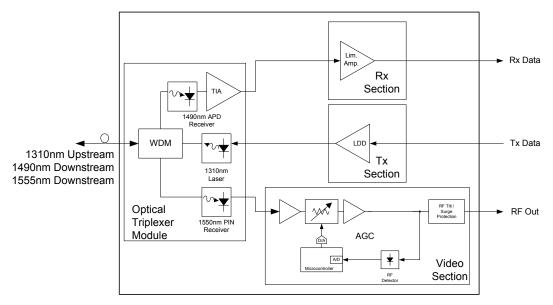
ITR-D3T-SD6-A

1310/1490/1555nm Integrated Triplexer Transceiver


Features

- Single fiber, integrated triplexer transceiver
- Compliant to FSAN G.984.2 specifications
- Voice/Data/Video FTTx ONT/ONU applications
- 1310nm Tx, 1490nm Rx, 1555nm video Rx
- 1244Mbps Tx / 2488Mbps Rx asymmetric data rate
- Burst mode upstream transmission
- 16.5dBmV minimum RF output power
- 1GHz video bandwidth, with feedback AGC operation, without MOCA filter
 - -40 to 85°C operation
- 20km reach
- 28dB power budget
- RoHS-5/6 compliant (lead exemption)
- GR-326-CORE compliant SC/APC connector
- Meets UL 94V-1 flammability

- Digital Transmitter: A DFB laser diode is employed for upstream transmission at OC-24 (1244Mbps). The optical transmitter includes a back facet photodetector to monitor laser power for APC control.

- Digital Receiver: An APD with TIA is employed for downstream data reception at OC-48 (2488Mbps). A post amplifier is also included for CML output compatibility.

- Analog Receiver: 1GHz forward path video (CATV) receiver with multiple gain stages, automatic gain control (AGC) and status indicators.

Triplexer Block Diagram

Absolute Maximum Ratings

Usage of this transceiver shall adhere to the following absolute maximum ratings. Stresses beyond those in Table 1 may cause permanent damage to the unit. These are stress ratings only, and functional operation of the unit at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect unit reliability.

Table 1 - Absolute Maximum Ratings								
Parameter	Minimum	Maximum	Unit/Conditions					
Ambient Storage Temperature	-40	85	℃					
ESD Sensitivity (Human Body Model)	-	1000	V					
Lead Soldering Temperature	-	260°C	10 sec					
Vdd_+12V	-0.3	15	V					
Vcc_Rx	-0.3	+4.2	V					
Vcc_Tx	-0.3	+4.2	V; Vcc_Tx < (Vcc_Rx + 1V)					
Vcc_3.3V	-0.3	+4.2	V					
Lightning Surge	-1500	+1500	V					

Recommended Operating Conditions

The following table identifies the recommended operating condition for optical transceiver use.

Table 2 – Recommended Operating Conditions								
Parameter	Minimum	Typical	Maximum	Unit/Conditions				
Operating Temperature ^a	-40	-	85	℃				
Operating Humidity Range	10%	-	90%	non-condensing				
Total 3.3V Supply Current	-	-	350	mA				
Total 12V Supply Current	-	-	225	mA				
Power Supply Ripple	-	-	100	mVp-p, 100Hz to 1MHz				

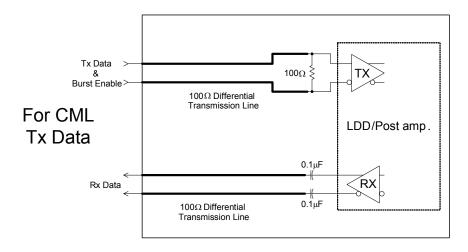
^a Minimum is ambient temperature; maximum is module case temperature.

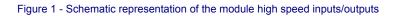
Optical Characteristics

The following table summarizes the performance specifications for the integrated optical block located within the transceiver module.

Table 3 - Optical Characteristics								
Parameter	Minimum	Typical	Maximum	Unit/Conditions				
1555nm external to 1490 nm Rx Isolation	32	-	-	dB				
1490nm external to 1555nm Rx Isolation	32	-	-	dB				
1310nm external to 1555nm Video Isolation	40	-	-	dB				
1310nm external to 1490nm data Isolation	30	-	-	dB				
1310nm Tx to 1490nm Rx Optical Crosstalk	-	-	-47	dB				
1310nm Tx to 1555nm Rx Optical Crosstalk	-	-	-47	dB				
Back Reflection @ 1310nm	-	-	-6	dB				
Back Reflection @ 1555nm	-	-	-32	dB				
Back Reflection @ 1490nm	-	-	-20	dB				

Functional Characteristics


The following tables list the performance specifications for the various functional blocks of the integrated optical transceiver module.


Table 4 – Digital Transmitter Specifications							
Parameter	Minimum	Typical	Maximum	Unit	Notes		
Operating Voltage	3.14	3.30	3.46	V	Vcc referenced to GND_Tx		
Data Rate	-	1244.16	-	Mbps			
Average Optical Output Power, Po	0.5	-	5	dBm			
Output Power at Transmit Off	-	-	-40	dBm			
Extinction Ratio	10	-	-	dB	PRBS 223-1, NRZ, 50% duty cycle		
Transmitter Output Eye	G	.984.2 Figure	3				
Optical Rise and Fall Time	-	250	-	ps	20% to 80%		
Side Mode Suppression Ratio (SMSR)		See be	elow				
Center Wavelength, λ_o	1290	1290 - 1330 nm		nm	Dual DFB modes allowed; RMS Spectral line width <1.5nm; SMSR >30dB for FP modes		
Differential Input Voltage, V _{in}	300	-	1800	mVp-p	BEN+/- and TXD+/ DC-coupled		
Input Impedance, differential	-	100	-	Ω	BEN+/-, TXD+/-		
Common-Mode Input Voltage	GND_Tx + 1.4	-	Vcc - (V _{in} /2) - 0.1	V	DC coupled		
Tx Burst Enable Time	-	-	12.86	ns	16 bits data @ 1244Mbps		
Tx Burst Disable Time	-	-	12.86	ns	16 bits data @ 1244Mbps		

Refer to

Figure 1 which schematically describes the high speed data inputs/outputs of the optical transceiver module.

Table 5 – Digital Receiver Specification	s				
Parameter	Minimum	Typical	Maximum	Unit	Notes
Operating Voltage	3.14	3.30	3.46	V	V _{CC} referenced to GND_RX
Data Rate	-	2488.32	-	Mbps	
Operational Wavelength Range	1480	-	1500	nm	
Received Optical Power	-28	-	-8	dBm	PRBS 2 ²³ -1, 50% duty cycle
Bit Error Rate (BER)		-	10 ⁻¹⁰		
CID		72		bits	
Data Output Rise and Fall Time	-	160	-	ps	20% to 80%
Signal Detect Assertion Level	-		-28	dBm	Transition during increasing light
Signal Detect De-Assertion Level ^a	-38	-	-	dBm	Transition during decreasing light
Signal Detect Hysteresis	0.5	-	-	dB	
Differential Output Voltage	600	-	900	mV	CML output, ac coupled (0.1µF)
Signal Detect Output HIGH Voltage	2.4	-	-	v	LVTTL with internal pull up resistor. Asserts HIGH when input data amplitude is above threshold.
Signal Detect Output LOW Voltage	-	-	0.5	V	LVTTL. De-asserts LOW when input data amplitude is below threshold.
RSSI Range ^⁵	-28	-	-8	dBm	
RSSI Accuracy	-3	-	+3	dB	

^a Rx outputs are squelched upon Signal Detect de-assert

^b Externally calibrated.

Table 6 – Video Receiver Specifications								
Parameter	Minimum	Typical	Maximum	Unit	Notes			
12V Operating Voltage Range	11.7	-	13.2	V				
Frequency Range	54	-	1000	MHz				
Receiver Wavelength (Bandwidth)	1550	1555	1560	nm				
Responsivity	0.8	-	-	A/W				
Video PD Monitor Accuracy	-	-	10	%				
AGC Time Constant	1	5	15	S				
S22 Output Return Loss	14	20		dB	75Ω			

Table 7 - Supported Video Channel Plans								
Parameter		Minimum	Typical	Maximum	Unit	Notes		
			Channel P	lan				
Analog Channels ^a		82	-	-		OMI = 3.4% / channel		
Digital Channels		34	-	-		OMI = 1.7% / channel		
Channel Bandwidth			4	-	MHz			
Channel Spacing		-	6	-	MHz			
Received Average Optical Po	wer	-6		1	dBm			
RF Channel Output Power	55MHz	16.5	-	-	dBmV	Linear lower bound from 55-1000MHz		
RF Channel Output Power	1000MHz	19.5	-	-	dBmV	-		
Distortion	CSO CTB	-	-65 -62	-55 -55	dBc	For digital channels, CSO max. and CTB max. will be 7dB higher		
Carrier to Noise Ratio (CNR)		45	-	-	dB			

^a Total OMI = 32%

Table 8 - Microcontroller Specifications									
Parameter	Minimum	Typical	Maximum	Unit	Notes				
Operating Voltage	3.14	3.30	3.46	V					
SDAª	-	-	-	-	LVTTL, open collector serial data line from the I^2C bus to the on board Microcontroller.				
SCL⁵	-	-	-	-	LVTTL, open collector serial clock line from the $\tilde{\Gamma}C$ bus to the on board Microcontroller.				
Reset hold ^c	30	-	-	ms	LVTTL input, internal 50k Ω pull-up. Active Low				
Interrupt	-	-	-	-	LVTTL output, internal $100k\Omega$ pull-up. Active Low				

 $^{\rm a}~{\rm I}^2{\rm C}$ SDA and SCL must be open collector or open drain connections.

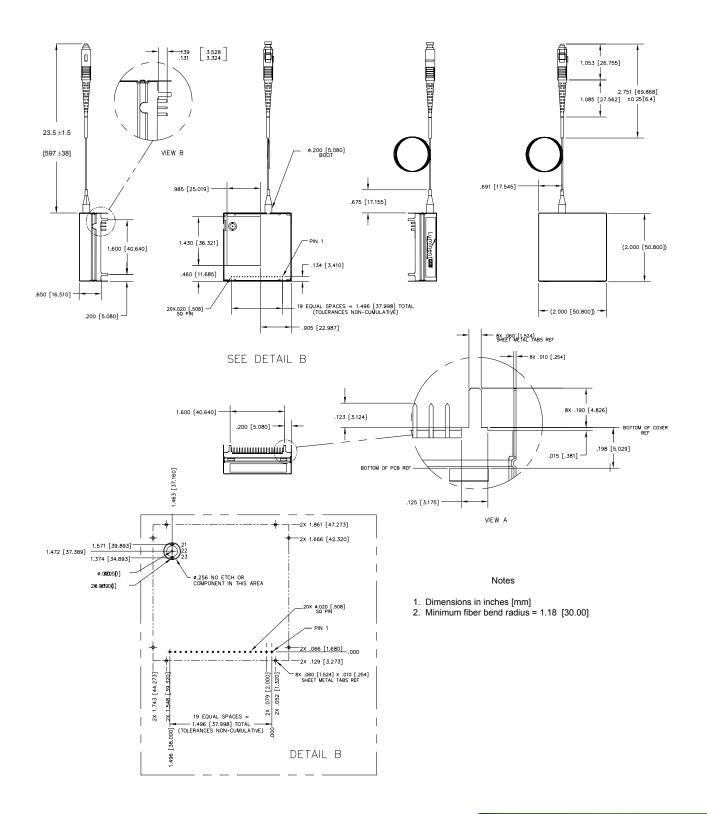
Table 9 – Sugg	Table 9 – Suggested Start-up Sequence						
Step	Action						
1	Power up the host system, with the RESET pin pulled to ground via a \leq 4.7k Ω resistor.						
2	Drive the RESET pin LOW.						
3	Set the BEN control lines to disable the transmitter (BEN lines must be driven with differential logic).						
4	Ensure power to the unit is on.						
5	Drive the RESET pin HIGH to release the unit to become operational.						
6	Wait approximately 250ms until the INTERRUPT pin goes LOW.						
7	Read bytes A2.70/71/74/75 to clear the interrupt condition. Verify that byte A2.75 bit 7 was set. Use multi-byte read of bytes 70/71 and bytes 74/75.						
8	Wait 50ms. Verify that the INTERRUPT pin has changed to HIGH.						
9	The unit is now ready for normal operation.						

	Power	Kelease Keset	INT Active	Read 70-75	INT inactive	Start Data
PWR						
RST	/					
INT		/	<u> </u>	/		
I2C			/	\	\	
BEN						
	:	:	:	:		:

Figure 2 - Recommended transceiver module start-up sequence

^b Clock stretching, as per paragraph 13.2 of the I²C Bus Standard, must be implemented to operate correctly.

[°] Please see Table 9 and the timing diagram in Figure 2 below for the recommended system start-up sequence.


Pin Definitions

Refer to Table 10 for a description of the function of each I/O pin.

Table 10 - Module Pin Definitions						
Pin Number	Label	Definition				
1	GND_A	Common ground				
2	GND_Rx	Digital Rx ground				
3	Vcc_Rx	Digital Rx Vcc				
4	SD	Signal Detect output. LVTTL with internal $3.3 \text{k}\Omega$ pull-up. Asserts HIGH when input optical signal level is above threshold.				
5	RXD+	RX data output, CML. 50 Ω terminated to Vcc and AC coupled to module output (0.1 μ F).				
6	RXD-	RX data bar output, CML. 50 Ω terminated to Vcc and AC coupled to module output (0.1 $\mu F).$				
7	BEN+	Burst Enable input, CML. Internally DC coupled. 100Ω differential termination.				
8	BEN-	Burst Enable bar input, CML. Internally DC coupled. 100Ω differential termination.				
9	GND_Tx	Digital Tx ground				
10	TXD+	Tx data input, CML. Internally DC coupled. 100Ω differential termination.				
11	GND_Tx	Digital Tx ground				
12	TXD-	Tx data bar input, CML. Internally DC coupled. 100Ω differential termination.				
13	Vcc_Tx	Digital Tx Vcc				
14	SDA	I2C Data input/output. LVTTL				
15	SCL	I2C Clock input. LVTTL				
16	INT	Interrupt output. LVTTL with internal 100k Ω pull-up. Active LOW.				
17	Vdd_+12V	Video Rx 12V Vdd				
18	Vcc_3.3V	Microcontroller Vcc				
19	Reset	Reset input. LVTTL. Internal pull up. Active low.				
20	GND_A	Common ground				
21	RF_GND	RF ground				
22	RF_SIGNAL	RF signal				
23	RF_GND	RF ground				

Package Diagram

Ordering Information

Table 11 - Ordering Information									
Part No.	Application	Data Rate	Laser Source	Temp. Range					
ITR-D3T-SD6-A	GPON ONT	1244.16Mb/s / 2488.32Mb/s	1310nm DFB	-40 to 85°C					

Table 12 - Device Handling/ESD Protection	
The devices are static sensitive and may easily be damaged if care is not taken during handling. The following handling practices are recommended.	
1	Devices should be handled on benches with conductive and grounding surfaces.
2	All personnel, test equipment and tools shall be grounded.
3	Do not handle the devices by their leads.
4	Store devices in protective foam or carriers.
5	Avoid the use of non-conductive plastics, rubber, or silk in the area where the devices are handled
6	All modules shall be packaged in materials that are anti-static to protect against adverse electrical environments.
7	Avoid applications of any voltage higher than maximum rated voltages to this part. For proper operation, any VIN or VOUT should be constrained to the range $GND \le (VIN \text{ or VOUT}) \le VCC$. Unused inputs must always be tied to an appropriate logic voltage (e.g. either GND or VCC). Unused outputs must be left open.

Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Legal Notice

IMPORTANT NOTICE!

All information contained in this document is subject to change without notice, at Source Photonics' sole and absolute discretion. Source Photonics warrants performance of its products to current specifications only in accordance with the company's standard one-year warranty; however, specifications designated as "preliminary" are given to describe components only, and Source Photonics expressly disclaims any and all warranties for said products, including express, implied, and statutory warranties, warranties of merchantability, fitness for a particular purpose, and non-infringement of proprietary rights. Please refer to the company's Terms and Conditions of Sale for further warranty information.

Source Photonics assumes no liability for applications assistance, customer product design, software performance, or infringement of patents, services, or intellectual property described herein. No license, either express or implied, is granted under any patent right, copyright, or intellectual property right, and Source Photonics makes no representations or warranties that the product(s) described herein are free from patent, copyright, or intellectual property rights. Products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. Source Photonics customers using or selling products for use in such applications do so at their own risk and agree to fully defend and indemnify Source Photonics for any damages resulting from such use or sale.

© Copyright Source Photonics, Inc. 2007~2008

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Source Photonics product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Source Photonics or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Source Photonics be liable for damages arising directly from any use of the information contained in this document.

Contact

SOURCE PHOTONICS 20550 NORDHOFF ST. CHATSWORTH, CA 91311

sales@sourcephotonics.com Tel: 818-773-9044 Fax: 818-576-9486 Or visit our website: <u>http://www.sourcephotonics.com</u>