A = +25^{\circ}C)^{(2)}$ |                 |  |  |  |
| TSOT23-5                                                  | 0.6.W           |  |  |  |
| QFN8 (2X3mm)                                              |                 |  |  |  |
| Lead Temperature                                          |                 |  |  |  |
| Storage Temperature                                       | –65°C to +150°C |  |  |  |

#### Recommended Operating Conditions <sup>(3)</sup>

| Supply Voltage V <sub>IN</sub>           | 4V to 42V |
|------------------------------------------|-----------|
| Output Voltage V <sub>OUT</sub>          |           |
| Maximum Junction Temp. (T <sub>J</sub> ) | +125°C    |

### Thermal Resistance $^{(4)}$ $\theta_{JA}$

| TSOT23-5       | <br>. 110°C/W |
|----------------|---------------|
| QFN8 (2 x 3mm) | <br>12 °C/W   |

 $\theta_{\rm IC}$ 

#### Notes:

- 2) The maximum allowable power dissipation is a function of the maximum junction temperature r T<sub>J</sub> (MAX), the junction-to-ambient thermal resistance θ<sub>JA</sub>, and the ambient temperature T<sub>A</sub>. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P<sub>D</sub> (MAX) = (T<sub>J</sub> (MAX)-T<sub>A</sub>)/θ<sub>JA</sub>. Exceeding the maximum allowable power dissipation will cause ex cessive die temperature, and t he regulator will g o into thermal shutdown. Internal thermal shutdown circuitr y pr otects the device from permanent damage.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

<sup>1)</sup> Exceeding these ratings may damage the device.



## **ELECTRICAL CHARACTERISTICS**

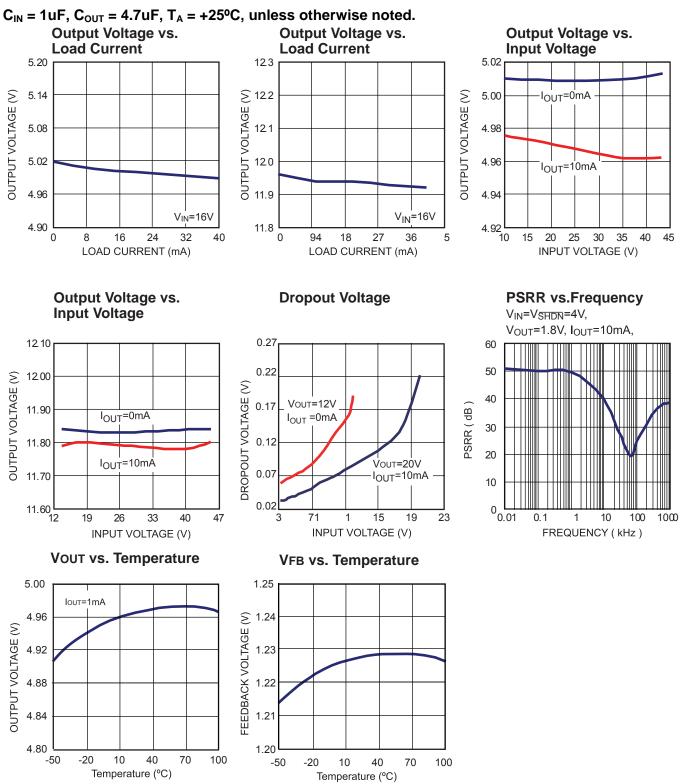
#### $V_{IN} = 15V$ , $I_{LOAD} = 5\mu A$ , $T_A = +25^{\circ}C$ , unless otherwise noted.

| Parameter                       | Symbol               | Condition                                                              | Min   | Тур   | Max   | Units              |
|---------------------------------|----------------------|------------------------------------------------------------------------|-------|-------|-------|--------------------|
| Input Voltage                   | V <sub>IN</sub>      |                                                                        | 4     |       | 42    | V                  |
| Input Supply Current            | I <sub>IN</sub>      | T <sub>A</sub> = +25°C                                                 |       | 12    |       | μA                 |
|                                 |                      | T <sub>A</sub> = -40°C to +85°C                                        |       |       | 30    |                    |
| Minimum Load Current            |                      |                                                                        |       |       | 0     | μA                 |
|                                 | I <sub>S</sub>       | Shutdown Mode, T <sub>A</sub> = +25°C                                  |       |       | 8     | μA                 |
| Shutdown Supply Current         |                      | Shutdown M ode, T <sub>A</sub> = $-40^{\circ}$ C to +85°C              |       |       | 10    |                    |
| FB Threshold                    | V <sub>FB</sub>      | FB = OUT, I <sub>LOAD</sub> = 1mA                                      | 1.205 | 1.23  | 1.254 | V                  |
|                                 |                      | FB = OUT, $I_{LOAD}$ = 5µA to 30mA,<br>T <sub>A</sub> = -40°C to +85°C | 1.181 | 1.23  | 1.279 |                    |
| FB Input Current                | I <sub>FB</sub>      | V <sub>FB</sub> = 1.3V                                                 | -30   | +4    | +30   | nA                 |
| Dropout Voltage (6)             | V <sub>DROPOUT</sub> | I <sub>LOAD</sub> = 30mA                                               |       | 700   | 900   | mV                 |
| PSRR                            |                      | DC, I <sub>OUT</sub> =10mA                                             |       | 65    |       | dB                 |
| Current Limit                   |                      | V <sub>IN</sub> = 6V                                                   |       | 50    |       | mA                 |
| Ground current                  |                      | I <sub>OUT</sub> =35mA                                                 |       | 35    |       | μA                 |
| Capacitive Load<br>Requirements |                      |                                                                        | 0.23  |       |       | µF/mA              |
| Startup Response Time           |                      | $R_L = 500\Omega$ , C2 = 6.8µF, V <sub>OUT</sub> = 5V                  |       |       | 1     | ms                 |
| Startup Overshoot               | V <sub>OSH</sub>     | $R_L = 500\Omega$ , C2 = 10µF within 90% of the nominal output voltage | 0.58  | 3     |       | % V <sub>OUT</sub> |
| SHDN Input Threshold            | V <sub>IL</sub>      |                                                                        |       |       | 0.22  | V                  |
| Voltage                         | V <sub>IH</sub>      |                                                                        | 1.8   |       |       | v                  |
| SHDN Input Current              |                      | SHDN = 0V or 15V                                                       | 0.6   |       | 1.5   | μA                 |
| Line Regulation                 |                      |                                                                        |       | 0.023 |       | %/V                |
| Load Regulation                 |                      |                                                                        |       | 0.003 |       | %/mA               |
| Thermal Shutdown                |                      | SHDN= 0V or 15V,Hysteresis= +20°C                                      | 150   |       |       | °C                 |

Note:

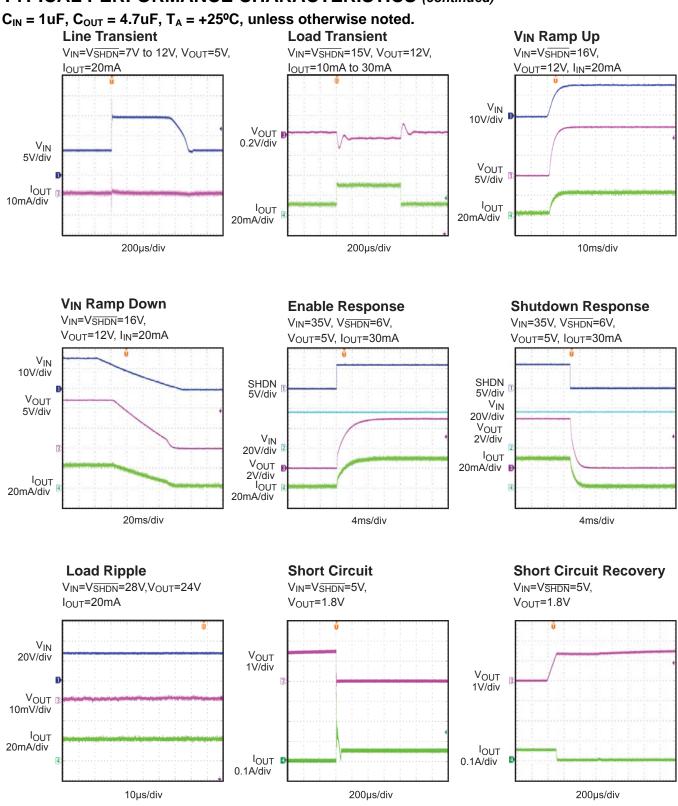
5) 100% production tested at TA=25°C Specifications over the temperature range are guaranteed by design and characterization.

6) Dropout Voltage is defined as the in put to output differential when the output voltage drops 1% below its nominal value.



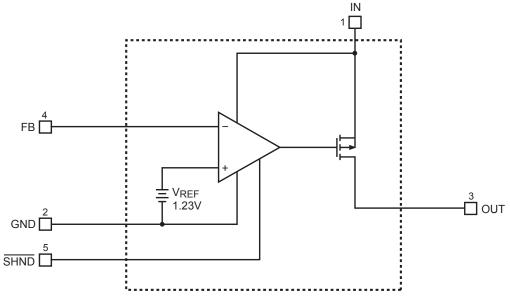

## **PIN FUNCTIONS**

| QFN Pin<br># | TSOT23<br>Pin # | Name Des            | cription                                                                                                                              |
|--------------|-----------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 2            | 1               | VIN                 | Input Voltage. Connect a 4V to 42V supply to this pin.                                                                                |
| 3            | 2               | GND,<br>Exposed Pad | Ground (the exposed pad and GND pin must be connected to the same ground plane for QFN package).                                      |
| 73           |                 | OUT                 | Regulator Output.                                                                                                                     |
| 6            | 4               | FB                  | Feedback. This is the feedback input pin, regulated to 1.23V nominally.                                                               |
| 4            | 5               | SHDN                | Shutdown. A logic LOW on this pin will shut down the IC; a logic HIGH will start it up. Connect this pin to IN for automatic startup. |
| 1, 5, 8      |                 | N/C                 | No Connect.                                                                                                                           |




### **TYPICAL PERFORMANCE CHARACTERISTICS**






### **TYPICAL PERFORMANCE CHARACTERISTICS** (continued)





## **OPERATION**





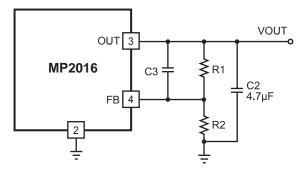
The MP2016 is a linear regula tor designe d primarily for high input voltage applications. The MP2016 has an ou tput that is ad justable from 1.2V to 40 V with a simple resist or divider. The maximum p ower output current is a function of the package's maximum power dissipation for a given temperature.

The MP201 6 uses external feedback, allowin g the user to set the output voltage with an external resistor divider. The typical FB pin threshold is 1.23V.

The IC enters shutdo wn mode when  $\overline{SHDN}$  is low. In shutdown mode, the pass transistor, control circuitry, reference and all biases turn off, reducing the supply current to <2µA. Connect  $\overline{SHDN}$  to IN for automatic startup. The peak output current is limited to 50mA, which exceeds the 30mA recommended continuous output curr ent. The o utput can be shorted to ground for 30 seconds without damaging the part.

When the junction temperature is too high, the thermal sensor sends a signal to the control logic that will shutdown the IC. The IC will restart when the temperature has sufficiently cooleds.

The maximum power dissipation is dependent on the thermal resistance of the case and the circuit board, the temperature difference between the die junction and the ambient air, and the rate of air flow. The GND pin and Exposed Pad must be connected to the ground plane for proper dissipation.




### **APPLICATION INFORMATION**

#### **COMPONENT SELECTION**

#### Setting the Output Voltage

Set the output voltage of the MP2016 by using a resistor divider as shown:



#### Figure 2—MP2016 with External Resistor Divider

Choose R2=250k  $\Omega$  to maintain a 5µA minimum load. Calcu late the v alue for R 1 using the following equation:

R1=
$$R2 \left( \frac{V_{OUT}}{1.23V} - 1 \right)$$

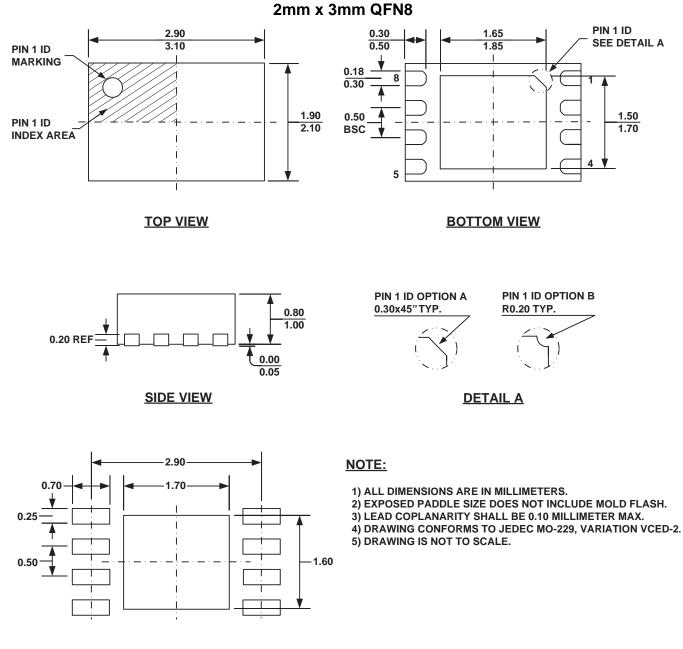
#### **Input Capacitor**

For proper operation, place a ceramic capacit or (C1) between  $1\mu$ F an d  $10\mu$ F of dielectric ty pe X5R or X 7R between the input pin and grou nd. Larger values in this ra nge will help improve line transient response.

#### **Output Capacitor**

For stable operation, use a ceramic capacitor (C2) of type X5R or X7R between  $1\mu$ F and  $10\mu$ F. Larger values in this range will help improve load transient re sponse an d reduce noise. Outp ut capacitors of other diele ctric types may be use d, but are not recommen ded as their capacitan ce can deviate greatly from their rated value over temperature.

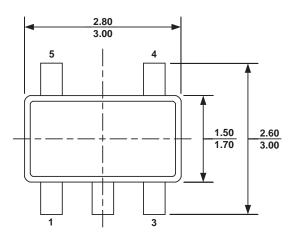
To improve load transie nt response, add a small ceramic (X5R, X7R or Y5V dielectric) 22nF feed forward capacitor in parallel with R1. The feed forward capacitor is not require d for stable operation.

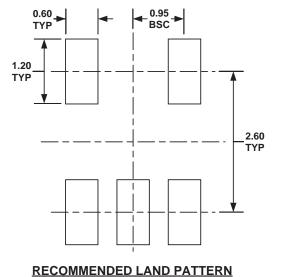

#### **Output Noise**

The M P2016 will ex hibit noise on the output during normal operation. This noise is negligible for most application s. However, in application s that include analog-to-d igital converters (ADCs) of more than 12 bits, one needs to consider the ADC's power supply rejection specifications.

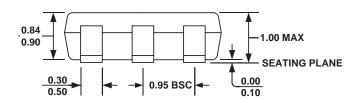
The feed f orward cap acitor C3 a cross R1 will significantly reduce the output noise.



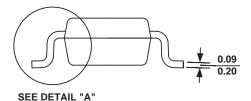

## **PACKAGE INFORMATION**



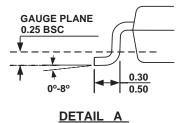



**TSOT23-5** 

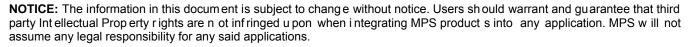






TOP VIEW



FRONT VIEW




SIDE VIEW



NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
- 5) DRAWING CONFORMS TO JEDEC MO-193, VARIATION AA.
- 6) DRAWING IS NOT TO SCALE.

