SHARP

Advance Information

LH74610 RISC Processor

Features

Applications

The LH74610 is a general purpose 32-bit microprocessor with 4 KByte cache, Write
Buffer, and Memory Management Unit (MMU) combined in a single chip. It offers a
high level of RISC performance yet it’s fully-static design ensures minimal power
consumption — making it ideal for portable, battery powered products.

The innovative MMU supports a conventional two-level page-table structure and a
number of extensions which make it ideal for embedded control, UNIX, and Object
Oriented systems. This results in a high instruction throughput and impressive real-
time interrupt response from a small and cost-effective chip.

‘bos ITAG

4 Kbyte
Cache

ARM6
CPU
Write

Buffer Control I

* High-performance RISC - 15 MIPS sustained @ 20 MHz (20 MIPS peak)
¢ Memory Management Unit (MMU) support for virtual memory systems
* 4 KByte of instruction and data cache

* Write Buffer — enhancing performance

Ugg

¢ Fully-static operation —low-power consumption—ideal for power-sensitive
applications

¢ Fast sub microsecond interrupt response for real-time applications

* Excellent high-level language support

* Big and Little Endian operating modes

* IEEE 1149.1 Boundary Scan

* 144 Plastic Quad Flat Pack (PQFP) package

* Personal Computer Devices (i.e., PDAs)
¢ Portable Telecommunications

¢ Data Communications

¢ Consumer products

¢ Automotive

LH74610 RISC Processor 1

M 5180798 0013438 Lu4y2 mA

Advance Information SHARP

Introduction

The LH74610 architecture is based on 'Reduced Instruction Set Computers’ (RISC)
principles, and the instruction set and related decode mechanism are greatly simpli-
fied compared with microprogrammed 'Complex Instruction Set Computers' (CISC).
The CPU within the LH74610 is the ARMS6 and is software compatible with the ARM
family.

The on-chip mixed data and instruction cache together with the Write Buffer sub-
stantially raise the average execution speed, and reduces the average amount of
memory bandwidth required by the processor. This allows the external memory to
support additional processors or Direct Memory Access (DMA) channels with mini-
mal performance loss.

The MMU supports a conventional two-level page-table structure and a number of
extensions which make it ideal for embedded control, UNIX and Object Oriented

systems.

The instruction set comprises ten basic instruction types. Two of these make use of
the on-chip arithmetic logic unit, barrel shifter and multiplier to perform high-speed
operations on the data in a bank of 31 registers, each 32 bits wide. Three classes of
instruction control the transfer of data between main memory and the register bank,
one optimized for flexibility of addressing, another for rapid context switching and
the third for swapping data. Two instructions control the flow and privilege level of
execution, and another three types are dedicated to the control of external co-proces-
sors which allow the functionality of the instruction set to be extended off-chip in an
open and uniform way.

The ARM instruction set has proved to be a good target for compilers of many dif-
ferent high-level languages. Where required for critical code segments, assembly
code programming is also straightforward, unlike some RISC processors which
depend on sophisticated compiler technology to manage complicated instruction
interdependencies.

The memory interface has been designed to allow the performance potential to be
realized without incurring high costs in the memory system. Speed-critical control
signals are pipelined to allow system control functions to be implemented in stan-
dard low-power logic, and these control signals permit the exploitation of paged
mode access offered by industry standard DRAMs.

The LH74610 is a fully static part and has been designed to minimize its power
requirements. This makes it ideal for portable applications where both these features
are essential.

2 1LH74610 RISC Processor
BN 2180798 0013439 589 mm

SHARP Advance Information

Block Diagram
ALE ABE A[31:0] nR/W nBAW LOCK TCK TDI TMS nTRST TDC nWAIT MCLK SnA FCLK nRESET MSE
‘ L— L_J |-—-— nMREQ
ADD LATCH TEST CLOCK b= seq
ADD BUFFER C
INTERNAL ADDRESS BUS o
4} N | ABORT
T
R
O le—niRQ
KB ARMS) nFIQ
4 KByte
MMU CACHE CPU
I‘;’ > TESTOUT[2:0]
TESTIN[16:0]
INTERNAL DATA BUS
WRITE
BUFFER
DBE D[31:0]
ARM-1
LH74610 RISC Processor 3

M 2140798 0013440 270 =W

Advance Information

SHARP

Functional Diagram

SnA
FCLK
CLOCKS MCLK
AWAIT ARI0] > } Aogsgss
- DATA
INTERRUPTS [EIQ AW
nBW | conTrROL
BUS
LOCK -
nRESET
ABE LH74610 MREQ
DBE
BUS SEQ | MEMORY
CONTROLS MSE BORT INTERFACE
ALE
VDD
POWER [vSS
. ToK TESTour[zch>
T0I CHIP
TEST
JTAG TDO
TEST K TESTIN[16:0]
™S
nTRST
|
ARM-2
LH74610 RISC Processor

41480794 001344} 137 WA

SHARP Advance Information

Description of Signals

Table 1. Description of Signals

NAME TYPE DESCRIPTION
A[31:0] ocz Address Bus. This bus signals the address requested for memory accesses.
Normally it changes during MCLK HIGH, but see ALE.
ABE IT Address bus enable. When this input is LOW, the address bus A[31:0],
nR/W, nB/W and LOCK are put into a high impedance state (Note 1).
ABORT IT External abort. This input allows the memory system to tell the processor

that a requested access has failed. This input is only monitored when the
LH74610 is accessing external memory.

ALE IT Address latch enable. This input is used to control transparent latches on
the address bus A[31:0], nB/W, nR/W and LOCK. Normally these signals
change during MCLK HIGH, but they may be held by driving ALE LOW.

D[31:0] ITOTZ | Data bus. These are bi-directional signal paths which are used for data
transfers between the processor and external memory. for read operations
(when nR/W is LOW), the input data must be valid before the falling
edge of MCLK for write operations (when nR/W is HIGH), the output
data will become valid while MCLK is LOW.

DBE IT Data bus enable. When this input is LOW, the data bus, D[31:0] is put into
a high impedance state (Note 1). The drivers will always be high imped-
ance except during write operations, and DBE must be driven HIGH in
systems which do not require the data bus for DMA or similar activities.

FCLK IT Fast clock input. When the LH74610 CPU is accessing the cache or per-
forming an internal cycle, it is clocked with the Fast clock, FCLK.
LOCK OCZ Locked operation. LOCK is driven HIGH, to signal a “locked” memory

access sequence, and the memory manager should wait until LOCK goes
LOW before allowing another device to access the memory. LOCK
changes while MCLK is HIGH (but see ALE), and remains HIGH for the
duration of the locked memory sequence.

MCLK IT Memory clock input. This clock times all LH74610 memory accesses. The
LOW or HIGH period of MCLK may be stretched when accessing slow
peripherals; alternatively, the nWAIT input may be used with a free-run-
ning MCLK to achieve similar effects.

MSE IT Memory request/sequential enable. When this input is LOW, the nMREQ
and SEQ outputs are put into a high impedance state (Note 1).

nB/W ocCz Not byte/word. An output signal used by the processor to indicate to the
external memory system when a data transfer of a byte length is required.
nB/W is HIGH for word transfers and LOW for byte transfers, and is
valid for both read and write operations. The signal changes while MCLK
is HIGH, but see ALE.

LH74610 RISC P 5
rocessor m 5180798 00L3u42 073 =W

Advance Information

SHARP

Table 1. Description of Signals (Continued)

NAME

TYPE

DESCRIFTION

nFIQ

IT

Not fast interrupt request. If FIQs are enabled, the processor will respond
to a LOW level on this input by taking the FIQ interrupt exception. This is
an asynchronous, level-sensitive input, and must be held LOW until a
suitable response is received from the processor.

nlRQ

IT

Not interrupt request. As nFIQ, but with lower priority. May be taken
LOW asynchronously to interrupt the processor when the IRQ enable is
active.

nMREQ

Not memory request. This is a pipelined signal that changes while MCLK
is LOW to indicate whether or not in the following cycle, the processor
will be accessing external memory. When nMREQ is LOW, the processor
will be accessing external memory

nRESET

Not reset. This is a level sensitive input signal which is used to start the
processor from a known address. A LOW level will cause the instruction
being executed to terminate abnormally, and the on-chip caches, MMU,
and write buffer to be disabled. When nRESET is driven HIGH, the pro-
cessor will re-start from address 0. nRESET must remain LOW for at least
2 FCLK clock cycles, and 5 MCLK clock cycles while nWAIT is HIGH.
During the LOW period the processor will perform idle cycles but with
incrementing addresses.

nR/W

Not read /write. When HIGH this signal indicates a processor write oper-
ation; when LOW, a read operation. The signal changes while MCLK is
HIGH, but see ALE.

nTRST

IT

Test interface reset. Note this pin does NOT have an internal pullup resis-
tor. This pin must be pulsed or driven LOW to achieve normal device
operation, in addition to the normal device reset (nRESET).

nWAIT

IT

Not wait. When LOW this signal allows extra MCLK cycles to be inserted
into memory accesses. It must change during the LOW phase of the
MCILK cycle that is to be extended.

SEQ

Sequential address. This signal is the inverse of nMREQ, and is provided
for compatibility with existing ARM memory systems.

SnA

IT

This pin should be hard wired HIGH.

TESTIN[16:0]

IT

Test bus input. This bus is used for off-board testing of the device. When
the device is fitted to a circuit all these pins must be tied LOW. The signals
are further defined within the chip as: TESTIN[16], TESTIN[15:8],
TESTIN[7:0]

TESTOUT[2:0]

Test bus output. This bus is used for off-board testing of the device. When
the device is fitted to a circuit and all the TESTIN[16:0] pins are driven
LOW, these three outputs will be driven LOW. Note that these pins may
not be tristated, except via the JTAG test port.

TCK

IT

Test interface reference Clock. This times all the transfers on the JTAG test
interface.

LH74610 RISC Processor

M 34140794 0013443 TOT WA

SHARP

Advance Information

Table 1. Description of Signals (Continued)

NAME TYPE DESCRIPTION

TDI IT Test interface data input. Note this pin does NOT have an internal pullup
resistor.

TDO oCz Test interface data output. Note this pin does NOT have an internal
pullup resistor.

™S IT Test interface mode select. Note this pin does NOT have an internal
pullup resistor.

VDD Positive supply. 15 pins are allocated to VDD in the 144 TQFP package.

VSS Ground supply. 15 pins are allocated to VSS in the 144 TQFP package.

No Connect Unallocated pins. There are 8 of these, which are reserved for future use.
Note that these pins are not bonded, so no connection at the circuit board
is necessary.

NOTES:

1. When output pads are placed in the high impedance state for long periods, care must be taken to ensure that they do not
float to an undefined logic level, as this can dissipate power, especially in the pads.
2. Although the input pads have TTL thresholds, and will correctly interpret a TTL level input, it must be noted that unless all
inputs are driven to the voltage rails, the input circuits will consume power.
3. Key to Signal Types
IT - Input, TTL threshold
OCZ - Output, CMOS levels, tri-stateable
ITOTZ - Input/output tri-stateable, TTL thresholds

LH74610 RISC Processor

B 4130798 0013444 4L HR

Advance Information SHARP

Configuration and Mode Selection

The LH74610 supports a variety of operating configurations. Some are controlled by
register bits and are known as the register configurations. Others may be controlled
by software and these are known as operating modes.

Register Configuration

The LH74610 processor provides 4 register configurations which may be changed
while the processor is running. The actual register settings are given in detail in Con-
figuring the LH74610 but their effects are described below:

Two of the registers (data32 and prog32), allow one of three processor configurations
to be selected as follows.

(1) 26 bit program and data space - (prog32 LOW, data32 LOW). This configuration
forces the LH74610 to operate like the earlier ARM processors with 26 bit
address space. The programmer's model for these processors applies, but the
new instructions to access the CPSR and SPSR registers operate as detailed later
in this document. In this configuration it is impossible to select a 32 bit operating
mode, and all exceptions (including address exceptions) enter the exception
handler in the appropriate 26 bit mode.

(2) 26 bit program space and 32 bit data space - (prog32 LOW, data32 HIGH). This
is the same as the 26 bit program and data space configuration, but with address
exceptions disabled to allow data transfer operations to access the full 32 bit
address space.

(3) 32 bit program and data space - (prog32 HIGH, data32 HIGH). This configura-
tion extends the address space to 32 bits, introduces major changes in the pro-
grammer's model as described below and provides support for running existing
26 bit programs in the 32 bit environment.

The fourth processor configuration which is possible (26 bit data space and 32 bit
program space) should not be selected.

The bigend signal controls whether the LH74610 treats words in memory as being
stored in Big Endian or Little Endian format. Memory is viewed as a linear collection
of bytes numbered upwards from zero. Bytes 0 to 3 hold the first stored word, bytes
4 to 7 the second and so on.

In the Little Endian scheme the lowest numbered byte in a word is considered to be
the least significant byte of the word and the highest numbered byte is the most sig-
nificant. Byte 0 of the memory system should be connected to data lines 7 through 0
(data[7:0] and dout[7:0]) in this scheme.

In the Big Endian scheme the most significant byte of a word is stored at the lowest
numbered byte and the least significant byte is stored at the highest numbered byte.
Byte 0 of the memory system should therefore be connected to data lines 31 through
24 (data[31:24] and dout[31:24])

The lateabt signal controls the processor’s behavior when a data abort exception
occurs. It only affects the behavior of LDR and STR instructions and is discussed
more fully in the Programmer's Model and Instruction Set chapters.

8 LH74610 RISC Processor
M 341480798 0013445 482 WM

SHARP Advance Information

Operating Mode Selection

When configured for 26 bit program space, the LH74610 is limited to operating in
one of four modes known as the 26 bit modes. These modes correspond to the
modes of the earlier ARM processors and are known as User26, FIQ26, IRQ26 and
Supervisor26.

When using a 32 bit program space there are a total of 10 modes available. These are
the four 26 bit modes described above plus 6 more known as the 32 bit modes. These
are User32, FIQ32, IRQ32, Supervisor32, Abort32, and Undefined32. These are the
normal operating modes in this configuration and the 26 bit modes are only pro-
vided for backwards compatibility to allow execution of programs originally written

NOTES
(1) The LH74610 supports 32-bit program and data space configuration only.

(2) The remainder of this document describes the LH74610 when configured for 32
bit program and data space and operating in one of the 32 bit modes. It is recom-
mended that all new designs using the LH74610 should configure the processor
in this way by setting prog32 and data32 HIGH and that all new code should be
written to use only the 32 bit operating modes. It is also recommended that the
lateabt register setting be set HIGH so that the Late Abort exception mechanism
is used.

(3) Because the original ARM instruction set has been modified to accommodate 32
bit operation there are certain additional restrictions which programmers must
be aware of. These are indicated in the text by the words shall and shall not. Ref-
erence should also be made to the ARM Application Notes Rules for ARM Code
Writers and Notes for ARM Code Writers available from your supplier.

Programmer’s Model

The LH74610 has a 32 bit data bus and a 32 bit address bus. The data types the pro-
cessor supports are Bytes (8 bits) and Words (32 bits), where words must be aligned
to four byte boundaries. Instructions are exactly one word, and data operations (e.g.
ADD) are only performed on word quantities. Load and store operations can trans-
fer either bytes or words.

The LH74610 supports six modes of operation:

(1) User mode: the normal program execution state

(2) FIQ mode (fiq): designed to support a data transfer or channel process
(3) IRQ mode (irq): used for general purpose interrupt handling

(4) Supervisor mode (svc): a protected mode for the operating system

(5) Abort mode (abt): entered after a data or instruction prefetch abort

(6) Undefined mode (und): entered when an undefined instruction is executed

Mode changes may be made under software control or may be brought about by
external interrupts or exception processing. Most application programs will execute
in User mode. The other modes, known as privileged modes, will be entered to ser-
vice interrupts or exceptions or to access protected resources.

LH74610 RISC Processor B 4180798 00134%L 219 mm

Advance Information SHARP

Registers

The processor has a total of 37 registers made up of 31 general 32 bit registers and 6
status registers. At any one time 16 general registers (R0 to R15) and one or two sta-
tus registers are visible to the programmer. The visible registers depend on the pro-
cessor mode and the other registers (the banked registers) are switched in to support
IRQ, FIQ, Supervisor, Abort and Undefined mode processing. The register bank
organization is shown in Figure 1. The banked registers are shaded in the diagram.

In all modes 16 registers, RO to R15, are directly accessible. All registers except R15
are general purpose and may be used to hold data or address values. Register R15
holds the Program Counter (PC). When R15 is read, bits [1:0] are zero and bits [31:2]
contain the PC. A seventeenth register (the CPSR - Current Program Status Register)
is also accessible. It contains condition code flags and the current mode bits and may
be thought of as an extension to the PC.

R14 is used as the subroutine link register and receives a copy of R15 when a Branch
and Link instruction is executed. It may be treated as a general purpose register at all
other times. R14_svc, R14_irq, R14_fiq, R14_abt and R14_und are used similarly to
hold the return values of R15 when interrupts and exceptions arise, or when Branch
and Link instructions are executed within interrupt or exception routines.

74
m 31380798 0013447 LS5 W LH74610 RISC Processor

SHARP

Advance Information

General Registers and Program Counter
User32Mode FIQ32mode Supervisor32 Abort32Mode IRQ32Mode Undefined32
Mode Mode
RO RO RO RO RO RO
R1 R1 A1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
RS R5 RS R5 R5 RS
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 14 R7
R8 Refig - R8 RS RS RS
Ro R9 fiq R9 R9 R9 R9
R10 R10_fiq R10 R10 R10 R10
RH R11_fig RN R11 R11 R11
R12 12 fiq R12 R12 R12 R12
R13 . R13_fig B‘ts_usvc R13 _abt R13_irg . R13_undet
R14 5 R14_fig Aia_sve || - Ri4abt Riairg: || ®R14_undet
R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)
Program Status Registers
CPSR CPSR CPSR CPSR CPSR CPSR
PSR _fig SPSR_svc-| | SPSR.abt SPSR_irq | | SPSR_undet

Figure 1. Register Organization

FIQ mode has seven banked registers mapped to R8-14 (R8_fig-R14_fiq). Many FIQ
programs will not need to save any registers. User mode, IRQ mode, Supervisor
mode, Abort mode and Undefined mode each have two banked registers mapped to
R13 and R14. The two banked registers allow these modes to each have a private
stack pointer and link register. Supervisor, IRQ, Abort and Undefined mode pro-
grams which require more than these two banked registers are expected to save
some or all of the caller's registers (RO to R12) on their respective stacks. They are
then free to use these registers which they will restore before returning to the caller.
In addition there are also five SPSRs (Saved Program Status Registers) which are
loaded with the CPSR when an exception occurs. There is one SPSR for each privi-
leged mode.

LH74610 RISC Processor 11

BB 5140798 0013448 591 W

Advance Information SHARP

The format of the Program Status Registers is shown in Figure 2. The N, Z, Cand V
bits are the condition code flags. The condition code flags in the CPSR may be
changed as a result of arithmetic and logical operations in the processor and may be
tested by all instructions to determine if the instruction is to be executed.

flags P control
I 11 77 1
31 3 29 28 27 py 7 6 5 4 3 2 1 0
7/
NjzZzjc|v|. . . .|l |F| .|M4 M3 M2 MI|MO
7 L]
Overflow
Carry/Borrow/Extend Mode bits
Zero FIQ disable
Negative/l ess than IRQ disable

Figure 2. Format of the Program Status Registers (PSRs)

The I and F bits are the interrupt disable bits. The I bit disables IRQ interrupts when
it is set and the F bit disables FIQ interrupts when it is set. The M0, M1, M2, M3 and
M4 bits (M[4:0]) are the mode bits, and these determine the mode in which the pro-
cessor operates. The interpretation of the mode bits is shown in Table 2. Not all com-
binations of the mode bits define a valid processor mode. Only those explicitly
described shall be used.

The bottom 28 bits of a PSR (incorporating I, F and M[4:0]) are known collectively as
the control bits. The control bits will change when an exception arises and in addi-
tion can be manipulated by software when the processor is in a privileged mode.
Unused bits in the PSRs are reserved and their state shall be preserved when chang-
ing the flag or control bits. Programs shall not rely on specific values from the
reserved bits when checking the PSR status, since they may read as one or zero in
future processors.

Table 2. Mode Bits

M[4:0] MODE ACCESSIBLE REGISTER SET

10000 usr PC,R14.R0 CPSR

10001 fiq PC, R14_fiq..R8_fig, R7..R0O CPSR, SPSR _fiq

10010 irq PC, R14_irq..R13_irq, R12..R0 CPSR, SPSR_irq

10011 svce PC, R14_svc..R13_svc, R12.R0 CPSR, SPSR _svc

10111 abt PC, R14_abt..R13_abt, R12..R0 CPSR, SPSR_abt
11011 und PC,R14_und..R13_und,R12.R0 CPSR, SPSR_und

12 LH74610 RISC Processor

| 3130798 0013449 425 WA

SHARP

Advance Information

Exceptions

Exceptions arise whenever there is a need for the normal flow of program execution
to be broken, so that (for example) the processor can be diverted to handle an inter-
rupt from a peripheral. The processor state just prior to handling the exception must
be preserved so that the original program can be resumed when the exception rou-
tine has completed. Many exceptions may arise at the same time.

The LH74610 handles exceptions by making use of the banked registers to save state.
The old PC and CPSR contents are copied into the appropriate R14 and SPSR and
the PC and mode bits in the CPSR bits are forced to a value which depends on the
exception. Interrupt disable flags are set where required to prevent otherwise
unmanageable nestings of exceptions. In the case of a re-entrant interrupt handler,
R14 and the SPSR should be saved onto a stack in main memory before re-enabling
the interrupt; when transferring the SPSR register to and from a stack, it is important
to transfer the whole 32 bit value, and not just the flag or control fields. When multi-
ple exceptions arise simultaneously, a fixed priority determines the order in which
they are handled. The priorities are listed later in this chapter.

FIQ

The FIQ (Fast Interrupt reQuest) exception is externally generated by taking the
Nfiq input LOW. This input can accept asynchronous transitions, and is delayed by
one clock cycle for synchronization before it can affect the processor execution flow.
It is designed to support a data transfer or channel process, and has sufficient pri-
vate registers to remove the need for register saving in such applications (thus mini-
mizing the overhead of context switching). The FIQ exception may be disabled by
setting the F flag in the CPSR (but note that this is not possible from User mode). If
the F flag is clear, the LH74610 checks for a LOW level on the output of the FIQ syn-
chronizer at the end of each instruction.

When a FIQ is detected, the LH74610 performs the following:

(1) Saves the address of the next instruction to be executed plus 4 in R14_fiq; saves
CPSR in SPSR_fiq

(2) Forces M[4:0]=%10001 (FIQ mode) and sets the F and I bits in the CPSR

(3) Forces the PC to fetch the next instruction from address &1C

To return normally from FIQ, use SUBS PC, R14_fiq,#4 which will restore both the
PC (from R14) and the CPSR (from SPSR_fiq) and resume execution of the inter-
rupted code.

IRQ

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by a LOW level
on the Nirq input. It has a lower priority than FIQ, and is masked out when a FIQ
sequence is entered. Its effect may be masked out at any time by setting the I bit in
the CPSR (but note that this is not possible from User mode). If the I flag is clear, the
LH74610 checks for a LOW level on the output of the IRQ synchronizer at the end of
each instruction. When an IRQ is detected, the LH74610 performs the following:

LH74610 RISC Processor 13

M 5130798 0013450 14T WM

Advance Information SHARP

(1) Saves the address of the next instruction to be executed plus 4 in R14_irq; saves
CPSR in SPSR_irq

(2) Forces M[4:0]=%10010 (IRQ mode) and sets the I bit in the CPSR

(3) Forces the PC to fetch the next instruction from address &18

To return normally from IRQ, use SUBS PC,R14_irq,#4 which will restore both the
PC and the CPSR and resume execution of the interrupted code.

Abort

The abort input comes from an external Memory Management system, and indicates
that the current memory access cannot be completed. For instance, in a virtual mem-
ory system the data corresponding to the current address may have been moved out
of memory onto a disc, and considerable processor activity may be required to
recover the data before the access can be performed successfully. The LH74610
checks for abort during memory access (N and S) cycles. When successfully aborted,
the LH74610 will respond in one of two ways:

(1) If the abort occurred during an instruction prefetch (a Prefetch Abort), the
prefetched instruction is marked as invalid but the abort exception does not
occur immediately. If the instruction is not executed, for example as a result of a
branch being taken while it is in the pipeline, no abort will occur. An abort will
take place if the instruction reaches the head of the pipeline and is about to be
executed.

(2) If the abort occurred during a data access (a Data Abort), the action depends on
the instruction type.

(a) Single data transfer instructions (LDR, STR) are aborted as though the
instruction had not executed if the processor is configured for Early Abort.
When configured for Late Abort, these instructions are able to write back
modified base registers and the Abort handler must be aware of this.

(b) The swap instruction (SWP) is aborted as though it had not executed.

(c) Block data transfer instructions (LDM, STM) complete, and if write-back is
set, the base is updated. If the instruction would normally have overwritten
the base with data (i.e. LDM with the base in the transfer list), this overwrit-
ing is prevented. All register overwriting is prevented after the Abort is indi-
cated, which means in particular that R15 (which is always last to be
transferred) is preserved in an aborted LDM instruction.

When either a prefetch or data abort occurs, the LH74610 performs the following:

(1) Saves the address of the aborted instruction plus 4 (for prefetch aborts) or 8 (for
data aborts) in R14_abt; saves CPSR in SPSR_abt

(2) Forces M[4:0]=%10111 (Abort mode) and sets the I bit in the CPSR.

(3) Forces the PC to fetch the next instruction from either address &0C (prefetch
abort) or address &10 (data abort)

14

I 5150798 0013451 D&L =W

LH74610 RISC Processor

SHARP

Advance Information

To return after fixing the reason for the abort, use SUBS PC,R14_abt,#4 (for a prefetch
abort) or SUBS PC,R14_abt #8 (for a data abort). This will restore both the PC and the
CPSR and retry the aborted instruction.

The abort mechanism allows a demand paged virtual memory system to be imple-
mented when a suitable memory manager is available. The processor is allowed to
generate arbitrary addresses, and when the data at an address is unavailable the
memory manager signals an abort. The processor traps into system software which
must work out the cause of the abort, make the requested data available, and retry
the aborted instruction. The application program needs no knowledge of the
amount of memory available to it, nor is its state in any way affected by the abort.

Software Interrupt

The software interrupt instruction (SWI) is used for getting into Supervisor mode,
usually to request a particular supervisor function. When a SWI is executed, the
LH74610 performs the following:

(1) Saves the address of the SWI instruction plus 4 in R14_svc; saves CPSR in
SPSR_svc

(2) Forces M[4:0]=%10011 (Supervisor mode) and sets the I bit in the CPSR

(3) Forces the PC to fetch the next instruction from address &08

To return from a SW1, use MOVS PC,R14_svc. This will restore the PC and CPSR and
return to the instruction following the SWI.

Undefined Instruction Trap

When the LH74610 comes across a coprocessor instruction which it can not handle
(see Instruction Set chapter) then the LH74610 will take the undefined instruction
trap.

The trap may be used for software emulation of a coprocessor in a system which
does not have the coprocessor hardware, or for general purpose instruction set
extension by software emulation.

When the LH74610 takes the undefined instruction trap it performs the following:

(1) Saves the address of the Undefined or coprocessor instruction plus 4 in
R14_und; saves CPSR in SPSR_und.

(2) Forces M[4:0]=%11011 (Undefined mode) and sets the I bit in the CPSR

(3) Forces the PC to fetch the next instruction from address &04

To return from this trap after emulating the failed instruction, use MOVS PC,R14_-
und. This will restore the CPSR and return to the instruction following the unde-
fined instruction.

LH74610 RISC Processor 15

B 4180798 0013452 Tic M@

Advance Information

Reset

When the Nreset signal goes LOW, the LH74610 abandons the currently executing
instruction and then continues to fetch instructions from memory which it interprets
as NOPs. When Nreset goes HIGH again, the LH74610 does the following:

(1) Overwrites R14_svc and SPSR_svc by copying the current values of the PC and
CPSR into them. The value of the saved PC and CPSR is not defined.

(2) Forces M[4:0]=%10011 (Supervisor mode) and sets the I and F bits in the CPSR.

(3) Forces the PC to fetch the next instruction from address &00

Vector Summary
Table 3. Vector Summary
ADDRESS EXCEPTION MODE ON ENTRY
&00000000 Reset Supervisor
&00000004 | Undefined instruction Undefined
&00000008 | Software interrupt Supervisor
&0000000C | Abort (prefetch) Abort
&00000010 | Abort (data) Abort
&00000014 | —reserved - -
&00000018 | IRQ IRQ
&0000001C | FIQ FIQ

These are byte addresses, and will normally contain a branch instruction pointing to
the relevant routine.

The FIQ routine might reside at &1C onwards, and thereby avoid the need for (and
execution time of) a branch instruction.

The reserved entry is for an Address Exception vector which is only operative when
the processor is configured for a 26 bit program space.

Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines
the order in which they will be handled:

(1) Reset (highest priority)
(2) Data abort

(3) FIQ

4) IRQ

16

LH74610 RISC Processor

B 34140798 0013453 959 WA

SHARP

Advance Information

(5) Prefetch abort

(6) Undefined Instruction, Software interrupt (lowest priority)

Note that not all exceptions can occur at once. Undefined instruction and software
interrupt are mutually exclusive since they each correspond to particular (non-over-
lapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (i.e. the F flag
in the CPSR is clear), the LH74610 will enter the data abort handler and then imme-
diately proceed to the FIQ vector. A normal return from FIQ will cause the data
abort handler to resume execution. Placing data abort at a higher priority than FIQ is
necessary to ensure that the transfer error does not escape detection; the time for this
exception entry should be added to worst case FIQ latency calculations.

Interrupt Latencies

The worst case latency for FIQ, assuming that it is enabled, consists of the longest
time the request can take to pass through the synchronizer (Tsyncmax), plus the time
for the longest instruction to complete (Tldm, the longest instruction is a LDM
which loads all the registers including the PC), plus the time for the data abort entry
(Texc), plus the time for FIQ entry (Tfiq). At the end of this time the LH74610 will be
executing the instruction at &1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2
cycles. The total time is therefore 28 processor cycles. This is just over 1.4 microsec-
onds in a system which uses a continuous 20 MHz processor clock. The maximum
IRQ latency calculation is similar, but must allow for the fact that FIQ has higher pri-
ority and could delay entry into the IRQ handling routine for an arbitrary length of
time. The minimum latency for FIQ or IRQ consists of the shortest time the request
can take through the synchronizer (Tsyncmin) plus Tfiq. This is 4 processor cycles.

LH74610 RISC Processor 17

MR 3140793 0013454 895 W

Advance Information

Instruction Set

The Condition Field

All LH74610 instructions are conditionally executed, which means that their execu-
tion may or may not take place depending on the values of the N, Z, Cand V flags in
the CPSR. The condition encoding is shown in Figure 3.

31 28 20 0

Cond

l Condition field

0000 = EQ - Z set (equal)

0001 = NE - Z clear (not equal)

0010 =CS - C set {unsigned higher or same}

0011 = CC - C clear (unsigned lower}

0100 = Ml - N set (negative)

0101 = PL - N clear {positive or zero)

0110 =VS- V set (overflow)

0111 = VC - V dlear {no overflow)

1000 = Hi - C set and Z dlear (unsigned higher)

1001 =LS - C clear or Z set (unsignad lower or same)

1010 =GE - Nsetand V set, or N clear and V clear (greater or equal)

1011 =LT - Nset and V clear, or N clear and V set (less than)

1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal}
1110 = AL - always

1111 =NV - never

Figure 3. Condition Codes

If the always (AL) condition is specified, the instruction will be executed irrespective
of the flags. The never (NV) class of condition codes should not be used as they will
be redefined in future variants of the ARM architecture. If a NOP is required it is
suggested that MOV RO,R0 be used. The assembler treats the absence of a condition
code as though AL had been specified.

The other condition codes have meanings as detailed in Figure5, for instance code
0000 (EQual) causes the instruction to be executed only if the Z flag is set. This
would correspond to the case where a compare (CMP) instruction had found the
two operands to be equal. If the two operands were different, the compare instruc-
tion would have cleared the Z flag and the instruction will not be executed.

Branch and Branch with Link (B, BL)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in
Figure 4.

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left
two bits, sign extended to 32 bits, and added to the PC. The instruction can therefore
specify a branch of + 32Mbytes. The branch offset must take account of the prefetch
operation, which causes the PC to be 2 words (8 bytes) ahead of the current instruc-
tion.

18

B 5180798 0013455 7221 mm

LH74610 RISC Processor

SHARP

Advance Information

31 28 27 25 24 23 0
Cond 101 L offset
| I | l
Link bit
0 = Branch
1 = Branch with Link
Condition field

Figure 4. Branch Instructions

Branches beyond + 32Mbytes must use an offset or absolute destination which has
been previously loaded into a register. In this case the PC should be manually saved
in R14 if a Branch with Link type operation is required.

The Link Bit

Branch with Link (BL) writes the old PC into the link register (R14) of the current
bank. The PC value written into R14 is adjusted to allow for the prefetch, and con-
tains the address of the instruction following the branch and link instruction. Note
that the CPSR is not saved with the PC.

To return from a routine called by Branch with Link use MOV PC,R14 if the link reg-
ister is still valid or LDM Rn! {..PC} if the link register has been saved onto a stack
pointed to by Rn.

Assembler Syntax
B{L}{cond} <expression>

{L} is used to request the Branch with Link form of the instruction. If absent, R14 will
not be affected by the instruction.

{cond} is a two-char mnemonic as shown in Figure 3 (EQ, NE, VS etc.). If absent then
AL (ALways) will be used.

<expression> is the destination. The assembler calculates the offset.

Items in {} are optional. Items in <> must be present.

Examples

here BAL here ; assembles to &EAFFFFFE {note effect of PC offset)
B there ; Always condition used as default
CMP R1, #0 ; compare Rl with zero and branch to fred if R1
BEQ fred ; was zero otherwise continue to next instruction

BL sub + ROM ; call subroutine at computed address

ADDS RI1,#1 ; add 1 to register 1, setting CPSR flags on the
BLCC sub ; result then call subroutine if the C flag is clear,
; which will be the case unless R1 held &FFFFFFFF

LH74610 RISC Processor 19

M 5140798 001345L LLa WA

Advance Information SHARP

Data Processing

The instruction is only executed if the condition is true, defined at the beginning of
this section. The instruction encoding is shown in Figure 5.

The instruction produces a result by performing a specified arithmetic or logical
operation on one or two operands. The first operand is always a register (Rn). The
second operand may be a shifted register (Rm) or a rotated 8 bit immediate value
(Imm) according to the value of the I bit in the instruction. The condition codes in
the CPSR may be preserved or updated as a result of this instruction, according to
the value of the S bit in the instruction. Certain operations (TST, TEQ, CMF, CMN)
do not write the result to Rd. They are used only to perform tests and to set the con-
dition codes on the result and always have the S bit set. The instructions and their
effects are listed in Table 4.

31 28 27 26 25 24 21 20 19 16 15 12 11 0

Cond 00 |!] OpCode |S Rn Rd Operand 2

| | | 1 | 1 Il 1 1 J

l- Destination register
1st operand register

Set condition codes
0 = do not aiter condition codes
1 = set condiition codes

Operation Code

0000 = AND - Ret= Op1 AND Op2
0001 = EOR - Ad:= Op1 EOR Op2
0010 = SUB - Rd:= Op1 - Op2

0011 = RSB - Adi= Op2 - Op1

0100 = ADD - Rd:= Op1 + Op2

0101 = ADC - Ack= Opt + Op2+ C
0110 =SBC - Rdi= Qp1 -Op2 + C- 1

0111 = RSC-Rd:=Op2-0p1 +C-1

1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Opt EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 = ORA - Ra:= Op1 OR Op2

1101 = MOV - Rd:= Op2

1110 = BIC - Rd:= Op1 AND NOT Op2

1111 = MVN - Ret= NOT Op2

Immediate Operand

0 =operand 2 I a register

11 4 3 0

Shift Rm —1

| [J
1

2nd operand register

shift applied to Rm

1 = oparand 2 Is an immediate value
11 8 7 [

Rotate Imm —

{] 1]
|
Unsigned 8 bit immediate vaiue

shift applied to Imm
Condition field

Figure 5. Data Processing Instructions

20

B 3180798 001L3457 STY WB

LH74610 RISC Processor

SHARP Advance Information

CPSR Flags

The data processing operations may be classified as logical or arithmetic. The logical
operations (AND, EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action
on all corresponding bits of the operand or operands to produce the result. If the S
bit is set (and Rd is not R15, see below) the V flag in the CPSR will be unaffected, the
C flag will be set to the carry out from the barrel shifter (or preserved when the shift
operation is LSL #0), the Z flag will be set if and only if the result is all zeros, and the
flag will be set to the logical value of bit 31 of the result.

Table 4. ARM Data Processing Instruction

:ASNSEE;: g;ﬁg OPCODE ACTION

AND 0000 operand1l AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand] - operand?2

RSB 0011 operand? - operandl

ADD 0100 operand]l + operand2

ADC 0101 operandl + operand?2 + carry

SBC 0110 operandl - operand2 + carry - 1

RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written

TEQ 1001 as EOR, but result is not written

CMP 1010 as SUB, but result is not written

CMN 1011 as ADD, but result is not written

ORR 1100 operand1 OR operand?2

MOV 1101 operand2 (operandl is ignored)
BIC 1110 operandl AND NOT operand2 (Bit clear)
MVN 1111 NOT operand2 (operand] is ignored)

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMF, CMN) treat each
operand as a 32 bit integer (either unsigned or 2's complement signed, the two are
equivalent). If the S bit is set (and Rd is not R15) the V flag in the CPSR will be set if
an overflow occurs into bit 31 of the result; this may be ignored if the operands were
considered unsigned, but warns of a possible error if the operands were 2's comple-
ment signed. The C flag will be set to the carry out of bit 31 of the ALU, the Z flag
will be set if and only if the result was zero, and the N flag will be set to the value of
bit 31 of the result (indicating a negative result if the operands are considered to be
2's complement signed).

21
LH74610 RISC Processor M 5130798 0013453 430 mm

Advance Information SHARP

Shifts

When the second operand is specified to be a shifted register, the operation of the
barrel shifter is controlled by the Shift field in the instruction. This field indicates the
type of shift to be performed (logical left or right, arithmetic right or rotate right).
The amount by which the register should be shifted may be contained in an immedi-
ate field in the instruction, or in the bottom byte of another register (other than R15).
The encoding for the different shift types is shown in Figure 6.

11 76 5 4 11 8§ 7 6 5 4
0 Rs 0 1
| 1 _[l- L1 _E_
Shift type Shift type
00 = togical left 00 = logical left
01 = logical right 01 = logical right
10 = arithmetic right 10 = arthmetic right
11 = rctate right 11 = rotate right
Shift amount Shift register
5 bt unsigned integer Shift amount specified in
battom byte of Rs

Figure 6. ARM Shift Operations

Instruction Specified Shift Amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field
which may take any value from 0 to 31. A logical shift left (LSL) takes the contents of
Rm and moves each bit by the specified amount to a more significant position. The
least significant bits of the result are filled with zeros, and the high bits of Rm which
do not map into the result are discarded, except that the least significant discarded
bit becomes the shifter carry output which may be latched into the C bit of the CPSR
when the ALU operation is in the logical class (see above). For example, the effect of
LSL #5 is shown in Figure 7.

31 27 26 0

contents of Rm

value of operand 2 00000

Figure 7. Logical Shift Left

Note that LSL #0 is a special case, where the shifter carry out is the old value of the
CPSR C flag. The contents of Rm are used directly as the second operand. A logical
shift right (LSR) is similar, but the contents of Rm are moved to less significant posi-
tions in the result. LSR #5 has the effect shown in Figure 8.

22 LH74610 RISC Processor

Advance Information

31 5 4 0

contents of Rm

~ ~

000O00O0 value of operand 2

Figure 8. Logical Shift Right

The form of the shift field which might be expected to correspond to LSR #0 is used
to encode LSR #32, which has a zero result with bit 31 of Rm as the carry output.
Logical shift right zero is redundant as it is the same as logical shift left zero, so the
assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow LSR
#32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high
bits are filled with bit 31 of Rm instead of zeros. This preserves the sign in 2's com-~
plement notation. For example, ASR #5 is shown in Figure 9.

31 30 5 4 0

contents of Rm

value of operand 2

Figure 9. Arithmetic Shift Right

The form of the shift field which might be expected to give ASR #0 is used to encode
ASR #32. Bit 31 of Rm is again used as the carry output, and each bit of operand 2 is
also equal to bit 31 of Rm. The result is therefore all ones or all zeros, according to the
value of bit 31 of Rm.

Rotate right (ROR) operations reuse the bits which 'overshoot' in a logical shift right
operation by reintroducing them at the high end of the result, in place of the zeros
used to fill the high end in logical right operations. For example, ROR #5 is shown in
Figure 10.

LH74610 RISC Processor 23

M 3130798 00134L0 099

Advance Information SHARPFP

contents of Rm

carry out

value of operand 2

Figure 10. Rotate Right

The form of the shift field which might be expected to give ROR #0 is used to encode
a special function of the barrel shifter, rotate right extended (RRX). This is a rotate
right by one bit position of the 33 bit quantity formed by appending the CPSR C flag
to the most significant end of the contents of Rm as shown in Figure 11.

31 1 0

contents of Rm

N \

value of operand 2

Figure 11. Rotate Right Extended

Register Specified Shift Amount

Only the least significant byte of the contents of Rs is used to determine the shift
amount. Rs can be any general register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second oper-
and, and the old value of the CPSR C flag will be passed on as the shifter carry out-

put.

If the byte has a value between 1 and 31, the shifted result will exactly match that of
an instruction specified shift with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift-
ing processes described above:

(1) LSL by 32 has result zero, carry out equal to bit 0 of Rm.
(2) LSL by more than 32 has result zero, carry out zero.

(3) LSR by 32 has result zero, carry out equal to bit 31 of Rm.

2 RISC P
W 2130798 001346l T25 WM LH74610 Tocessor

SHARP Advance Information

(4) LSR by more than 32 has result zero, carry out zero.
(5) ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.
(6) ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

(7) ROR by n where n is greater than 32 will give the same result and carry out as
ROR by n-32; therefore repeatedly subtract 32 from n until the amount is in the
range 1 to 32 and see above.

Note that the zero in bit 7 of an instruction with a register controlled shift is compul-
sory; a one in this bit will cause the instruction to be a multiply or undefined instruc-
tion.

Immediate Operand Rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift
operation on the 8 bit immediate value. The immediate value is zero extended to 32
bits, and then subject to a rotate right by twice the value in the rotate field. This
enables many common constants to be generated, for example all powers of 2.

Writing to R15

When Rd is a register other than R15, the condition code flags in the CPSR may be
updated from the ALU flags as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation
is placed in R15 and the CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and
the SPSR corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of instruction shall
not be used in User mode.

Using R15 as an Operand

If R15 (the PC) is used as an operand in a data processing instruction the register is
used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruc-
tion prefetching. If the shift amount is specified in the instruction, the PC will be 8
bytes ahead. If a register is used to specify the shift amount the PC will be 12 bytes
ahead.

The TEQ, TST, CMP and CMN Opcodes

These instructions do not write the result of their operation but do set flags in the
CPSR. An assembler shall always set the S flag for these instructions even if it is not
specified in the mnemonic.

The TEQP form of the instruction used in earlier processors shall not be used in the
32 bit modes, the PSR transfer operations should be used instead. If used in these
modes, its effect is to move SPSR_<mode> to CPSR if the processor is in a privileged
mode and to do nothing if in User mode.

LH74610 RISC P 25
rocessor M 5180798 0013462 9L1 wm

Advance Information SHARP

Assembler Syntax

(1) MOVMVN - single operand instructions
<opcode>{cond}{S} Rd,<Op2>

(2) CMP.CMN,TEQ,TST - instructions which do not produce a result.
<opcode>{cond} Rn,<Op2>

(3) AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR BIC

<opcode>{cond}{S} Rd,Rn,<Op2>
where <Op2> is Rm/{,<shift>} or,<#expression>
{cond} - two-character condition mnemonic, see Figure 3
{S} - set condition codes if S present (implied for CMP, CMN, TEQ, TST).
Rd, Rn and Rm are expressions evaluating to a register number.

If <#expression> is used, the assembler will attempt to generate a shifted immediate
8-bit field to match the expression. If this is impossible, it will give an error.

<shift> is <shiftname> <register> or <shiftname> #expression, or RRX (rotate right
one bit with extend).

<shifthame>s are: ASL, LSL, LSR, ASR, ROR.
(ASL is a synonym for LSL, the two assemble to the same code.)

Examples
ADDEQ R2,R4,R5 ; if the 2z flag is set make R2:=R4+RS
TEQS R4, #3 ; test R4 for equality with 3
: {(the S is in fact redundant as the
; assembler inserts it automatically)
SUB R4,R5,R7,LSR R2 ; logical right shift R7 by the number in
; the bottom byte of R2, subtract the result
; from RS, and put the answer into R4
MOV PC,R14 ; return from subroutine
MOVS PC,R14 ; return from exception & restore CPSR_<mode>
26 LH74610 RISC Processor

M 4140798 0013463 &T2 WA

SHARP Advance Information

PSR Transfer (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter.

The MRS and MSR instructions are formed from a subset of the Data Processing
operations and are implemented using the TEQ, TST, CMN and CMP instructions
without the S flag set. The encoding is shown in Figure 12.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction
allows the contents of the CPSR or SPSR_<mode> to be moved to a general register.
The MSR instruction allows the contents of a general register to be moved to the
CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be trans-
ferred to the condition code flags (N,Z,C and V) of CPSR or SPSR_<mode> without
affecting the control bits. In this case, the top four bits of the specified register con-
tents or 32 bit immediate value are written to the top four bits of the relevant PSR.

Operand Restrictions

In User mode, the control bits of the CPSR are protected from change, so only the
condition code flags of the CPSR can be changed. In other (privileged) modes the
entire CPSR can be changed.

The SPSR register which is accessed depends on the mode at the time of execution.
For example, only SPSR_fiq is accessible when the processor is in FIQ mode.

R15 shall not be specified as the source or destination register.

A further restriction is that no attempt shall be made to access an SPSR in User
mode, since no such register exists.

LH74610 RISC Processor M 5150798 00L34LY 734 mm 27

Advance Information

SHARP

MRS (transfer PSR contents to a register)

31 28 27 23 22 21 16 15 12 11 0
Cond 00010 IPs 001111 Rd 000000000000
. T
‘ Destination register
Source PSR
0=CPSR
1 = SPSR_<cusrent mode>
Condition field
MSR (transfer register contents to PSR)
31 28 27 23 22 2 121 43 0
Cond 00010 Pal 1010011111 00000000 Rm
(I

0=CPSR

MSR (transter register contents or immediate value to PSR flag bits only)

31 28 27 23 22 2 12 11

Source register

Destination PSR

1 = SPSA_<cument moda>

Condition field

1010001111

Cond oo ft] 10 PdI

Source operand

—

1

' 1
Destination PSR
0=CPSR
1= SPSA_<current mode>

Immediate Operand
‘0=Soumaopemndsamgister 4 3 0

00000000

Bm —

11

1 = Source operand Is an immediate value
8 7

I_'_I

Source register

Rotate

Imm —

shift applied to Imm

Condition field

1
Unsigned 8 bit immediate value

Figure 12. PSR Transfer Instructions

28

B 3180798 00134L5 L70 WA

LH74610 RISC Processor

Advance Information

Reserved Bits

Only eleven bits of the PSR are defined in the LH74610 (N,Z,C,V,LF & M[4:0]); the
remaining bits (= PSR[27:8,5]) are reserved for use in future versions of the proces-
sor. To ensure the maximum compatibility between the LH74610 programs and
future processors, the following rules should be observed:

(1) The reserved bits shall be preserved when changing the value in a PSR.
(2) Programs shall not rely on specific values from the reserved bits when checking

the PSR status, since they may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control
bits of any PSR register; this involves transferring the appropriate PSR register to a
general register using the MRS instruction, changing only the relevant bits and then
transferring the modified value back to the PSR register using the MSR instruction.

e.g. The following sequence performs a mode change:

MRS Rtmp, CPSR ; take a copy of the CPSR

BIC Rtmp, Rtmp, #&1F ; clear the mode bits

ORR Rtmp, Rtmp, #new_mode ; select new mode

MSR CPSR, Rtmp ; write back the modified CPSR

When the aim is simply to change the condition code flags in a PSR, an immediate
value can be written directly to the flag bits without disturbing the control bits. e.g.
The following instruction sets the N,Z,C & V flags:

MSR CPSR_flg, #&F0000000 ;set all the flags regardless of
;their previous state (does not
;affect any control bits)

No attempt shall be made to write an 8 bit immediate value into the whole PSR since
such an operation cannot preserve the reserved bits.

Assembler Syntax

(1) MRS - transfer PSR contents to a register
MRS{cond} Rd,<psr>

(2) MSR - transfer register contents to PSR
MSR{cond} <psr>Rm

(3) MSR - transfer register contents to PSR flag bits only
MSR{cond} <psrf>Rm

The most significant four bits of the register contents are written to the N,Z,C &
V flags respectively.

LH74610 RISC Processor 29

M 5140798 00134kkL 507 =@

Advance Information SHARP

(4) MSR - transfer immediate value to PSR flag bits only

MSR({cond} <psrf>,<#expression>

The expression should symbolize a 32 bit value of which the most significant four
bits are written to the N,Z,C & V flags respectively.

{cond} - two-character condition mnemonic, see Figure 3.
Rd and Rm are expressions evaluating to a register number other than R15

<psr> is CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as
are SPSR and SPSR_all)

<psrf> is CPSR_flg or SPSR _{flg

Where <#expression> is used, the assembler will attempt to generate a shifted
immediate 8-bit field to match the expression. If this is impossible, it will give an
error.

Examples

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <~ Rm[31:28]
MSR CPSR_flg,Rm ; CPSR{31:28] <~ Rm[31:28]
MSR CPSR_flg, #&A0000000 ; CPSR([31:28] <- &A

; (i.e. set N,C; clear Z,V)

MRS Rd,CPSR ; RA[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR([31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg, #&50000000 ; CPSR[31:28] <- &5

; (i.e. set Z,V; clear N,C)

MRS Rd,CPSR ; RA[31:0] <~ CPSR[31:0]

MSR SPSR_all,Rm ; SPSR_<mode>[31:0] <- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm{31:28]
MSR SPSR_flg, #&C0000000 ; SPSR_<mode>[31:28] <- &C

; (i.e. set N,Z; clear C,V)

MRS Rd,SPSR ; RA[31:0] <- SPSR_<mode>[31:0]

30

LH74610 RISC Processor
M 8180798 00134L7 443 WA

SHARP Advance Information

Multiply and Multiply-Accumulate (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure
13.

The multiply and multiply-accumulate instructions use a 2 bit Booth's algorithm to
perform integer multiplication. They give the least significant 32 bits of the product
of two 32 bit operands, and may be used to synthesize higher precision multiplica-

tions.
31 28 27 2 21 20 19 16 15 12 11 8 7 43 0
Cond 000000 AlS Rd Rn Rs 1001 Rm
[I || || | L__,_l
—
Operand registers
———— Destination register
Set condition codes

0 = do not alter condition codes
1 = set condrhion codes

Accumulate bit
0 = multiply
1 = multiply and accumulate

Condition field

Figure 13. Multiply Instructions

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be
set to zero for compatibility with possible future upgrades to the instruction set.

The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit
ADD instruction in some circumstances.

Both forms of the instruction work on operands which may be considered as signed
(2's complement) or unsigned integers.

Operand Restrictions

Due to the way the Booth's algorithm has been implemented, certain combinations
of operand registers should be avoided. (The assembler will issue a warning if these
restrictions are overlooked.)

The destination register (Rd) should not be the same as the Rm operand register, as
Rd is used to hold intermediate values and Rm is used repeatedly during the multi-
ply. A MUL will give a zero result if Rm=Rd, and a MLA will give a meaningless
result. R15 shall not be used as an operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use
the same register when required.

CPSR Flags

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction.
The N and Z flags are set correctly on the result (N is equal to bit 31 of the result, Z is
set if and only if the result is zero), the V flag is unaffected by the instruction (as for
logical data processing instructions), and the C flag is set to a meaningless value.

LH74610 RISC Processor 31
BR 53140798 00134L3 34T WA

Advance Information SsSHARP

Assembler Syntax

MUL{cond}{S} Rd,Rm,Rs

MLA{cond}S} Rd,Rm,Rs,Rn

{cond} - two-character condition mnemonic, see Figure 3.

{S} - set condition codes if S present

Rd, Rm, Rs and Rn are expressions evaluating to a register number other than R15.

Examples

MUL R1,R2,R3; R1:=R2*R3
MLAEQS R1,R2,R3,R4 ; conditionally R1:=R2*R3+R4,
; setting condition codes

The multiply instruction may be used to synthesize higher precision multiplications,
for instance to multiply two 32 bit integers and generate a 64 bit result:

mulé6d
MOV al,A,LSR #16 al:= top half of a
MOV D,B,LSR #16 D := top half of B
BIC A,A,al,LSL #16 A := bottom half of A

BIC B,B,D,LSL #16 ; B := bottom half of B

MUL C,A,B ;: low section of result

MUL B,al,B ;) middle sections

MUL A,D,A ;) of result

MUL D,al,D ; high section of result

ADDSA,B,A ; add middle sections
H (couldn't use MLA as we need C correct)
; carry from above add
; C is now bottom 32 bits of product

D is top 32 bits

ADDCSD, D, #&10000

ADDSC,C,A,LSL #16

ADC D,D,A,LSR #16
A, B are registers containing the 32 bit integers; C, D are registers for the 64 bit result;
al is a temporary register. A and B are overwritten during the multiply.

Single Data Transfer (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure
14.

The single data transfer instructions are used to load or store single bytes or words
of data. The memory address used in the transfer is calculated by adding an offset to
or subtracting an offset from a base register.

The result of this calculation may be written back into the base register if ‘auto-
indexing' is required.

32 LH74610 RISC Processor
B 41407948 0013u4L9 21L WA

SHARP Advance Information

31 8272625 % 2822212019 16 15 12 11 0

Cond 01 {IPJUlB|W]|L Rn Rd Offset

(S L Pol— 1 |]

L l
Source/Destination register

Base register

Load/Store bit

0 = Store to memory
1 ="Load from memory

Write-back bit

0 =no wnte-back
1= wnie address into base

Byte/Word bit
0 = transter wort quanbty
1= transter bye quantity

Up/Down bit
O = down; subtract ofiset from base
1=up; add offset to base

Pre/Post indexing bit
0= post; add offsel after transfer
1 = pre; agd offset before transfer

Immediate offset
1 0 = offset is an immediale value 0

Immediate offset]

1
Unsigned 12 bit immediate offset

y1 1 =ofisetis aregister 43 0
Shift Rm |
| I J
I |
Offset register
shift applied to Rm
Condition field

Figure 14. Single Data Transfer Instructions

Offsets and Auto-Indexing

The offset from the base may be either a 12 bit unsigned binary immediate value in
the instruction, or a second register (possibly shifted in some way). The offset may
be added to (U=1) or subtracted from (U=0) the base register Rn. The offset modifi-
cation may be performed either before (pre-indexed, P=1) or after (post-indexed,
P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base value
may be kept (W=0). In the case of post-indexed addressing, the write back bit is
redundant and is always set to zero, since the old base value can be retained by set-
ting the offset to zero. Therefore post-indexed data transfers always write back the
modified base. The only use of the W bit in a post-indexed data transfer is in privi-

LH7461
ORISCProcessor o 4180798 0013470 T32 =m %

Advance Information sHARP

leged mode code, where setting the W bit forces the Ntrans signal to go LOW for the
transfer, allowing the operating system to generate a user address in a system where
the memory management hardware makes suitable use of this hardware.

Shifted Register Offset

The 8 shift control bits are described in the data processing instructions section.
However, the register specified shift amounts are not available in this instruction
class.

Bytes and Words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between a
LH74610 register and memory.

The action of LDR(B) and STR(B) instructions is influenced by the bigend configura-
tion signal to the processor. The two possible configurations are described below.

Little Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied
address is on a word boundary, on data bus inputs 15 through 8 if it is a word
address plus one byte, and so on. The selected byte is placed in the bottom 8 bits of
the destination register, and the remaining bits of the register are filled with zeros.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across
data bus outputs 31 through 0. The external memory system should activate the
appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address
offset from a word boundary will cause the data to be rotated into the register so that
the addressed byte occupies bits 0 to 7. This means that half-words accessed at off-
sets 0 and 2 from the word boundary will be correctly loaded into bits 0 through 15
of the register. Two shift operations are then required to clear or to sign extend the
upper 16 bits.

A word store (STR) should generate a word aligned address. The word presented to
the data bus is not affected if the address is not word aligned. That is, bit 31 of the
register being stored always appears on data bus output 31.

Big Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the sup-
plied address is on a word boundary, on data bus inputs 23 through 16 if it is a word
address plus one byte, and so on. The selected byte is placed in the bottom 8 bits of
the destination register and the remaining bits of the register are filled with zeros.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across
data bus outputs 31 through 0. The external memory system should activate the
appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0
or 2 from a word boundary will cause the data to be rotated into the register so that
the addressed byte occupies bits 31 through 24. This means that half-words accessed
at these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the
bottom 16 bits. An address offset of 1 or 3 from a word boundary will cause the data
to be rotated into the register so that the addressed byte occupies bits 15 through 8.

34

B 3130794 001.347) 974 WA

LH74610 RISC Processor

SHARP

Advance Information

A word store (STR) should generate a word aligned address. The word presented to
the data bus is not affected if the address is not word aligned. That is, bit 31 of the
register being stored always appears on data bus output 31.

Use of R15

Write-back shall not be specified if R15 is specified as the base register (Rn). When
using R15 as the base register one must remember that it contains an address 8 bytes
on from the address of the current instruction.

R15 shall not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored
value will be address of the instruction plus 12.

Restriction on the Use of Base Register

When configured for late aborts, the following code is very difficult to unwind as the
base register, Rn, gets updated before the abort handler is entered. In certain circum-
stances it may be impossible to calculate the initial value.

<LDRISTR> Rd, [Rn],{+/-}Rn{,<shift>}
A post-indexed LDR | STR where Rm=Rn shall not be used.

Data Aborts

A transfer to or from a legal address may cause problems for a memory manage-
ment system. For instance, in a system which uses virtual memory the required data
may be absent from main memory. The memory manager can signal a problem by
taking the processor abort input HIGH, whereupon the data transfer instruction will
be prevented from changing the processor state and the Data Abort trap will be
taken. It is up to the system software to resolve the cause of the problem, then the
instruction can be restarted and the original program continued.

The LH74610 supports two types of Data Abort processing depending on the lateabt
configuration input. When configured for Early Aborts, any base register write-back
which would have occurred is prevented from happening in the event of an abort.
When configured for Late Aborts, this write-back is allowed to take place and the
Abort handler must correct this before allowing the instruction to be re-executed.

Assembler Syntax

<LDR | STR>{cond}{BH{T} Rd,<Address>

LDR - load from memory into a register

STR - store from a register into memory

{cond} - two-character condition mnemonic, see Figure 3.

{B} - if B is present then byte transfer, otherwise word transfer

{T} - if T is present the W bit will be set in a post-indexed instruction, causing the
Ntrans signal to go LOW for the transfer cycle. T is not allowed when a pre-indexed
addressing mode is specified or implied.

Rd is an expression evaluating to a valid register number.

LH74610 RISC Processor 35

BB 5130798 0013472 500 mA

Advance Information SHARP

<Address> can be:
(i) An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base and
a corrected immediate offset to address the location given by evaluating the
expression. This will be a PC relative, pre-indexed address. If the address is out
of range, an error will be generated.

(ii) A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted by
<shift>

(iii) A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-Rm{,<shift>} offset of +/- contents of index register, shifted as by

<shift>.

Rn and Rm are expressions evaluating to a valid register number. NOTE if Rn is R15
then the assembler will subtract 8 from the offset value to allow for the LH74610
pipelining. In this case base write-back shall not be specified.

<shift> is a general shift operation (see section on data processing instructions) but
note that the shift amount may not be specified by a register.

{1} write back the base register (set the W bit) if ! is present.

Examples
STR R1, [BASE, INDEX] ! ; store R1 at BASE+INDEX (both of which are
; registers) and write back address to BASE
STR R1, [BASE], INDEX ; store R1 at BASE and write back
; BASE+INDEX to BASE
LDR R1, [BASE, #16] ; load R1 from contents of BASE+16

; Don't write back
LDR R1, [BASE, INDEX,LSL#2] ; load Rl from contents of BASE+INDEX*4

LDREQB R1, [BASE, #5] ; conditionally load byte at BASE+5 into
; Rl bits 0 to 7, filling bits 8 to 31
; with zeros

STR R1, PLACE ; generate PC relative offset to address
. ; PLACE

PLACE

36

M 4140798 0013473 747 WA

LH74610 RISC Processor

SHARP

Advance Information

Block Data Transfer (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure
15.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of
the currently visible registers. They support all possible stacking modes, maintain-
ing full or empty stacks which can grow up or down memory, and are very efficient
instructions for saving or restoring context, or for moving large blocks of data
around main memory.

The Register List

The instruction can cause the transfer of any registers in the current bank (and non-
user mode programs can also transfer to and from the user bank, see below). The
register list is a 16 bit field in the instruction, with each bit corresponding to a regis-
ter. A 1in bit 0 of the register field will cause RO to be transferred, a 0 will cause it not
to be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction
is that the register list should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM
instruction plus 12.

31 28 2 25 24 23 22 21 20 19 16 15 0

Cond 100 PJUSIW]L Rn Register list

T -
Base register

Load/Store bit

0 = Store © memory
1 = Load from memory

Write-back bit
0 = no wnie-back
1= wnie address into base

PSR & force user bit
0 = do not icad PSR or force user mode
1 =load PSR or force user mode

Up/Down bit
0 = down; subtract offset from base
1=up; add offset to base

Pre/Post indexing bit
0 = post; add offsat after transfer
1= pre; add offset before transter

Condition field

Figure 15. Block Data Transfer Instructions

LH74610 RISC Processor 37

M 3140794 0013474 LA3 WA

Advance Information

Addressing Modes

The transfer addresses are determined by the contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U). The registers are transferred in the order
lowest to highest, so R15 (if in the list) will always be transferred last. The lowest
register also gets transferred to/from the lowest memory address. By way of illus-
tration, consider the transfer of R1, R5 and R7 in the case where Rn=1000H and write
back of the modified base is required (W=1). Figures 16-19 show the sequence of reg-
ister transfers, the addresses used, and the value of Rn after the instruction has com-
pleted.

In all cases, had write back of the modified base not been required (W=0), Rn would
have retained its initial value of 1000H unless it was also in the transfer list of a load
multiple register instruction, when it would have been overwritten with the loaded
value.

Address Alignment

The address should normally be a word aligned quantity and non-word aligned
addresses do not affect the instruction. However, the bottom 2 bits of the address
will appear on a[1:0] and might be interpreted by the memory system.

100CH 100CH
Rn —> 1000H R1 1000H
OFF4H OFF4H
(4)] 2)
100CH An—> 100CH
R7
RS R5
R1 1000H R1 1000H
OFF4H OFF4H
3) 4)

Figure 16. Post-Increment Addressing

38

B 3140798 0013475 S1LT WA

LH74610 RISC Processor

Advance Information

100CH 100CH
R1
Rn—> 1000H 1000H
OFF4H OFF4H
M @
100CH Rn—> R7 100CH
[RE) RS
Ri R1
1000H 1000H
OFF4H OFF4H
3) 4
Figure 17. Pre-Increment Addressing
100CH 100CH
Rn—> 1000H 1000H
R1
OFF4H OFF4H
4 2
100CH 100CH
1000H R7 1000H
RS RS
R1 Ri
OFF4H Rn—> OFF4H
) @
Figure 18. Post-Decrement Addressing
LH74610 RISC Processor 39

B 4140798 001347?L 45 WM

Advance Information

100CH 100CH
Rn—> 1000H 1000H
OFF4H R1 OFF4H
(1) 2
100CH 100CH
1000H 1000H
R7
R5 R5
R1 OFF4H Rn—> R1 OFF4H
3) @

Figure 19. Pre-Decrement Addressing

Use of the S Bit

When the S bit is set in a LDM/STM instruction its meaning depends on whether or
not R15 is in the transfer list and on the type of instruction. The S bit should only be
set if the instruction is to execute in a privileged mode.

LDM With R15 in Transfer List and S Bit Set (Mode Changes)
If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same
time as R15 is loaded.

STM With R15 in Transfer List and S Bit Set (User Bank Transfer)

The registers transferred are taken from the User bank rather than the bank corre-
sponding to the current mode. This is useful for saving the user state on process
switches. Base write-back shall not be used when this mechanism is employed.

R15 Not in List and S Bit Set (User Bank Transfer)

For both LDM and STM instructions, the User bank registers are transferred rather
than the register bank corresponding to the current mode. This is useful for saving
the user state on process switches. Base write-back shall not be used when this
mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register
during the following cycle (inserting a NOP after the LDM will ensure safety).

Use of R15 as the Base
R15 shall not be used as the base register in any LDM or STM instruction.

40

IR 31480798 0013477 392 WA

LH74610 RISC Processor

SHARP

Advance Information

Inclusion of the Base in the Register List

When write-back is specified, the base is written back at the end of the second cycle
of the instruction. During a STM, the first register is written out at the start of the
second cycle. A STM which includes storing the base, with the base as the first regis-
ter to be stored, will therefore store the unchanged value, whereas with the base sec-
ond or later in the transfer order, will store the modified value. A LDM will always
overwrite the updated base if the base is in the list.

Data Aborts

Some legal addresses may be unacceptable to a memory management system, and
the memory manager can indicate a problem with an address by taking the abort
signal HIGH. This can happen on any transfer during a multiple register load or
store, and must be recoverable if the LH74610 is to be used in a virtual memory sys-
tem.

The state of the lateabt configuration input does not affect the behavior of LDM and
STM instructions in the event of an Abort exception.

Aborts During STM Instructions

If the abort occurs during a store multiple instruction, the LH74610 takes little action
until the instruction completes, whereupon it enters the data abort trap. The mem-
ory manager is responsible for preventing erroneous writes to the memory. The only
change to the internal state of the processor will be the modification of the base reg-
ister if write-back was specified, and this must be reversed by software (and the
cause of the abort resolved) before the instruction may be retried.

Aborts During LDM Instructions

When the LH74610 detects a data abort during a load multiple instruction, it modi-
fies the operation of the instruction to ensure that recovery is possible.

(i) Overwriting of registers stops when the abort happens. The aborting load will
not take place but earlier ones may have overwritten registers. The PC is always
the last register to be written and so will always be preserved.

(ii) The base register is restored, to its modified value if write-back was requested.
This ensures recoverability in the case where the base register is also in the trans-
fer list, and may have been overwritten before the abort occurred.

The data abort trap is taken when the load multiple has completed, and the system
software must undo any base modification (and resolve the cause of the abort)
before restarting the instruction.

Assembler Syntax
<LDM | STM>{cond}<FD |ED | FA | EA | 1A | IB | DA | DB> Rn{!},<Rlist>{A}

{cond} - two character condition mnemonic, see Figure 3.

Rn is an expression evaluating to a valid register number

<Rlist> is a list of registers and register ranges enclosed in {} (eg {R0,R2-R7,R10}).

{!} if present requests write-back (W=1), otherwise W=0

{*} if present set S bit to load the CPSR along with the PC, or force transfer of user
bank when in privileged mode

LH74610 RISC Processor 41

B 41580798 0013478 229 M

Advance Information SHARP

Addressing Mode Names

There are different assembler mnemonics for each of the addressing modes, depend-
ing on whether the instruction is being used to support stacks or for other purposes.
The equivalences between the names and the values of the bits in the instruction are
shown in the following Table 5.

Table 5. Addressing Mode Names

NAME STACK OTHER L BIT P BIT UBIT
pre-increment load LDMED LDMIB 1 1 1
post-increment load LDMFD LDMIA 1 0 1
pre-decrement load LDMEA LDMDB 1 1 0
post-decrement load LDMFA LDMDA 1 0 0
pre-increment store STMFA STMIB 0 1 1
post-increment store STMEA STMIA 0 0 1
pre-decrement store STMFD STMDB 0 1 0
post-decrement store STMED STMDA 0 0 0

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the
form of stack required. The F and E refer to a "full” or "empty” stack, i.e. whether a
pre-index has to be done (full) before storing to the stack. The A and D refer to
whether the stack is ascending or descending. If ascending, a STM will go up and
LDM down, if descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and
simply mean Increment After, Increment Before, Decrement After, Decrement

Before.

Examples

LDMFD SP!, {RO,R1,R2} ; unstack 3 registers

STMIA BASE, {RO-R15} ; save all registers

LDMFD SP!, {R15} ; R15 <- (SP),CPSR unchanged

LDMFD SP!, {R15} ; R15 <- (SP)}, CPSR <- SPSR_mode (allowed only
; in privileged modes)

STMFD R13, {R0O-R14} ; Save user mode regs on stack {(allowed only

in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it effi-
ciently on return to the calling routine:

STMED SP!, {RO-R3,R14} ; save RO to R3 to use as workspace
; and R1l4 for returning

BL somewhere ; this nested call will overwrite R14

LDMED SP!, {RO-R3,R15} ; restore workspace and return

LH74610 RISC Processor
M 58180798 0013479 kLS WA

SHARP

Advance Information

Single Data Swap (SWP)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in
Figure 20.

31 28 27 23 22 21 20 19 16 15 12 11 8 7 4 3 0

Cond 00010 B} 00 Rn Rd 0000 1001 Rm

‘-— Source register
—— Destination register
Base register
Byte/Word bit

0 = swap word quantity

1= swap byte quantity

Condition field

Figure 20. Swap Instruction

The data swap instruction is used to swap a byte or word quantity between a regis-
ter and external memory. This instruction is implemented as a memory read fol-
lowed by a memory write which are "locked” together (the processor cannot be
interrupted until both operations have completed, and the memory manager is
warned to treat them as inseparable). This class of instruction is particularly useful
for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The pro-
cessor first reads the contents of the swap address. Then it writes the contents of the
source register (Rm) to the swap address, and stores the old memory contents in the
destination register (Rd). The same register may be specified as both the source and
destination.

The lock output goes HIGH for the duration of the read and write operations to sig-
nal to the external memory manager that they are locked together, and should be
allowed to complete without interruption. This is important in multi-processor sys-
tems where the swap instruction is the only indivisible instruction which may be
used to implement semaphores; control of the memory must not be removed from a
processor while it is performing a locked operation.

Bytes and Words

This instruction class may be used to swap a byte (B=1) or a word (B=0) between a
LH74610 register and memory. The SWP instruction is implemented as a LDR fol-
lowed by a STR and the action of these is as described in the section on single data
transfers. In particular, the description of Big and Little Endian configuration applies
to the SWP instruction.

Use of R15
R15 shall not be used as an operand (Rd, Rn or Rs) in a SWP instruction.

LH74610 RISC Processor 43

IR 5140798 0013430 947 M

Advance Information SHARP

Data Aborts

If the address used for the swap is unacceptable to a memory management system,
the memory manager can flag the problem by driving abort HIGH. This can happen
on either the read or the write cycle (or both), and in either case, the data swap
instruction will be prevented from changing the processor state and the Data Abort
trap will be taken. It is up to the system software to resolve the cause of the problem,
then the instruction can be restarted and the original program continued.

Because no base register write-back is allowed, the behavior of an aborted SWP
instruction is the same regardless of the state of the lateabt configuration input.

Assembler Syntax

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} - two-character condition mnemonic, see Figure 3

{B} - if B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn are expressions evaluating to valid register numbers

Examples

SWP RO,R1, [BASE] ; load RO with the contents of BASE, and
; store R1 at BASE

SWPB R2,R3, [BASE] ; load R2 with the byte at BASE, and
;: store bits 0 to 7 of R3 at BASE

SWPEQ RO,RO, [BASE] ; conditionally swap the contents of BASE
; with RO

Software Interrupt (SWI)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in

Figure 21.)

31 28 27 24 23 0

Cond 1111 Comment field (ignored by Processor)

Condition field

Figure 21. Software Interrupt Instruction

The software interrupt instruction is used to enter Supervisor mode in a controlled
manner. The instruction causes the software interrupt trap to be taken, which effects
the mode change. The PC is then forced to a fixed value (&08) and the CPSR is saved
in SPSR_svc. If the SWI vector address is suitably protected (by external memory
management hardware) from modification by the user, a fully protected operating
system may be constructed.

44

R 3130798 0013481 413 mB

LH74610 RISC Processor

SHARP

Advance Information

Return From the Supervisor

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC
adjusted to point to the word after the SWI instruction. MOVS PC,R14_svc will
return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to
use software interrupts within itself it must first save a copy of the return address
and SPSR.

Comment Field

The bottom 24 bits of the instruction are ignored by the processor, and may be used
to communicate information to the supervisor code. For instance, the supervisor
may look at this field and use it to index into an array of entry points for routines
which perform the various supervisor functions.

Assembler Syntax
SWI{cond} <expression>
{cond} - two character condition mnemonic, see Figure 3

<expression> is evaluated and placed in the comment field (which is ignored by the
LH74610).

Examples

SWI ReadC get next character from read stream
SWI WriteI+"k" ; output a "k" to the write stream
SWINE O conditionally call supervisor

with 0 in comment field

~

e we o~

The above examples assume that suitable supervisor code exists, for instance:

&08 B Supervisor ; SWI entry point

EntryTable ; addresses of supervisor routines
& ZeroRtn
& ReadCRtn

& WriteIRtn

Zero * 0
ReadC * 256
Writel * 512
Supervisor

; SWI has routine required in bits 8-23 and data (if any) in bits 0-7.
; Assumes R13_svc points to a suitable stack

STM R13, {RO-R2,R14}
LDR RO, [R14,#-4]

BIC RO,RO, #&FF000000
MOV R1,RO,LSR#8 get routine offset

ADR R2,EntryTable get start address of entry table
LDR R15, [R2,R1,LSL#2] ; branch to appropriate routine

save work registers and return address
get SWI instruction
clear top 8 bits

O T T TR Y

WriteIRtn ; enter with character in RO bits 0-7
LDM R13, {RO-R2,R15}* ; restore workspace and return
LH74610 RISC Processor 45

R 3180798 0013482 75T WA

Advance Information

Coprocessor Instructions on the LH74610

NOTE: The LH74610 does not have a coprocessor interface. The LH74610 only
directly supports Coprocessor Register Transfer instructions (CPRT) to coprocessor
#15 which are used for programming internal registers.

All other coprocessor instructions will cause the undefined instruction trap to be
taken.

Coprocessor Data Operations (CDP)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in

Figure 22.

31 28 27 24 23 2019 16 15 1211 87 543 0

Cond

Figure 22. Coprocessor Data Operation Instruction

This class of instruction is used to tell a coprocessor to perform some internal opera-
tion. No result is communicated back to the LH74610, and it will not wait for the
operation to complete. The coprocessor could contain a queue of such instructions
awaiting execution, and their execution can overlap other LH74610 activity allowing
the coprocessor and the LH74610 to perform independent tasks in parallel.

Use of the CDP instruction on the LH74610 will cause an undefined instruction trap
to be taken.

Coprocessor Data Transfers (LDC, STC)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in

Figure 23.

31 28 27

Cond

Figure 23. Coprocessor Data Transfer Instructions

This class of instruction is used to load (LDC) or store (STC) a subset of the coproces-
sor’s registers directly to memory. The LH74610 is responsible for supplying the
memory address, and the coprocessor supplies or accepts the data and controls the
number of words transferred.

Use of the CDP instruction on the LH74610 will cause an undefined instruction trap
to be taken.

46

LH74610 RISC Processor

M 2130798 0013483 bL9L WA

SHARP

Advance Information

Coprocessor Register Transfers (MRC, MCR)

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in
Figure 24.

31 28 27 24 23 21 20 19 16 15 12 11 87 543 0

Cond

1110 000 ¢L CRn Rd 1111 000 11 o000

Figure 24. Coprocessor Register Transfer Instructions

The instruction is implemented specifically on the LH74610 for coprocessor #15. For
other coprocessors the instruction results in an undefined instruction trap.

This class of instruction is used to communicate information directly between the
processor core and the control registers.

An example of a MRC instruction would be a read of the LH74610 i-d register. An
example of a MCR instruction is the writing of the LH74610 control register.

The Coprocessor Fields

The CP# field [11:8] should be set to #15 (1111) as shown in fig 26.
Cond denotes Condition field

CRn denotes LH74610 register

Rd denotes ARM core register

Assembler Syntax

<MCR | MRC>{cond} CP#15,0,Rd,CRn,C0

MRC - move to LH74610 register (L=1)

MCR - move from LH74610 register (L=0)

{cond} - two character condition mnemonic, see Figure 3

CP#15 - the unique number of the required coprocessor

Rd is an expression evaluating to a valid LH74610 register number
CRn is an expression evaluating to a LH74610 register number

Examples

MRC CP#15,0,R0,MMUID, CO ; get the LH74610 i-d
MCREQ CP#15,0,R14,MMUCR,CO ; conditionally configure the control register

LH74610 RISC Processor 47

I 4140798 0013484 522 W

Advance Information SHARP

Undefined Instruction

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction format is shown in

Figure 25.

31 28 27 25 % 5 4 3 0

Cond 011 XO000C000000000NNX 1 00X

Figure 25. Undefined Instruction

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to
any coprocessors which may be present, and all coprocessors must refuse to accept it
by driving cpa and cpb HIGH.

Assembler Syntax

At present the assembler has no mnemonics for generating this instruction. If it is
adopted in the future for some specified use, suitable mnemonics will be added to
the assembler. Until such time, this instruction shall not be used.

Instruction Set Summary

A summary of the LH74610 instruction set is shown in Figure 26.

NOTE: Some instruction codes are not defined but do not cause the Undefined
instruction trap to be taken, for instance a Multiply instruction with bit 5 or bit 6
changed to a 1. These instructions shall not be used, as their action may change in
future ARM implementations.

48

R 3140798 0013485 469 1M

LH74610 RISC Processor

SHARP Advance Information

31 28 2726 2524232221 20 19 16 15 1211 87 543 0)

| Cond {00|I]Opcode : Rn Rd Operand 2 ll:;;: ;;r::z::n 8
Cond 000000 S Rd Rn Rs 1001 Rm Multiply
Cond 00010 IBJ OO Rn Rd 0000 1001 Rm Single Data Swap
Cond fo1jIfPJUIBIWIL Rn Rd offset Single Data Transfer
Cond 1011 OO 1§ XXXX | Undefined
Cond 100 Py slw L Rn Register List Block Data Transfer
Cond 101 JL offset Branch
Cond 110 OO XX Undefined
Cond f1110) $.9.0.06.9.60.6.0.900996900604 0] XXXX] Undefined
Cond F1110 000jL CRn Rd 1111 000 J1] 0000 |CoprocReg Transfer
Cond | 1111 ignored by Processor Software Interrupt

Figure 26. Instruction Set Summary

Instruction Set Examples

The following examples show ways in which the basic LH74610 instructions can
combine to give efficient code. None of these methods saves a great deal of execu-
tion time (although they may save some), mostly they just save code.

Using the Conditional Instructions

(1) using conditionals for logical OR

CMP Rn, #p ;if Rn=p OR Rm=g THEN GOTO Label

BEQ Label

CMP Rm, #g

BEQ Label

can be replaced by

CMP Rn, #p

CMPNE Rm, #g ;if condition not satisfied try other test
BEQ Label

(2) absolute value

TEQ Rn, #0 ;test sign
RSBMI Rn,Rn,#0 ;and 2's complement if necessary

LH74610 RISC Processor 49
M 4140798 001348L 3TS5 WM

Advance Information

(3) multiplication by 4, 5 or 6 (run time)

MOV Rc,Ra, LSL#2 ;ultiply by 4

CMP Rb, #5 ;test value

ADDCS Rc,Rc,Ra ;complete multiply by 5
ADDHI Rc,Rc,Ra ;complete multiply by 6

(4) combining discrete and range tests

TEQ Rc, #127 ;discrete test

CMPNE Rc, #* "-1 ;range test

MOVLS Rc, #"." ;IF Re<=" * OR Rc=ASCII(127)
;THEN Rc:="."

(5) division and remainder

; enter with numbers in Ra and Rb

I

MOV Rent, #1 :bit to control the division
Divl CMP Rb, #&80000000 ;move Rb until greater than Ra
CMPCC Rb,Ra

MOVCC Rb,Rb,ASL#1
MOVCC Rent,Rent,ASL#1

BCC Divl
MOV Rc, #0
Div2 CMP Ra,Rb ;test for possible subtraction
SUBCS Ra,Ra,Rb ;subtract if ok
ADDCS Rc, Rc,Rent ;put relevant bit into result
MOVS Rcnt,Rent,LSR#1 ;shift control bit
MOVNE Rb,Rb,LSR#1 ;halve unless finished
BNE Div2

divide result in Rc
remainder in Ra

Pseudo Random Binary Sequence Generator

It is often necessary to generate (pseudo-) random numbers and the most efficient
algorithms are based on shift generators with exclusive or feedback rather like a
cyclic redundancy check generator. Unfortunately the sequence of a 32 bit generator
needs more than one feedback tap to be maximal length (i.e. 2/32-1 cycles before
repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic
algorithm is newbit:=bit33 eor bit20, shift left the 33 bit number and put in newbit at
the bottom; this operation is performed for all the newbits needed (i.e. 32 bits). The
entire operation can be done in 55 cycles:

; enter with seed in Ra (32 bits), Rb (1 bit in Rb 1lsb), uses Rc

TST Rb,Rb, LSR#1 ;top bit into carry
MOVS Rc,Ra,RRX :33 bit rotate right
ADC Rb,Rb,Rb ;carry into 1lsb of Rb

EOR Rc,Rc,Ra,LSL#12 ; {(involwved!)
EOR Ra,Rc,Rc,LSR#20 ;{(similarly involved!)

: new seed in Ra, Rb as before

: LH74610 RISC Processor
B 21480798 0013487 231 W=

SHARP Advance Information

Multiplication by Constant Using the Barrel Shifter
(1) Multiplication by 2*n (1,2,4,8,16,32..)
MOV Ra, Rb, LSL #n
(2) Multiplication by 2”n+1 (3,5,9,17..)
ADD Ra,Ra,Ra,LSL #n
(3) Multiplication by 2*n-1 (3,7,15..) .display
RSB Ra,Ra,Ra,LSL #n
(4) Multiplication by 6 .display

ADD Ra,Ra,Ra,LSL#1 ;multiply by 3
MOV Ra,RaLSL#1 ;and then by 2

(5) Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2 ;multiply by 5
ADD Ra,Rc,Ra,LSL#1 ;multiply by 2 and add in next digit

(6) General recursive method for Rb := Ra*C, C a constant:
(a) IfCeven,say C=2*n*D, D odd:
D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}
MOV Rb,Rb,LSL #n
(b) If CMOD 4 =1, say C = 2”n*D+1, D odd, n>1:
D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
ADD Rb,RaRb,LSL #n
(c) fCMOD 4 =3, say C =2*n*D-1, D odd, n>1:
D=1: RSB Rb,Ra,Ra,LSL #n

D<>1: {Rb := Ra*D}
RSB Rb,Ra,Rb,LSL #n

LH74610 RISC Processor 51
M 3140798 00L3u4s83 178 1B

Advance Information

SHARP

This is not quite optimal, but close. An example of its non-optimality is multiply by

45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ;multiply by 3
RSB Rb,Ra,Rb,LSL#2 ;multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL#2 ;multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ;multiply by 9
ADD Rb,Rb,Rb,LSL#2 ;multiply by 5*9 = 45

Loading a Word From an Unknown Alignment

; enter with address in Ra (32 bits)

; uses Rb, Rc; result in

Rd.

;: Note d must be less than c e.g. 0,1

BIC Rb,Ra, #3 ;get word aligned address

LDMIA Rb, {Rd4,Rc} ;get 64 bits containing answer
AND Rb, Ra, #3 ;correction factor in bytes
MOVS Rb,Rb,LSL#3 ;...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ;produce bottom of result word
; (1f not aligned)
RSBNE Rb,Rb, #32 ;get other shift amount

ORRNE Rd,Rd,Rc,LSL Rb ;combine two halves to get result

Loading a Halfword (Little Endian)

LDR Ra, [Rb, #2] ; Get halfword to bits 15:0
MOV Ra,Ra,LSL #16 ; move to top
MOV Ra,Ra,LSR #16 ; and back to bottom

; use ASR to get sign extended version

Loading a Halfword (Big Endian)

LDR Ra, [Rb, #2]
MOV Ra,Ra,LSR #16

’
’

’

Get halfword to bits 31:16

and back to bottom
use ASR to get sign extended version

52

B 8180798 0013449 OOy W

LH74610 RISC Processor

SHARP

LH74610 RISC Processor

Configuring the LH74610

The operation and configuration of the LH74610 is controlled both directly via
coprocessor instructions and indirectly via the Memory Management Page tables.
The coprocessor instructions manipulate a number of on-chip registers which con-
trol the configuration of the Cache, Write Buffer, MMU and a number of other con-
figuration options.

To ensure backwards compatibility of future CPUs, all reserved or unused bits in
registers and coprocessor instructions should be programmed to '0". Invalid registers
must not be read /written. The following bits shall be programmed to ‘0".

Register 1 bits[30:9]
Register 2 bits[13:0]
Register 5 bits[31:0]
Register 6 bits[11:0]
Register 7 bits[31:0]

Internal Coprocessor Instructions

The on-chip registers may be read using MRC instructions and written using MCR
instructions. These operations are only allowed in non-user modes and the unde-
fined instruction trap will be taken if accesses are attempted in user mode.

31 b8

MCR Cond

Cond = ARM condition codes
CRn = LH74610 Register
Rd = ARM Register

Figure 27. Internal Coprocessor Instructions

Advance Information 53

M 5140798 0013490 a42L WW

LH74610 RISC Processor SHARP

LH74610 Registers

The LH74610 contains registers which control the cache and MMU operation. These
registers are accessed using CPRT instructions to Coprocessor #15 with the processor
in a privileged mode. Only some of registers 0-7 are valid: an access to an invalid
register will cause neither the access nor an undefined instruction trap, and therefore
should never be carried out; an access to any of the registers 8-15 will cause the
undefined instruction trap to be taken.

Register Reads
RiBokoksk7k6R25p4R3p 2Rk opon 81 7ienshaf3i2hifiofo]8]7]6[5[4[3[2]1]0

Status

Register Writes
2p1201 918171 e[157141301211009[8]7 |6 5/4[312]1]0
0
1
2 Translation Table Base
Domain Access Control -
3 1211 [10[98765
: ; “ [ReservED 1
5 FLUSH TLB (data - don't care)
6 Purge TLB (data = purge address)
7 FLUSH IDC (data - don't care)
8-15
54 Advance Information

M 4180798 0013491 7L WA

SHARP

LH74610 RISC Processor

Register 0 ID
Register 0 is a read-only identity register that returns the Sharp code for this chip.
The code returned is 41560614.

3130R9p8R 72625k 4R 3222 1ol o8l 7aeisp4n3121110[9[8|7[6]5]4 !3 [2]1]0

41

56 Part { Rev

Register 1 Control

Register 1 is a write only register containing a number of control bits. All bits in this
register are forced LOW by reset.

ABitl

CBit2

W Bit 3

P Bit 4

D Bit 5

L Bit6

BBit7

Enable/disable
0 - on-chip Memory Management Unit turned off
1 - on-chip Memory Management Unit turned on.

Address Fault Enable/Disable
0 - alignment fault disabled
1 - alignment fault enabled

Cache Enable/Disable
0 - Instruction / data cache turned off
1 - Instruction / data cache turned on

Write buffer Enable/Disable
0 - Write buffer turned off
1 - Write buffer turned on

ARM 32/26 Bit Program Space
0 - 26 bit Program Space selected
1 - 32 bit Program Space selected

ARM 32/26 Bit Data Space
0 - 26 bit Data Space selected
1 - 32 bit Data Space selected

Late Abort Timing
0 - Early abort mode selected
1 - Late abort mode selected

Big/Little Endian
0 - Little-endian operation
1 - Big-endian operation

Advance Information

55

B 2180798 0013492 LT9 1R

LH74610 RISC Processor SHARP

SBit8 System
This bit controls the LH74610 permission system selection. Refer to Section Descrip-
tor

Register 2 Translation Table Base

Register 2 is a write-only register which holds the base of the currently active Level
One page table.

31)

Translation Table Base

Register 3 Domain Access Control

Register 3 is a write-only register which holds the current access control for domains
0 to 15. See the section on the MMU for more details.

313009 8R 7R ekskab3k2k 1oL st el shaizfianfio[o]8|7[6]5]4[3]2[1]0
151413 /12 |11|10| 9 {8 |7 |6 5|4 |3]2]1]0

Domain

00 Fault 01 Client 10 Reserved 11 Manager

Register 4 Reserved

Register 4 is Reserved. Accessing this register has no effect, but should never be
attempted.

Register 5

Read: Fault Status

Reading register 5 returns the status of the last data fault. It is not updated for a
prefetch fault. See the section on the MMU for more details. Note that only the bot-
tom 12 bits are returned. The upper 20 bits will be the last value on the internal data
bus, and therefore will have no meaning. Bits 11:8 are always returned as zero.

31 / 1211 8[7] [4[3] [o]

0{0/0|Domain{Status

Write: Translation Lookaside Buffer Flush
Writing Register 5 flushes the TLB. (The data written is discarded).

56 B 2180798 0013493 535 = Advance Information

SHARP

LH74610 RISC Processor

Register 6

Read: Fault Address
Reading register 6 returns the virtual address of the last data fault.

31, [o]

Fault Address

Write: TLB Purge

Writing Register 6 purges the TLB; the data is treated as an address and the TLB is
searched for a corresponding page table descriptor. If a match is found, the corre-
sponding entry is marked as invalid. This allows the page table descriptors in main
memory to be updated and invalid entries in the on-chip TLB to be purged without
requiring the entire TLB to be flushed.

Purge Address

Register 7 IDC Flush

Register 7 is a write-only register. The data written to this register is discarded and
the IDC is flushed.

Registers 8-15 Reserved

Accessing any of these registers will cause the undefined instruction trap to be
taken.

Instruction and Data Cache (IDC)

The LH74610 contains a 4kByte mixed instruction and data cache; the IDC has 256
lines of 16 bytes (4 words), organized as 4 blocks of 64 lines (making it 64-way set
associative), and uses the virtual addresses generated by the processor core. The IDC
is always reloaded a line at a time (four words). It may be enabled or disabled via the
LH74610 Control Register and is disabled on RESET. The operation of the cache is
further controlled by two bits: Cacheable and Updateable, which are stored in the
Memory Management Page Tables. For this reason, in order to use the IDC, the
MMU must be enabled. The two functions may however be enabled simultaneously,
with a single write to the Control Register.

Advance Information 57

B 4180798 001349y 471 mA

LH74610 RISC Processor SHARP

The Cacheable Bit

The Cacheable bit determines whether data being read may be placed in the IDC
and used for subsequent read operations. Typically main memory will be marked as
Cacheable to improve system performance, and I/O space as Non-cacheable to stop
the data being stored in the LH74610's cache. [For example if the processor is polling
a hardware flag in I/O space, it is important that the processor is forced to read data
from the external peripheral, and not a copy of initial data held in the cache]. The
Cacheable bit can be configured for both pages and sections.

The Updateable Bit

IDC Operation

The Updateable bit determines whether the data in the cache should be updated
during a write operation to maintain consistency with the external memory. [In cer-
tain cases automatic updating of cached data is not required: for instance, when
using the MEMCla memory manager, a read operation in the address space
between 3400000H-3FFFFFFH would access the ROMs, but a write operation in the
same address space would change a MEMC register, and should not affect the
cached ROM data]. The Updateable bit can only be configured by the Level One
descriptor: that is an entire section or all the pages for a single Level One descriptor
share the same configuration.

When the processor performs a read or write operation, the translation entry for that
address is inspected and the state of the Cacheable and Updateable bits determines
the subsequent action.

Cacheable Reads C=1

The cache is searched for the relevant data; if found in the cache, the data is fed to
the processor using a fast clock cycle (from FCLK). If the data is not found in the
cache, an external memory access is initiated to read the appropriate line of data (4
words) from external memory and it is stored in a pseudo-randomly chosen entry in
the cache (a linefetch operation).

Uncacheable Reads C=0

The cache is not searched for the relevant data; instead an external memory access is
initiated. No linefetch operation is performed, and the cache is not updated.
Updateable Writes U=1

An external memory access is initiated, and the cache is searched; if the cache holds
a copy of the data from the address being written to, then the cache data is simulta-
neously updated.

Non-Updateable Writes U =0

An external memory access is initiated, but the cache is not searched and the con-
tents of the cache are not affected.

58

B 3180798 0013495 308 WA

Advance Information

SHARP

LH74610 RISC Processor

IDC Validity

The IDC operates with virtual addresses, so care must be taken to ensure that its
contents remain consistent with the virtual to physical mappings performed by the
Memory Management Unit. If the Memory Mappings are changed, the IDC validity
must be ensured.

Software IDC Flush

The entire IDC may be marked as invalid by writing to the LH74610 IDC Flush Reg-
ister (Register 7). The cache will be flushed immediately the register is written, but
note that the following two instruction fetches may come from the cache before the
register is written.

Doubly Mapped Space

Since the cache works with virtual addresses, it is assumed that every virtual
address maps to a different physical address. If the same physical location is
accessed by more than one virtual address, the cache cannot maintain consistency,
since each virtual address will have a separate entry in the cache, and only one entry
will be updated on a processor write operation. To avoid any cache inconsistencies,
both doubly-mapped virtual addresses should be marked as uncacheable.

Read-Lock-Write

The IDC treats the Read-Locked-Write instruction as a special case. The read phase
always forces a read of external memory, regardless of whether the data is contained
in the cache. The write phase is treated as a normal write operation (and if marked
as Updateable, and the data is already in the cache, the cache will be updated).
Externally the two phases are flagged as indivisible by asserting the LOCK signal.

IDC Enable/Disable and Reset

The IDC is automatically disabled and flushed on RESET. Once enabled, cacheable
read accesses will cause lines to be placed in the cache. If subsequently disabled, no
new lines will be placed in the cache, and the cache is not searched, but, Updateable
write operations will continue to operate, thus maintaining consistency with the
external memory. If the cache is subsequently re-enabled, it must be flushed if data
already in the cache no longer matches that in external memory.

To enable the IDC

* Ensure the MMU is enabled (set bit 0 in Control Register)
* Enable the IDC (set bit 2 in Control Register)

NOTE: The MMU and IDC may be enabled simultaneously.

To disable the IDC
¢ Disable the IDC (clear bit 2 in Control Register)

NOTE: Updateable writes continue but no linefetches are performed. To fully inhibit
the cache’s operation it should be disabled and then flushed to ensure it contains no
valid entries.

Advance Information

M 3130798 0013496 24y mm >

LH74610 RISC Processor

Write Buffer (WB)

Bufferable Bit

The LH74610 Write Buffer is provided to improve system performance. It can buffer
up to 8 words of data, and 2 independent addresses. It may be enabled or disabled
via the W bit (bit 3) in the LH74610 Control Register and the buffer is disabled and
flushed on RESET. The operation of the Write Buffer is further controlled by one bit,
B, or Bufferable, which is stored in the Memory Management Page Tables. For this
reason, in order to use the Write Buffer, the MMU must be enabled. The two func-
tions may however be enabled simultaneously, with a single write to the Control
Register. For a write to use the Write Buffer, both the W bit in the Control Register,
and the B bit in the corresponding page table must be set.

This bit controls whether a write operation may or may not use the Write Buffer.
[Typically main memory will be bufferable and I/O space unbufferable]. The Buffer-
able bit can be configured for both pages and sections.

Write Buffer Operation

When the CPU performs a write operation, the translation entry for that address is
inspected and the state of the B bit determines the subsequent action. If the Write
Buffer is disabled via the LH74610 Control Register, bufferable writes are treated in
the same way as unbulffered writes.

Bufferable Write

If the Write Buffer is enabled and the processor performs a write toa bufferable area,
the data is placed in the Write Buffer at FCLK speeds and the CPU continues execu-
tion. The Write Buffer then performs the external write in parallel. If however the
Write Buffer is full (either because there are already 8 words of data in the buffer, or
because there is no slot for the new address) then the processor is stalled, until there
is sufficient space in the buffer.

Unbufferable Writes

If the Write Buffer is disabled or the CPU performs a write to an unbufferable area,
the processor is stalled until the write completes externally, which may require syn-
chronization and several external clock cycles.

Read-Lock-Write

The write phase of a read-lock-write sequence is treated as an Unbuffered write,
even if it is marked as buffered.

Note that a single write requires one address slot and one data slot in the write
buffer; a sequential write of n words requires one address slot and n data slots. The
total of 8 data slots in the buffer may be used as required. So for instance there could
be one non-sequential write and one sequential write of 7 words in the buffer, and
the processor could continue as normal: a third write or an eighth word in the sec-
ond write would stall the processor until the first write had completed.

Advance Information

s 2130798 0013497 180 =R

SHARP LH74610 RISC Processor

To enable the Write Buffer

* Ensure the MMU is enabled (set bit 0 in Control Register)
¢ Enable the Write Buffer (set bit 3 in Control Register)

NOTE: The MMU and Write Buffer may be enabled simultaneously

To disable the Write Buffer
¢ Disable the Write Buffer (clear bit 3 in Control Register)
NOTE: Any writes already in the write buffer will complete normally.

External Coprocessors

The LH74610 has no external coprocessor bus, so it is not possible to add external
coprocessors to this device. If this is required, then the ARM600 should be used.

The LH74610 does still have an internal coprocessor designated #15 for internal con-
trol of the device. If a coprocessor other than #15 is accessed, then the CPU will take
the undefined instruction trap.

Memory Management Unit (MMU)

The MMU performs two primary functions: it translates virtual addresses into phys-
ical addresses, and it controls memory access permissions. The MMU hardware
required to perform these functions consists of a Translation Look-aside Buffer
(TLB), access control logic, and translation table walking logic.

The MMU supports memory accesses based on Sections or Pages. Sections are com-
prised of 1IMB blocks of memory. Two different page sizes are supported: Small
Pages consist of 4kB blocks of memory and Large Pages consist of 64kB blocks of
memory. (Large Pages are supported to allow mapping of a large region of memory
while using only a single entry in the TLB). Additional access control mechanisms
are extended within Small Pages to 1kB Sub-Pages and within Large Pages to 16kB
Sub-Pages.

The MMU also supports the concept of domains - areas of memory that can be
defined to possess individual access rights. The Domain Access Control Register is
used to specify access rights for up to 16 separate domains.

The TLB caches 32 translated entries. During most memory accesses, the TLB pro-
vides the translation information to the access control logic.

If the TLB contains a translated entry for the virtual address, the access control logic
determines whether access is permitted. If access is permitted, the MMU outputs the
appropriate physical address corresponding to the virtual address. If access is not
permitted, the MMU signals the CPU to abort.

If the TLB misses (it does not contain a translated entry for the virtual address), the
translation table walk hardware is invoked to retrieve the translation information
from a translation table in physical memory. Once retrieved, the translation informa-
tion is placed into the TLB, possibly overwriting an existing value. The entry to be
overwritten is chosen cyclically.

When the MMU is turned off (as happens on RESET), the virtual address is output
directly onto the physical address bus.

Ad Inf i !
vance Information B 5150798 00134498 0OL7 mA °

LH74610 RISC Processor SHARP

MMU Program Accessible Registers

The LH74610 Processor provides several 32-bit registers which determine the opera-
tion of the MMU. The format for these registers is shown in Figure 28. A brief
description of the registers is provided below. Each register will be discussed in
more detail within the section that describes its use.

Data is written to and read from the MMU's registers using the ARM CPU's MRC
and MCR coprocessor instructions.

3

—

32012 9827262524232 10 0h9t18417m515§[%‘)1h}3ﬁ2\hlh 0 9

2 prite Translation Table Base

3 o Domain Access Control
wmite[15 (14 (13 [12 [11]10][9 [8]7

543|2 1]0

5 raad 010 |0 | Domain | Status
5 prite FLUSH TLB (data - don't care)

6 read Fault Address

6 yrite Purge TLB (data = purge address)

Figure 28. MMU Register Summary

e The Translation Table Base Register holds the physical address of the base of the
translation table maintained in main memory. Note that this base must reside on
16kB boundaries.

e The Domain Access Control Register consists of sixteen 2-bit fields, each of which
defines the access permissions for one of the sixteen Domains (D15-D0).

e The Fault Status Register indicates the domain and type of access being attempted
when an abort occurred. Bits 7:4 specify which of the sixteen domains (D15-D0)
was being accessed when a fault occurred. Bits 3:1 indicate the type of access being
attempted. The encoding of these bits is different for internal and external faults (as
indicated by bit 0 in the register) and is shown in Table 6. A write to this register
flushes the TLB.

o The Fault Address Register holds the virtual address of the access which was
attempted when a fault occurred. A write to this register causes the data written to
be treated as an address and, if it is found in the TLB, the entry is marked as invalid.
(This operation is known as a TLB purge). The Fault Status Register and Fault
Address Register are only updated for data faults, not for prefetch faults.

62

mm 21480798 0013499 TS53 W8 Advance Information

SHARP LH74610 RISC Processor

Address Translation

The MMU translates virtual addresses generated by the CPU into physical addresses
to access external memory, and also derives and checks the access permission. Trans-
lation information, which consists of both the address translation data and the
access permission data, resides in a translation table located in physical memory.
The MMU provides the logic needed to traverse this translation table, obtain the
translated address, and check the access permission.

There are three routes by which the address translation (and hence permission
check) takes place. The route taken depends on whether the address in question has
been marked as a section-mapped access or a page-mapped access; and there are
two sizes of page-mapped access (large pages and small pages). However, the trans-
lation process always starts out in the same way, as described below, with a Level
One fetch. A section-mapped access only requires a Level One fetch, but a page-
mapped access also requires a Level Two fetch.

The Translation Process

Translation Table Base

The translation process is initiated when the on-chip TLB does not contain an entry
for the requested virtual address. The Translation Table Base (TTB) Register points to
the base of a table in physical memory which contains Section and/or Page descrip-
tors. The 14 low-order bits of the TTB Register are set to zero as illustrated in
Figure 29; the table must reside on a 16 kB boundary.

31 Ly — g

Translation Table Base

Figure 29. Translation Table Base Register

Level One Fetch

Bits 31:14 of the Translation Table Base register are concatenated with bits 31:20 of
the virtual address to produce a 30-bit address as illustrated in Figure 30. This
address selects a four-byte translation table entry which is a First Level Descriptor
for either a Section or a Page (bitl of the descriptor returned specifies whether it is
for a Section or Page).

Level One Descriptor

The Level One Descriptor returned is either a Page Table Descriptor or a Section
Descriptor, and its format varies accordingly. Figure 31 illustrates the format of Level
One Descriptors.

Ad Informati 63
vance lntormation o 1180798 00L3500 5TS =M

SHARP

LH74610 RISC Processor
Virtual Address
31] 2019l 0
Table Index
Translation Table Base
&l
Translation Base
4 18 12
31] [1413] 2[1]0
Translation Base Table Index 00
First Level Descriptor
31] [o]

Trans.
Fault

Page

Section Base

Add

ap F>{Domain

P

UICIBI 10 | Section

A T

¢ 11 | Reserved

Figure 31. Level One Descriptors

64

Il 4180798

0013501 431 mA

Advance Information

SHARP

LH74610 RISC Processor

The two least significant bits indicate the descriptor type and validity, and are inter-
preted as shown in Table 6.

Table 6. Interpreting Level One Descriptor Bits [1:0]

VALUE MEANING NOTES
00 Invalid Generates a Section Translation Fauit.
01 Page Indicates that this is a Page Descriptor
10 Section Indicates that this is a Section Descriptor
11 Reserved | Reserved for future use. (currently as for
invalid)
Page Table Descriptor

Bits 3:2 are always written as 0.

Bit 4 Updateable: indicates that the data in the cache should be updated during a
write operation to maintain consistency with external memory (if the cache is
enabled).

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access Con-
trol Register) that contain the primary access controls.

Bits 31:10 form the base for referencing the Page Table Entry. (The page table index
for the entry is derived from the virtual address as illustrated in Figure 5).

If a Page Table Descriptor is returned from the Level One fetch, a Level Two fetch is
initiated as described below.

Section Descriptor

Bits 4:2 (U, C, & B) control the cache- and write-buffer-related functions as follows:

U - Updateable: indicates that the data in the cache should be updated during a
write operation to maintain consistency with external memory (if the cache is
enabled).

C - Cacheable: indicates that data at this address will be placed in the cache (if the
cache is enabled).

B - Bufferable: indicates that data at this address will be written through the write
buffer (if the write buffer is enabled).

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access Con-
trol Register) that contain the primary access controls.

Advance Information 65

B 3140798 0013502 375 M

LH74610 RISC Processor

SHARP

Bits 11:10 (a) specify the access permissions for this section and are interpreted as
shown in Table 7. Their interpretation is dependent upon the setting of the 5 bit
(Control Register bit 8). Note that the Domain Access Control specifies the primary
access control; the ap bits only have an effect in client mode. Refer to section on

access permissions.

Table 7. Interpreting Access Permission (ap) Bits

PERMISSIONS
ap NOTES
SUPERVISOR USER

00 No Access No Access Any access generates a permission
fault

00 Read Only | No Access Supervisor read only permitted

01 Read/Write | No Access Access allowed only in Supervisor
mode

10 Read/Write | Read Only | Writes in User mode cause permis-
sion fault

11 Read/Write | Read/Write | All access types permitted in both
modes.

Bits 19:12 are always written as 0.
Bits 31:20 form the corresponding bits of the physical address for the 1MByte sec-

tion.

m 2140798 0013503 204 M

Advance Information

SHARP

LH74610 RISC Processor

Translating Section References

Figure 32 illustrates the complete Section translation sequence. Note that the access
permissions contained in the Level One descriptor must be checked before the phys-
ical address is generated. The sequence for checking access permissions is described

below.

31 [20]19

Virtual Address

Table Index

Section Index

Translation Table Base

g zl

Translation Base

18

13

Translation Base

Table Index

00

31

First Level Descriptor

Section Base Add %EDomain.U B 10
12 , 20
Physical Address /
31 [20]19) [o]

1

. Section Base Add
\

Section Index

Figure 32. Section Translation

Advance Information
W 5140798 0013504 140 mm

67

LH74610 RISC Processor

Level Two Descriptor

If the Level One fetch returns a Page Table Descriptor, this provides the base address
of the page table to be used. The page table is then accessed as described in Figure 5,
and a Page Table Entry, or Level Two Descriptor, is returned. This in turn may define
either a Small Page or a Large Page access. Figure 33 illustrates the format of Level
Two Descriptors.

2[11fio]e[8[7]6]5]4]3]2[1]0

Trans.
00 | Fault

Large Page Base Address Large Page

Small Page Base Address ap3lap2lapl|ap0iC{B| 10 | Small Page

Reserved

Figure 33. Page Table Entry (Level Two Descriptor)

The two least significant bits indicate the page size and validity, and are interpreted
as shown in Table 8.

Table 8. Interpreting Page

VALUE MEANING NOTES

00 Invalid Generates a Page Translation Fault.
01 Large Page | Indicates that this is a 64 kB Page
10 Small Page | Indicates that thisisa 4 kB Page

11 Reserved Reserved for future use. (currently as for
invalid)

Bit 2 B - Bufferable: indicates that data at this address will be written through the
Write Buffer (if the Write Buffer is enabled).

Bit 3 C - Cacheable: indicates that data at this address will be placed in the IDC (if
the cache is enabled).

Bits 11:4 specify the access permissions (ap3 - ap0) for the four sub-pages and inter-
pretation of these bits is described earlier in Table 4.

For large pages, bits 15:12 are programmed as 0

Bits 31:12 (small pages) or bits 31:16 (large pages) are used to form the correspond-
ing bits of the physical address - the physical page number. (The page index is
derived from the virtual address as illustrated in Figures 34 and 35).

68

M 8180798 0013505 0&7 WM

Advance Information

SHARP

LH74610 RISC Processor

Translating Small Page References

Figure 5 illustrates the complete translation sequence for a 4kB Small Page. Page
translation involves one additional step beyond that of a section translation: the
Level One descriptor is the Page Table descriptor, and this is used to point to the
Level Two descriptor, or Page Table Entry. (Note that the access permissions are now
contained in the Level Two descriptor and must be checked before the physical
address is generated. The sequence for checking access permissions is described

later).
Virtual Address
31] [20[19] [12) [o]
1

Table Index L2 Table Index

Page Index

I

12 7

7
Translation Table Base

i Translation Base

18

Translation Base Table

Index

First Level Descriptor

& o]

Page Table Base Address

““{Domain U}

31] f1of] [2]1]o
Page Table Base Address L2 Table Index | 00
Second Level Descriptor

—_

[31] [12] [o
Page Base Address ap3 apziapl ap0 (C|B| 10
Physical Address

31] \ [12]11] [o]

Page Base Address

Page Index

4 kByte Page

Figure 34. Small Page Translation

Advance Information B 3130798 0013506 T13 =m

69

LH74610 RISC Processor SHARP

Translating Large Page References

Figure 35 illustrates the complete translation sequence for a 64 kB Large Page. Note
that since the upper four bits of the Page Index and low-order four bits of the Page
Table index overlap, each Page Table Entry for a Large Page must be duplicated 16
times (in consecutive memory locations) in the Page Table.

Virtual Address

5 e [[]
Table Index L2 Table Index Page Index
| y 16
8 7
/ 12
7
Translation Table Base
[31]
Translation Base
|18
31] [14[13] [2[1]0
Translation Base Table Index 00
First Level Descriptor
3
Page Table Base Address U‘ﬁ
31] [10] s} [2[1]0
Page Table Base Address L2 Table Index | 00
Second Level Descriptor
31] [1
Page Base Address : . fap3 ap2 |apl jap0 |C{B; 01

Physical Address
[31] [16[15] [0]

Page Base Address Page Index

64 kByte Page

Figure 35. Large Page Translation

70 B 5180798 0013507 95T 0@ Advance Information

SHARP

LH74610 RISC Processor

MMU Faults and CPU Aborts

The MMU generates four types of faults:

¢ Alignment Fault.
¢ Translation Fault.
¢ Domain Fault.

* Permission Fault.

In addition, an external abort may be raised on external data access.

The access control mechanisms of the MMU detect the conditions that produce these
faults. If a fault is detected as the result of a memory access, the MMU will abort the
access and signal the fault condition to the CPU. The MMU is also capable of retain-
ing status and address information about the abort. The CPU recognizes two types
of abort: data aborts and prefetch aborts, and these are treated differently by the
MMU.

If the MMU detects an access violation, it will do so before the external memory
access takes place, and it will therefore inhibit the access. External aborts will not
necessarily inhibit the external access, as described in the section on external aborts.

Fault Address and Fault Status Registers (FAR and FSR)

Aborts resulting from data accesses (data aborts) are acted upon by the CPU imme-
diately, and the MMU places an encoded 4 bit value FS[3:0], along with the 4bit
encoded Domain number, in the Fault Status Register (FSR). In addition, the virtual
processor address which caused the data abort is latched into the Fault Address Reg-
ister (FAR). If an access violation simultaneously generates more than one source of
abort, they are encoded in the priority given in Table 6.

CPU instructions on the other hand are prefetched, so a prefetch abort simply flags
the instruction as it enters the instruction pipeline. Only when (and if) the instruc-
tion is executed does it cause an abort; an abort is not acted upon if the instruction is
not used (i.e. it is branched around). Because instruction prefetch aborts may or may
not be acted upon, the MMU status information is not preserved for the resulting
CPU abort; for a prefetch abort, the MMU does not update the FSR or FAR.

Advance Information 71

M 3130798 0013508 89 W

LH74610 RISC Processor

SHARP

The sections that follow describe the various access permissions and controls sup-
ported by the MMU and detail how these are interpreted to generate faults.

Table 9. Priority Encoding of Fault Status

NOTE 3

SOURCE FS[3210] | DOMAINI3:0] FAR

Highest | Write Buffer 00x0 X NOTE2
Bus Error (linefetch) Section | 0100 valid valid
Page | 0110 valid valid
Bus Error (other) Section | 1000 valid valid
Page | 1010 valid valid
Alignment 00x1 x valid
Bus Error (translation) levell | 1100 X valid
level2 | 1110 valid valid
Translation Section | 0101 valid valid
Page | 0111 valid valid
Domain Section | 1001 valid valid
Page | 1011 valid valid
Permission Section | 1101 valid valid
Lowest Page | 1111 valid valid

NOTES:

x is undefined: may read as O or 1

1. Any abort masked by the priority encoding may be regenerated by fixing the primary abort and

restarting the instruction.

2: The Write Buffer Bus Error is asynchronous and the Fault Address Register reflects the first data
operation that could be aborted. This instruction must be restarted, (and it could of course generate

an abort of its own).

e

the domain in a valid entry.

Access Control

- This assumes that the error was flagged on word 0 of the linefetch
: In fact this register will contain bits[8:5] of the Level 1 entry which are undefined, but would encode

MMU accesses are primarily controlled via domains. There are 16 domains, and
each has a 2-bit field to define it. Two basic kinds of users are supported: Clients and
Managers. Clients use a domain; Managers control the behavior of the domain. The
domains are defined in the Domain Access Control Register. Figure 36 illustrates
how the 32 bits of the register are allocated to define the sixteen 2-bit domains.

Table 10 defines how the bits within each domain are interpreted to specify the

access permissions.

& mm 21407498 0013509 722 R

Advance Information

SHARP LH74610 RISC Processor

R1Bok o827k 625k 423R2k 1ol o s 76l shal3n2n1i0[9]8[7(6]5]4[3]2]|1]0
1514 {13 |12 /11,10 9 | 8 | 7 |6 | 5|4 |3 |2]|1]0

Domain

00 Fault 01 Client 10 Reserved 11 Manager

Figure 36. Domain Access Control Register Format

Table 10. Interpreting Access Bits in Domain Access Control Register

VALUE MEANING NOTES

00 No Access | Any access will generate a Domain Fault.

01 Client Accesses are checked against the access permission bits
in the Section or Page descriptor.

10 Reserved Reserved. Currently behaves like the no access mode.

1 Manager Accesses are NOT checked against the access Permission

bits so a Permission fault cannot be generated.

Fault Checking Sequence

The sequence by which the MMU checks for access faults is slightly different for Sec-
tions and Pages. Figure 37 illustrates the sequence for both types of accesses. The

sections and figures that follow describe the conditions that generate each of the
faults.

Alignment Fault

If Alignment fault is enabled (bit 1 in Control Register set), the MMU will generate
an alignment fault on any data word access the address of which is not word-
aligned irrespective of whether the MMU is enabled or not; in other words, if either
of virtual address bits [1:0] are not 0. Alignment fault will not be generated on any
instruction fetch, nor on any byte access. Note that if the access generates an align-

ment fault, the access sequence will abort without reference to further permission
checks.

, 7
Advance Information. gy 4140798 0013510 4uy M ’

LH74610 RISC Processor
Virtual Address
F'Ai. """ i
. ! ni
Check Address Alignment F;%Eme tz
Secton !
' Translation get Level One Descriptor
+ Fault .
emmmee ! Section Page
get Page \Page
Table Entry | @ » Translation
: Fault :
i-éééﬁ-o}]mj: {00) Check Domain Stat (00, ;rPageE
, ; no access eck Domain Status no access n
client (01) client (01)
p— Fy—
: PS::m?sr;ionI @ Check Access Check. Agcess violation I Pgnngzgke)n:
E Fault 2 Pemissions Permissions i Fauit a
Physical Address
Figure 37. Sequence for Checking Faults
Translation Fault

There are two types of translation fault: section & page.

A Section Translation Fault is generated if the Level One descriptor is marked as
invalid. This happens if bits[1:0] of the descriptor are both 0 or both 1.

A Page Translation Fault is generated if the Page Table Entry is marked as invalid.
This happens if bits[1:0] of the entry are both 0 or both 1.

74

M 5180798 00L3511 350 WM

Advance Information

LH74610 RISC Processor

Domain Fault

There are two types of domain fault: section & page. In both cases the Level One
descriptor holds the 4-bit Domain field which selects one of the sixteen 2-bit
domains in the Domain Access Control Register. The two bits of the specified
domain are then checked for access permissions as detailed in Table 7. In the case of
a section, the domain is checked once the Level One descriptor is returned, and in
the case of a page, the domain is checked once the Page Table Entry is returned.

If the specified access is either No Access (00) or Reserved (10) then either a Section
Domain Fault or Page Domain Fault occurs.

Permission Fault

There are two types of permission fault: section & sub-page. Permission fault is
checked at the same time as Domain fault. If the 2-bit domain field returns client
(01), then the permission access check is invoked as follows:

section:

If the Level One descriptor defines a section-mapped access, then the ap bits of
the descriptor define whether or not the access is allowed according to Table 7
which is repeated below. Their interpretation is dependent upon the setting of
the S bit (Control Register bit 8). If the access is not allowed, then a Section Per-
mission fault is generated.

sub-page:

If the Level One descriptor defines a page-mapped access, then the Level Two descrip-
tor specifies four access permission fields (ap3..ap0) each corresponding to one quarter
of the page. Hence for small pages, ap3 is selected by the top 1kB of the page, and ap0 is
selected by the bottom 1kB of the page; for large pages, ap3 is selected by the top 6kB of
the page, and ap0 is selected by the bottom 16kB of the page. The selected ap bits are
then interpreted in exactly the same way as for a section (see table below), the only dif-
ference being that the fault generated is a sub-page permission fault.

Table 11. Interpreting Access Permission (ap) Bits

PERMISSIONS
ap S NOTES
SUPERVISOR USER
00 |0 No Access No Access Any access generates a permission

fault

00 |1 Read Only No Access Supervisor read only permitted

01 |x Read/Write | No Access Supervisor read or write only per-
mitted

10 | x Read/Write | Read Only Writes in User mode cause permis-
sion fault

11 | x Read/Write | Read/Write | All access types permitted in both
modes

Advance Information 75

B 41580798 0013512 217 HM

LH74610 RISC Processor SHARP

External Aborts

In addition to the MMU-generated aborts, the LH74610 has an external abort pin
which may be used to flag an error on an external memory access. However, some
accesses aborted in this way are not restartable, so this pin must be used with great
care. The following section describes the restrictions.

¢ Uncacheable reads
Unbuffered writes
Level One descriptor fetch
Level Two descriptor fetch

read-lock-write sequence

These accesses may be aborted and restarted safely. If any of the above are aborted
the external access will cease on the following cycle. In the case of a read-lock-write
sequence in which the read aborts, the write will not happen.

Cacheable reads (linefetches)

A linefetch may be aborted safely provided that the abort is flagged on word 0. In
this case, the IDC will not be updated or corrupted, and the access will be restart-
able. It is not advisable to flag an abort on any word other than word 0 of a linefetch,
as the IDC will contain a corrupt line, and the instruction may not be restartable. On
the external bus, a linefetch which is externally aborted will continue to the end as
though it had not aborted.

Buffered writes

Buffered writes cannot be safely externally aborted. Because the processor will have
moved on before the external abort is received, this class of abort is not restartable. If
the system does flag this type of abort, then the Fault Status Register will record the
fact, but this is a non-recoverable error, and the machine must be reset. Therefore,
the system should be configured such that it does not do buffered writes to areas of
memory which are capable of flagging an external abort. If a buffered write burst is
externally aborted, then the external write will continue to the end.

Interaction of the MMU, IDC and Write Buffer

The MMU, IDC and WB may be enabled/disabled independently. However there
are only five valid combinations. There are no hardware interlocks on these restric-
tions, so invalid combinations will cause undefined results.

Table 12. Interaction of MMU, IDC and Write Buffer

MMU IDC WB
off off off
on off off
on on off
on off on
on on on

76

mm 4180798 0013513 153 1

Advance Information

SHARP LH74610 RISC Processor

The following procedures must be observed.

To enable the MMU

¢ Program the Translation Table Base and Domain Access Control Registers
¢ Program Level 1 and Level 2 page tables as required
¢ Enable the MMU by setting bit 0 in the Control Register.

NOTE: Care must be taken if the translated address differs from the untranslated
address as the two instructions following the enabling of the MMU will have been
fetched using "flat translation” and enabling the MMU may be considered as a
branch with delayed execution. A similar situation occurs when the MMU is dis-
abled. Consider the following code sequence:

MOV R1, #&l

MCR 15,0,R1,0,0; Enable MMU

Fetch Flat

Fetch Flat
Fetch Translated

To disable the MMU

¢ Disable the WB by clearing bit 3 in the Control Register.
e Disable the IDC by clearing bit 2 in the Control Register.
¢ Disable the MMU by clearing bit 0 in the Control Register.

NOTE: If the MMU is enabled, then disabled and subsequently re-enabled the con-
tents of the TLB will have been preserved. If these are now invalid, the TLB should
be flushed before re-enabling the MMU. Disabling of all three functions may be
done simultaneously.

Effect of Reset

At the end of the reset sequence, the MMU is disabled, so forces “flat” translation
(i.e. the physical address is the virtual address, and there is no permission checking);
alignment faults are also disabled; the cache is disabled and flushed; the write buffer
is disabled and flushed; the ARM6 CPU core is put into 26 bit data and address
mode, with early abort timing and little-endian mode.

LH74610 Bus Interface

Overview

The LH74610 bus interface is designed to operate in synchronous mode. In this
mode, there is a tightly defined relationship between FCLK and MCLK. MCLK may
only make transitions on the falling edge of FCLK. An amount of jitter between the
two clocks is permitted, and the device will function correctly, but MCLK must not
be later than FCLK. MCLK may lead FCLK by up to the difference in MCLK and
FCLK periods without affecting the critical paths.

Ad Informati 77
vance inlormation g 3180798 001351y 09T W

LH74610 RISC Processor SHARP

Cycle Speed
The speed of the memory bus interface may be controlled in two ways:
1. The LOW and HIGH Phases of MCLK may be stretched
2. The nWAIT pin can be used to insert entire MCLK cycles into any access. When
LOW this signal inserts an extra MCLK cycle into the current access. It must
change while MCLK is LOW.
Cycle Types
The LH74610 can perform many different bus cycles, and they may be combined in
any order.
e Idle
¢ Line Fetch
¢ Unbuffered Write
¢ Uncacheable Read
* Buffered Write
* Translation Level 1 Fetch
* Translation Level 2 Fetch
* Read-Locked-Write
Linefetch, unbuffered writes, uncacheable reads and buffered writes all have very
similar bus cycles. They differ only in the number of idle cycles at the end, which in
turn depends on which cycle follows. The following table defines this for each bus
cycle. The following diagrams give examples of typical sequences.
78 Advance Information

@ 3140798 0013515 T2L EM

SHARP LH74610 RISC Processor
Cycle Type Details
A[31:0] D[31:0]
nRW nMREQ
Idle old|old| i
Linefetch T = 3
r a m
r |a+4| m d
r (a+8| m d
r |a+c| m a
r |la+c| i d
r/w| a i
One Word r/w| a m
r/w| a i d
Many Word Start |[r/w| a i
Uncacheable Read / r/w| a m
Unbuffered Write E]

Repeat r/wia+4| m
L da]
End r/wia+4
r/wla+4| i d
w a i
Buffered Write w a m
d
More w a m
[a |
Level One or Two r a i
r a m
r a i d
r aL i
Read Phase r aL | m
r al i d
Write Phase w | aL i
w |aL | m
unbuffered w | aL | i 4a
Read-Locked-Write
Write Phase [w | aL i
buffered | W |aL | m
d
Write Phase w |aL | i
Aborted wlak| i

Advance Information

@ 3130798 0013516 9L2 M

79

LH74610 RISC Processor

Example Cycles

MCLK
A[31:0]

nMREQ

D[31:0]
WRITE
D[31:0]
READ

MCLK

One Word Read or Write

Two Word Sequential Read or Write

-

|

]

I

A[31:0]

X

X

at+4

nMREQ

nR/w, nB/W

D[31:0]

WRITE
D[31:0]

READ

MCLK

Two Word Non-Sequential Read or Write

]

|

|

|

A[31:0]

X

al

nMREQ

nR/w, nB/W

D[31:0]

WRITE
D[31:0]

Yy

READ

80

B 3130798 0013517 &T9 W

Advance Information

SHARP LH74610 RISC Processor

Linefetch
MCLK | | [|] | |
A[31:0] X1 a X atd X a8 X |a+C
nMREQ | o
D[31:0
R[EAD] o

Read - Locked - Write

MCLK | | | |
A[31:0] X address
nMREQ - _J -
LOCK J | B
nRW |

read write
D[31:0] o

Note that the address bus and nR/W do not change at the end of the sequence,
unless the following cycle is to a different address, or is a read. LOCK, however,
always returns to a LOW level signifying the end of the locked sequence.

A i 1
dvance Information 40 4noqa gp13518 735 8

LH74610 RISC Processor SHARP

Example Cycles (cont’d)

Use of nWAIT Pin to Stretch a Cycle

mckk | [[| | |

A[31:0] a X lats X | at8
nMREQ [
nWAIT

D[31:0] =
READ

In this example the nWAIT pin has been used to introduce an extra MCLK cycle to
ease the system timing. This allows all control signals to be sampled on the rising
edges of MCLK. More sophisticated systems may sample control signals on both ris-
ing and falling edges of MCLK to improve performance.

Translation Table-Walking Sequence (Write)

“CMIIIIIIEIII_

A[31:0] W [Level 1[Address X |Level 2/ address] X |Physical Address
MREQ L . L o
nRW l

PaFe Table Descriptor Page Tahle Entry
D[31:0]
READ Write Data
gl[é%éol :>_

82

M 3140798 0013519 L71 =W Advance Information

SHARP

LH74610 RISC Processor

Boundary Scan Test Interface

The boundary-scan interface conforms to the IEEE Std. 1149.1- 1990, Standard Test
Access Port and Boundary-Scan Architecture (please refer to this document for an
explanation of the terms used in this section and for a description of the TAP control-
ler states.)

Overview
The boundary-scan interface provides a means of testing the core of the device when
it is fitted to a circuit board, and a means of driving and sampling all the external
pins of the device irrespective of the core state. This latter function permits testing of
both the device's electrical connections to the circuit board, and (in conjunction with
other devices on the circuit board having a similar interface) testing the integrity of
the circuit board connections between devices. The interface intercepts all external
connections within the device, and each such “cell” is then connected together to
form a serial register (the boundary scan register). The whole interface is controlled
via 5 dedicated pins: TDI, TMS, TCK, nTRST and TDO.
BSINENCELL . - BSINCELL
BSINCELL I LH74610. I BSOUTCELL] vo e
I Core Logic »
BSO mL hl---l---' Bsomcm
B
Bypass Regi:
4 "[>‘"’°
Instruction Decoder
DI __.D Instruction Regn:
™S ——D——-—
TAP
CONTROLLER NTDOEN
o —>
[
NTRST——| >
Advance Information 83

B 5150798 00k3520 393 M

LH74610 RISC Processor sSHARP

Reset

The boundary-scan interface includes a state-machine controller (the TAP control-
ler). In order to force the TAP controller into the correct state after power-up of the
device, a reset pulse must be applied to the pin. If the boundary scan interface is to
be used, then nTRST must be driven LOW, and then HIGH again. If the boundary
scan interface is not to be used, then the nTRST pin may be tied permanently LOW.
Note that a clock on TCK is not necessary to reset the device.

The action of reset (either a pulse or a DC level) is as follows:

System mode is selected (i.e. the boundary scan chain does NOT intercept any of the
signals passing between the pads and the core).

IDcode mode is selected. If TCK is pulsed, the contents of the ID register will be
clocked out of TDO.

Pullup Resistors

The 1149.1 standard effectively requires that TDI, TMS, and nTRST should have
internal pullup resistors. In order to allow the LH74610 to consume zero static cur-
rent, these resistors are NOT fitted to this device. Accordingly, the 4 inputs to the test
interface (the above 3 signals plus TCK) must all be driven to good logic levels to
achieve normal circuit operation.

Instruction Register

The instruction register is 4 bits in length. There is no parity bit.

The fixed value loaded into the instruction register during the CAPTURE-IR control-
ler stateis: 0001

Public Instructions

The following public instructions are supported:

INSTRUCTION BINARY CODE
BYPASS 1111
SAMPLE/PRELOAD 0011
EXTEST 0000
INTEST 1100
IDCODE 1110
HIGHZ 0111
CLAMP 0101
CLAMPZ 1001

In the descriptions that follow, TDI and TMS are sampled on the rising edge of TCK
and all output transitions on TDO occur as a result of the falling edge of TCK.

B Al30798 0013521 227 MM

Advance Information

SHARP LH74610 RISC Processor

BYPASS (1111)

The BYPASS instruction connects a 1 bit shift register (the BYPASS register) between
TDI and TDO.

When the BYPASS instruction is loaded into the instruction register, all the bound-
ary-scan cells are placed in their normal (system) mode of operation. This instruc-
tion has no effect on the system pins. In the CAPTURE-DR state, a logic 0 is captured
by the bypass register. In the SHIFT-DR state, test data is shifted into the bypass reg-
ister via TDI and out via TDO after a delay of one TCK cycle. Note that the first bit
shifted out will be a zero. The bypass register is not affected in the UPDATE-DR
state.

SAMPLE/PRELOAD (0011)

The BS (boundary-scan) register is placed in test mode by the SAMPLE/PRELOAD
instruction.

The SAMPLE/PRELOAD instruction connects the BS register between TDI and
TDO.

When the instruction register is loaded with the SAMPLE/PRELOAD instruction,
all the boundary-scan cells are placed in their normal system mode of operation.

In the CAPTURE-DR state, a snapshot of the signals at the boundary-scan cells is
taken on the rising edge of TCK. Normal system operation is unaffected. In the
SHIFT-DR state, the sampled test data is shifted out of the BS register via the TDO
pin, whilst new data is shifted in via the TDI pin to preload the BS register parallel
input latch. In the UPDATE-DR state, the preloaded data is transferred into the BS
register parallel output latch. Note that this data is not applied to the system logic or
system pins while the SAMPLE/PRELOAD instruction is active. This instruction
should be used to preload the boundary-scan register with known data prior to
selecting the INTEST or EXTEST instructions (see the table below for appropriate
guard values to be used for each boundary-scan cell).

EXTEST (0000)
The BS (boundary-scan) register is placed in test mode by the EXTEST instruction.
The EXTEST instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, all the bound-
ary-scan cells are placed in their test mode of operation.

In the CAPTURE-DR state, inputs from the system pins and outputs from the
boundary-scan output cells to the system pins are captured by the boundary-scan
cells. In the SHIFI-DR state, the previously captured test data is shifted out of the BS
register via the TDO pin, whilst new test data is shifted in via the TDI pin to the BS
register parallel input latch. In the UPDATE-DR state, the new test data is trans-
ferred into the BS register parallel output latch. Note that this data is applied imme-
diately to the system logic and system pins. The first EXTEST vector should be
clocked into the boundary-scan register, using the SAMPLE/PRELOAD instruction,
prior to selecting INTEST to ensure that known data is applied to the system logic.

Advance Information 85

LH74610 RISC Processor SHARP

INTEST (1100)
The BS (boundary-scan) register is placed in test mode by the INTEST instruction.
The INTEST instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the INTEST instruction, all the bound-
ary-scan cells are placed in their test mode of operation.

In the CAPTURE-DR state, the complement of the data supplied to the core logic
from input boundary-scan cells is captured, while the true value of the data that is
output from the core logic to output boundary-scan cells is captured. Note that CAP-
TURE-DR captures the complemented value of the input cells for testability reasons.

In the SHIFT-DR state, the previously captured test data is shifted out of the BS regis-
ter via the TDO pin, whilst new test data is shifted in via the TDI pin to the BS regis-
ter parallel input latch. In the UPDATE-DR state, the new test data is transferred into
the BS register parallel output latch. Note that this data is applied immediately to
the system logic and system pins. The first INTEST vector should be clocked into the
boundary-scan register, using the SAMPLE/PRELOAD instruction, prior to select-
ing INTEST to ensure that known data is applied to the system logic.

Single-step operation is possible using the INTEST instruction.

IDCODE (1110

The IDCODE instruction connects the device identification register (or ID register)
between TDI and TDO. The ID register is a 32-bit register that allows the manufac-
turer, part number and version of a component to be determined through the TAF.

When the instruction register is loaded with the IDCODE instruction, all the bound-
ary-scan cells are placed in their normal (system) mode of operation.

In the CAPTURE-DR state, the device identification code (specified at the end of this
section) is captured by the ID register. In the SHIFT-DR state, the previously cap-
tured device identification code is shifted out of the ID register via the TDO pin,
whilst data is shifted in via the TDI pin into the ID register. In the UPDATE-DR state,
the ID register is unaffected.

HIGHZ (0111)

The HIGHZ instruction connects a 1 bit shift register (the BYPASS register) between
TDI and TDO.

When the HIGHZ instruction is loaded into the instruction register, all outputs are
placed in an inactive drive state.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFI-
DR state, test data is shifted into the bypass register via TDI and out via TDO after a
delay of one TCK cycle. Note that the first bit shifted out will be a zero. The bypass
register is not affected in the UPDATE-DR state.

86 Ad Informati
m 3120798 0013523 0T2 =m vance ntormation

SHARP LH74610 RISC Processor

CLAMP (0101)

The CLAMP instruction connects a 1 bit shift register (the BYPASS register) between
TDI and TDO.

When the CLAMP instruction is loaded into the instruction register, the state of all
output signals is defined by the values previously loaded into the boundary-scan
register. A guarding pattern (specified for this device at the end of this section)
should be pre-loaded into the boundary-scan register using the SAMPLE/PRE-
LOAD instruction prior to selecting the CLAMP instruction.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-
DR state, test data is shifted into the bypass register via TDI and out via TDO after a
delay of one TCK cycle. Note that the first bit shifted out will be a zero. The bypass
register is not affected in the UPDATE-DR state.

CLAMPZ (1001)

The CLAMPZ instruction connects a 1 bit shift register (the BYPASS register)
between TDI and TDO.

When the CLAMPZ instruction is loaded into the instruction register, all outputs are
placed in an inactive drive state, but the data supplied to the disabled output drivers
is derived from the boundary-scan cells.

The purpose of this instruction is to ensure, during production testing, that each out-
put driver can be disabled when its data input is eitheraOora 1.

A guarding pattern (specified for this device at the end of this section) should be
pre-loaded into the boundary-scan register using the SAMPLE/PRELOAD instruc-
tion prior to selecting the CLAMPZ instruction.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-
DR state, test data is shifted into the bypass register via TDI and out via TDO after a
delay of one TCK cycle. Note that the first bit shifted out will be a zero. The bypass
register is not affected in the UPDATE-DR state.

Test Data Registers

Bypass Register

Purpose: This is a single bit register which can be selected as the path between TDI
and TDO to allow the device to be bypassed during boundary-scan testing.

Length: 1 bit

Operating Mode: When the BYPASS instruction is the current instruction in the
instruction register, serial data is transferred from TDI to TDO in the SHIFI-DR state
with a delay of one TCK cycle.

There is no parallel output from the bypass register.

A logic 0 is loaded from the parallel input of the bypass register in the CAPTURE-
DR state.

Ad i
vance Information .0 anoqa ggl3say TI9 M 87

LH74610 RISC Processor SHARP

LH74610 Device Identification (ID) Code Register

Purpose: This register is used to read the 32-bit device identification code. No pro-
grammable supplementary identification code is provided.

Length: 32 bits

The format of the ID register is as follows:

31]30]29128[27126]25[24]23122]21120[19]18[17]16[15114M13[12]11[1019[8[716(5[4]312]1]0
version part number manufacturer identity

00046061H

Operating Mode: When the IDCODE instruction is current, the ID register is selected
as the serial path between TDI and TDO.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register from its parallel
inputs during the CAPTURE-DR state.

LH74610 Boundary Scan (BS) Register

Purpose: The BS register consists of a serially connected set of cells around the
periphery of the device, at the interface between the core logic and the system
input/output pads. This register can be used to isolate the core logic from the pins
and then apply tests to the core logic, or conversely to isolate the pins from the core
logic and then drive or monitor the system pins.

Operating modes: The BS register is selected as the register to be connected between
TDI and TDO only during the SAMPLE /PRELOAD, EXTEST and INTEST instruc-
tions. Values in the BS register are used, but are not changed, during the CLAMP
and CLAMPZ instructions.

In the normal (system) mode of operation, straight-through connections between the
core logic and pins are maintained and normal system operation is unaffected.

In TEST mode (i.e. when either EXTEST or INTEST is the currently selected instruc-
tion), values can be applied to the core logic or output pins independently of the
actual values on the input pins and core logic outputs respectively. On the LH74610
all of the boundary scan cells include an update register and thus all of the pins can
be controlled in the above manner. Additional boundary-scan cells are interposed in
the scan chain in order to control the enabling of tristateable buses.

The correspondence between boundary-scan cells and system pins, system direction
controls and system output enables is as shown on the following page. The cells are
listed in the order in which they are connected in the boundary-scan register, start-
ing with the cell closest to nTDI. All boundary-scan register cells at input pins can
apply tests to the on-chip core logic. The EXTEST guard values specified in the table
below should be clocked into the boundary-scan register (using the SAMPLE/PRE-
LOAD instruction) before the EXTEST instruction is selected, to ensure that known
data is applied to the core logic during the test. The INTEST guard values shown in
the table below should be clocked into the boundary-scan register (using the SAM-
PLE/PRELOAD instruction) before the INTEST instruction is selected to ensure that
all outputs are disabled. These guard values should also be used when new EXTEST
or INTEST vectors are clocked into the boundary-scan register.

88 om 3130798 00135235 975 WM Advance Information

LH74610 RISC Processor

Output Enable Boundary-Scan Cells

The boundary-scan register cells Nendout, Nabe, Ntbe, and Nmse control the output
drivers of tristate outputs as shown in the table below. In the case of OUTENO enable
cells (Nendout, Ntbe), loading a 1 into the cell will place the associated drivers into
the tristate state, while in the case of type INEN1 enable cells (Nabe, Nmse), loading
a 0 into the cell will tristate the associated drivers.

To put all LH74610 tristate outputs into their high impedance state, a logic 1 should
be clocked into the output enable boundary-scan cells Nendout and Ntbe, and a
logic 0 should be clocked into Nabe and Nmse. Alternatively, the HIGHZ instruction
can be used.

If the on-~chip core logic causes the drivers controlled by Nendout, for example, to be
tristate, (i.e. by driving the signal Nendout HIGH), then a 1 will be observed on this
cell if the SAMPLE/PRELOAD or INTEST instructions are active.

Single-Step Operation

The LH74610 is a static design and there is no minimum clock speed. It can therefore
be single-stepped while the INTEST instruction is selected. This can be achieved by
serialising a parallel stimulus and clocking the resulting serial vectors into the
boundary-scan register. When the boundary-scan register is updated, new test stim-
uli are applied to the core logic inputs; the effect of these stimuli can then be
observed on the core logic outputs by capturing them in the boundary-scan register.

Advance Information m 5130798 001352L 801 WM 89

LH74610 RISC Processor

aqeN 1no fcolv Goe 201 nopuaN Afple) {8la gmop)

aqeN LNno [90lv 90 101 - NI [sla guip [43

aqeN 1no [z0lv Loe 001 1 - ONALNO - NopuaN 1€

aqeN 1Nno [solv goe 66 nopuaN 1no [ela émnop o¢

aqeN 1LNno [60]V 608 86 - NI [ela 6uIp 67

aqeN 1no [otlv ore L6 mopuaN LNO forla ornop 87

aqeN 1no [tilv Tie 96 - NI [otla oruip YA/

aqeN LNo [zilv zie 6 InopusN lno frila 11nop 9z

aqeN 1Nno fetlv cre ¥6 - NI [t1tla [up 14

aqeN 1no v pre €6 InopusN 1no [zila Z1nop 74

aqeN 1no (1904 gte 6 - NI [ztla Ziup jord

aqeN Lo [o1lv 91e 16 MOpuaN 1no [erla gunop w

aqeN 1no [Z1lv JAL 06 - NI [erla gruip 12

aqeN 1no (s1lv gre 68 INOpUsN 1No #1la yLnop (174

aqeN 1N0 (61lv 61e 88 - NI [¥1la pLuip 61

aqeN 1no [ozlv oze L8 MopusN LNo {sila spnop 81

aqeN 1NnO f1izlv 1ze 98 - NI [stla gruip L1

aqeN 1No [zelv (44 68 nopuaN 1NoO fotla 9pInop 9

aqeN LNo [ezlv £ze ¥8 - NI [otla 91uIp g1

aqeN LNo ¥elv yTe €8 nopuaN 1no l£1la Zunop ¥l

aqeN LNo [ezlv gze 8 - NI (ztla LIup €1

aqeN 1no (9zlv 9ze 18 nopuap 1no [stla grnop (4

agqeN 1no [zzlv e 08 - NI [s1la gruIp I

aqeN 1Nno [szlv gze 6L mopuaN LNno [s1la eLmop (1]4

aqeN 1N0 l6zlv 6ze 8z - NI [stla 6LuIp 6

3qeN Lno foclv oge L nopusN 1no [ozla ozinop 8

ageN LNo [iglv 1ee 9. - NI [ozla ozurp L

- NI 41V afe S mopuaN 1No [1zla Tzmop 9

1 - ONHALNO - AqIN 71 - NI [rZla TTuip S

0 - NI [OINILSHL [olunsay €4 mopuaN LNO [zzla anop ¥

0 - NI [TINILSAL [rjunsay (74 - NI [zzla zeuip €

0 - NI [ZINLISAL [Zlunsa i mopuaN 1No [ezla anop T

0 - NI [€INLLSHL [elunsay 0L - NI lezla cTuIp 1
0 - NI ($INILSHL [plunsa 69 anjea piend 1p} wioy

114D Sd 114D sS4
\Mv%mw« uWUm LSALNI H14VNH ddAL NId ma«u“% ‘ON M.—M% HWM_ LSH.LNI dT19VNH HdAL NId mgﬂ“% ‘ON
LN4d1No 1NdLno

Advance Information

B 31480798 0013527 7?44 1B

90

LH74610 RISC Processor

S

mop aanoe ajqeus dinO ONALNO Y31y aanoe spqeus nduy [NINI ped inding 1.Nn0 ped indur NI
Koy adAy,

oaLo 0 - NI [SINLLSH.L {qlunsay 89

nopusN INno ¥zla yzinop Gel 0 - NI [9INLLSAL [9]unsa L9

- NI I¥zla pTup el - NI o) byN S9

nopuaN 1No [szla sunop €cr - NI Oylu baN 9

- NI [szla szuip el aqIN 1No [olLnorsds | [ohnoisa) €9

MopuaN lno [9zla gznop €1 aqIN 1no [tlLnoxsdL | [1lnoiss) 9

- NI [9zla 9zuip 0€L ELHN| lno [zlLnorsal, | [Zhnoisa 19

nopuaN Ino [£Zla Lanop 6ZL 0 - NI [9tINLLSAL | [97]unsay 09

- NI [zzla Lzup 8TL - NI lasayu 3983IN 65

mopuaN LNO {szla gzinop Jral - NI Idoav uoqe 8¢

- NI (szla guIp 9zt 0 - NI w104 3j L8

MopuaN INo [ezla 6ZiMOP Gzt 0 - NI MTIDOW JPw 9g

- NI [ezla 6zZulp 8 741 - NI Iivmu HeMN [

MopusN 1no [ogla ogmop £zl - NI vus eNs ¥

- NI {oela ocup zel 0 - INANI ASW aswN €6

nopuaN 1No {1€la [ginop %A aswN LNo OHINU barup 49

- NI [1ela Leurp ozt aswN 1no oHs bos 1§

0 - NI [8oINLLsAL | [soJunsa | 611 - NI ada agp 05

0 - NI [60INLISAL | [60junsar | I mopusN INno [ola omop 6%

0 - NI [otINILSAL | [or]uusay | 41T - NI [ola owp 214

0 - NI [1rINLLSAL | [tr]uusay | 911 NopuaN 1No (tla ninop VA 4

0 - NI [z1INLISAL | [zilunsay | it - NI [tla Tuip 9

0 - NI [erINLLsHL | [etrjunsay | ¥ JMopusN 1no [zla amop [

0 - NI fpriNLLsaL | (prjumsay | €1t - NI {zla Tuip 174

0 - NI [1INLIsHL | (stjunsay | ZI INOpUSN LNo [ela gmop 157

aqeN 1no Myu MIN It - NI {ela curp (472

aqeN 1no mgu MmN 1] nopuap 1no [¥la fanop 187

aqeN 1no MO0 M 601 - NI [¥la purp o

0 - TNHANI qgv agqeN 801 nopuaN LNo [sla GInop 6¢€

aqeN LNo [oolv ooe L0t - NI [sla gutp 8¢

2qeN LNO [tolv 108 901 nopusN Lno [9la gnop LE

agqeN LNO [z0lv Z0e S01 - NI f9la quIp 9¢

aqeN 1no [eolv £0e §0)8 nopuaN 1LNo lzla mop 6¢

aqeN LNO [vo]lv o €01 - NI [Zla Luip i)
114D sd 114D sd

Mﬂ%hxw LSALNI | ATAVNA AdAL NId maeuw% ‘ON \MMAMM_WW LSHLNI HT1dVNA HdAL NId mﬂm\% ‘ON

INdLNO INd1LNO

91

B 51407498 0013528 L&Y WA

Advance Information

Advance Information

DC Parameters

Absolute Maximum Ratings

DC Operating Conditions

Table 13. LH74610 DC Maximum Ratings

SYMBOL PARAMETER MIN MAX UNITS | NOTE
VDD Supply voltage VSS-0.3 VS55+6.0 \% 1
Vip Voltage applied VSS-0.3 | VDD+0.3 \% 1
to any pin
Ts Storage -40 125 deg C 1
temperature
NOTE:

These are stress ratings only. Exceeding the absolute maximum ratings may permanently damage the
device. Operating the device at absolute maximum ratings for extended periods may affect device reli-

ability.

Table 14. LH74610 DC Operating Conditions

SYMBOL PARAMETER MIN | TYP | MAX | UNITS | NOTES
VDD Supply voltage 450 | 5.0 | 550 Vv
Vihc IC input HIGH voltage 3.5 VDD v 1,2
Vile IC input LOW voltage 0.0 1.5 v 1,2
Viht IT/ITP input HIGH voltage | 24 VDD A% 13,4
Vilt IT/ITP input LOW voltage 0.0 0.8 Vv 1,34
Ta Ambient operating -10 70 | degC
temperature

NOTES:

Voltages measured with respect to VSS.

IC - CMOS-level inputs

IT - TTL-level inputs (includes IT and ITOTZ pin types)

92 LH74610 RISC Processor

M 5120798 0013529 510 WA

SHARP

Advance Information

DC Characteristics

NOTE: Nominal values shown are derived from transient analysis simulations.

Table 15. LH74610 DC Characteristics

SYMBOL PARAMETER MIN TYP | MAX | UNIT
IDD Operating current 110 mA
Standby current 20 HA
Iin IT input leakage current +1 pA
Iinp ITP input leakage current +5 HA
Vol Output HIGH voltage: \'
Ioh =-8 mA
Output HIGH voltage: 41 \%
Ioh = -4 mA
Voh Output LOW voltage: 0.4 A%
Iol =8 mA
Vihk CK input HIGH voltage VDD -04 \Y
Vilk CK input LOW voltage 04 \Y
Viht IT input HIGH voltage 2.2 A%
Vilt IT input LOW voltage 0.8 A%
Vohc OC output HIGH voltage 4.1 VvVDD|{ V
Volc OC output LOW voltage 0.0 04 v
Cin Input capacitance 15 pF
Co Output capacitance 20 pF
Cio I/0 capacitance 20 pF

AC Parameters

Test Conditions

The AC timing diagrams presented in this section assume that the outputs of the
LH74610 have been loaded with the capacitive loads shown in the “Test Load' col-
umn of the table below; these loads have been chosen as typical of the system in
which the LH74610 might be employed. The output pads of the LH74610 are CMOS
drivers which exhibit a propagation delay that increases linearly with the increase in
load capacitance. An “Output derating’ figure is given for each output pad, showing
the approximate rate of increase of output time with increasing load capacitance.

LH74610 RISC Processor

M 3140798 0013530 232 M

93

Advance Information SHARP

Table 16. LH74610 AC Test Conditions

OUTPUT SIGNAL TEST LOAD (pF) OUTPUT DERATING (ns/pF)
A[25:0] 50 0.072
D[31:0] 50 0.072
nR/W 50 0.072
nB/W 50 0.072
LOCK 50 0.072
nMREQ 50 0.072
SEQ 50 0.072

Relationship Between FCLK & MCLK

<« Tickl —>;<—chkh———>;

FCLK ———\ J/ \

- Tfmh ——
MCLK !
Tmis —» —
Table 17. LH74610 fclk and mclk Relationship
SYMBOL PARAMETER MIN TYP MAX UNIT NOTE
Tfckl FCLK LOW time 23 ns 1
Tfckh FCLK HIGH time 23 ns 1
Tfmh FCLK - MCLK hold time 25 ns
Tmfs MCLK - FCLK setup 3 ns
NOTE:
1. FCLK timings measured at 50% of Vdd.
94 LH74610 RISC Processor

M 2150798 0013531 179 WA

SHARP LH74610 RISC Processor

Main Bus Signals

g Tickl ——pe—— Tmckh —_—

Tws —> N— —h ;<—Twh

nWAIT

ALE

ABE

A[31:0] Tabe —" +— | — —Tah > o Tabz

BW % { |
LocK § N ><
nR/W ‘

DBE

D[31:0]
ouT

D[31:0]
IN

ABORT / \ \

~——> @—Tabtht —b — Tabth2

MSE

Advance Information 95
MR 51480798 0013532 005 M

Advance Information

Table 18. LH74610 Bus Timing

SYMBOL PARAMETER MIN TYP MAX UNIT | NOTE
Tmckl MCLK LOW time 30 ns 1
Tmckh MCLK HIGH time 30 ns
Tws nWAIT setup to MCLK 5 ns
Twh nWAIT hold from MCLK | 5 ns
Tale address latch open 18 ns 2
Tabe address bus enable 15 ns 2
Tabz address bus disable 25 ns
Taddr MCIK to address delay 28 ns 2
Tah address hold time 5 ns 2
Tdbe DBE to data enable 22 ns 2
Tde MCILK to data enable 10 ns 2
Tdbz DBE to data disable 25 ns
Tdz MCLK to data disable 25 ns
Tdout data out delay 40 ns 2
Tdoh data out hold 5 ns 2
Tdis data in setup 2 ns
Tdih data in hold 10 ns
Tabts ABORT setup time 10 ns
Tabthl ABORT hold time 5 ns 3
Tabth2 ABORT hold time 5 ns 3
Tmse nMREQ & SEQ enable 10 ns
Tmsz nMREQ & SEQ disable 20 ns
Tmsd nMREQ & SEQ delay 38 ns
Tmsh nMREQ & SEQ hold 5 ns

NOTES:

1. MCLK timings measured between clock edges at 50% of Vdd.
2. The timings of these buses are measured to TTL levels.
3. Tabthl is a requirement for LH74610. To ensure compatibility with future processors, designs should

meet Tabth2. Tabth2 is not tested on the LH74610.

96

R 84180798 0013533 T4l WM

LH74610 RISC Processor

SHARP Advance Information

Boundary Scan Interface Signals

{tcr) tasoL {ter) tasch (tc'or)
tex 5\]l L
\ tesis tasin)
teson
too J(XXX X XX
tssop ,
{8s0E
o XX
tesoz
oo
. tasss tacsH ,
DATA
11O X X X X lxxxxxxxx
(SAMPSLE)
tespH
QUTPUTS
tasop
tgspe
DATA
QUTPUTS
taspz
DATA
OUTPUTS
. tasr (tar)
Nmgst J\]l
tgsrs tasrm
e 7 i
ARM-S
LH74610 RISC Processor 97

B 34140798 0013534 9485 M

LH74610 RISC Processor SHARP
Table 19. LH74610 Boundary Scan Interface Timing
SYMBOL PARAMETER MIN | TYP | MAX UNITS NOTES
Tbscl tck low period S0 ns 1
Tbsch tck high period 50 ns 1
Tbsis tdi,tms setup to [TCr] 10 ns
Tbsih tdi,tms hold from [TCr] 10 ns
Tbsod TCf to tdo valid 40 ns 2
Tbsoh tdo hold time 5 ns 2
Tbsoe tdo enable time 5 ns 2,3
Tbsod tdo disable time 40 ns 24
Tbsss 1/0O signal setup to [TCr] 5 ns 5
Tbssh I/0 signal hold from 20 ns 5
[TCr]

Tbsdd TCf to data output valid 40 ns
Tbsdh data output hold time 5 ns 6
Tbsde data output enable time 5 ns 6,7
Tbsdd data output disable time 40 ns 6,8
Tbsr Reset period 30 ns
Tbsrs tms setup to [TRr] 10 ns 9
Tbsrh tms hold from [TRr] 10 ns 9

NOTES:

1. tck may be stopped indefinintely in either the low or high phase.

2. Assumes a 25pF load on tdo. Output timing derates at 0.072ns/pF of extra load applied.

3. tdo enable time applies when the TAP controller enters the Shift-DR or Shift-IR states.

4. tdo disable time applies when the TAP controller leaves the Shift-DR or Shift-IR states.

5. For correct data latching, the I/O signals (from the core and the pads) must be setup and held with

respect to the rising edge of tck in the CAPTURE-DR state of the SAMPLE/PRELOAD, INTEST and
EXTEST instructions.

0 90 N

Assumes that the data outputs are loaded with the AC test loads (see AC parameter specification).
Data output enable time applies when the boundary scan logic is used to enable the output drivers.
Data output disable time applies when the boundary scan logic is used to disable the output drivers.
The tms input must be held high as Nitrst is taken high at the end of the boundary-scan reset
sequence.

98

MR 5140798 0013535 414 MW

Advance Information

SsSHARP Advance Information

Physical Details
PIN 108 PIN 73
| RFR W AT A TR R TSR IRTARNERIR
= LH74610 =
= SHARP ARM =
— I —
= JAPAN =
= YYWW xxx =
PIN 144 E O‘_—INDEX é PIN 37
IoTnuarrrrarrrrroryorry
LH74610 PQFP Package = 0.5 mm Lead Pitch
LH74610 RISC Processor 99

B 3180798 00L353kL 750 mm

Advance Information sSsHARP

0.50 [0.020] 0.25 [0.0098]

TYP.

0° - 103

I~

20.10[0.791] 22.4[0.882]
19.90[0.783] 21.6(0.850]

INDEX

e
mrrmnrrormrrrroormnrrreraraad

LT A nmunannanneanea
I

@

20.10[0.781]
19.90 [0.783]
22.410.882]
21.6 [0.850] DETAIL
1.70[0.067]
1.45 [0.057]
1.35 [0.053] 0.15 [0.006]
0.05 [0.002]
1 1

U N *
0.25 [0.0098
1.00 [0.039) REF.J 0.15 E0.00SQ}

DIMENSIONS IN MM [INCHES] %

144QFP-2

100 LH74610 RISC Processor
B 24180798 0013537 L97 WA

SHARP LH74610 RISC Processor
Pinout
PIN SIGNAL TYPE | PIN SIGNAL TYPE | PIN SIGNAL PIN SIGNAL TYPE
1 i 37 D[24] i/o | 73 LOCK 109 A[26])
2 nMREQ o 38 D[25] i/o 74 ABE 110 Al27] 0
3 [39 D26} i/o 75 Al 0} 111 A[28] o
4 i 40 Vssl - 76 Al1] 112 vdd2 -
5 - 41 Vss2 - 77 Al 2] 133 Vss2 -
6 vddz - 42 vdd2 - 78 Vss2 114 Al29] o
7 i/o 43 D[27] i/o 79 vddaz 115 A[30}]
8 D[1] i/o 44 Dj28] i/o 80 Al 3] 116 A[31] o
9 i/o 45 D[29] i/o 81 Al 4] 117 ALE i
10 i/o 46 D{30] i/o 82 A[5] 118 n/c
11 i/o 47 D[31} i/o 83 Al 6] 119 n/c
12 i/o 48 DO) 84 Al 7] 120 n/c
13 i/o 49 TDI i 85 Al 8] 121 Vssl -
14 i/o 50 nTRST i 86 Al9] 122 vddil -
15 i/o 51 vddil - 87 A[10] 123 TESTIN] 7] i
16 - 52 ™S i 88 Al11] 124 TESTIN] 6] i
17 vdd2 - 53 TCK i 89 Al12] 125 TESTIN[5] i
18 - 54 n/c - 9% vdd2 126 | TESTIN[4] i
19 vddil - 55 n/c - 91 Vssl 127 TESTIN] 3] i
20 i/o 56 n/c - 92 vddl 128 TESTIN] 2] i
21 D[10] i/o 57 n/c - 93 Vss2 129 TESTIN[1] i
22 D[11] i/o 58 n/c - 94 Al13] 130 TESTIN[0] i
23 D[12] i/o 59 TESTIN| 8] i 95 Al14] 131 nFIQ
24 Df13] i/o 60 TESTIN[9] i 96 Al15] 132 nIRQ
25 D[14] i/o 61 Vvddl - 97 Af16] 133 TESTOUTIO] o
26 D[15] i/o 62 Vssl - 98 A[17] 134 TESTOUTI1] 0
27 D16} i/o 63 TESTIN[10] i 99 A[18] 135 TESTOUT{2] o
28 D[17] i/o 64 TESTIN[11] i 100 A[19] 136 TESTINJ[16] i
29 D[18] i/o 65 TESTIN[12] i 101 A[20] 137 nRESET i
30 DI[19] i/o 66 TESTIN[13] i 102 vddz 138 ABORT i
31 vddz2 - 67 TESTIN[14] i 103 Vss2 139 FCLK i
32 - 68 TESTIN[15] i 104 Af21] 140 MCLK i
33 DI[20] i/o 69 Vss2 - 105 Al22] 141 vdd2 -
M4 D[21] i/o 70 vdd2 - 106 A[23) 142 Vss2 -
35 D[22) i/o 71 nR/W o 107 A[24] 143 nWAIT i
36 Dif23] i/o 72 nB/W o 108 Al25] 144 SnA i
Advance Information 101

M 5150798 0013538 523 M

