Spec. No. : C194Q8 Issued Date : 2013.05.31

Revised Date: Page No.: 1/7

Universal High Brightness LED Driver

HV9910Q8

Features

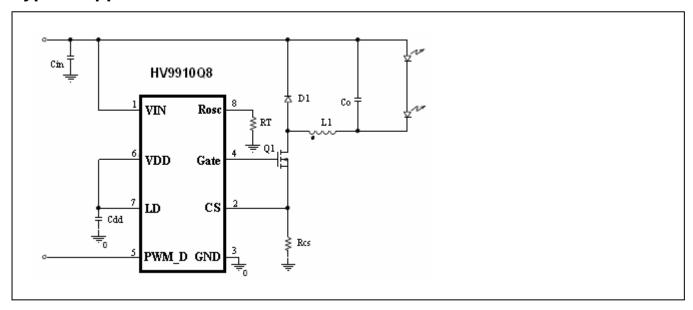
- >90% efficiency
- 10V to 600V input range
- Constant current LED driver
- Applications from a few mA to more than 1A output
- LED string from one to hundreds of diodes
- Linear and PWM dimming capability
- Input voltage surge ratings up to 600V
- Over temperature protection

Applications

- DC/DC or AC/DC LED driver applications
- RGB backlighting LED driver
- Backlighting of flat panel displays
- General-purpose constant current source
- Signage and decorative LED lighting
- Automotive
- Chargers

Description

The HV9910Q8 is a PWM high-efficiency LED driver control IC. It allows efficient operation of high-brightness (HB) LEDs from voltage sources ranging from 10VDC up to 600VDC. The HV9910Q8 controls an external MOSFET at fixed switching frequencies up to 300kHz. The frequency can be programmed using a single resistor. The LED string is driven at a constant current rather than a constant voltage, thus providing a constant light output and an enhanced reliability. The output current can be programmed between a few milliamps and up to more than 1A. The HV9910Q8 uses a rugged high-voltage junction isolated process that can withstand an input voltage surge up to 600V. The output current to a LED string can be programmed to any value between zero and its maximum value by applying an external control voltage at the linear dimming control input of the HV9910Q8. The HV9910Q8 provides a low-frequency PWM dimming input that can accept an external control signal with a duty ratio of 0-100% and a frequency of up to a few kilohertz.


Ordering Information

Device	Package	Shipping
HV9910Q8-0-T3-G	SOP-8 (Pb-free lead plating and halogen-free package)	2500 pcs / tape & reel

Spec. No. : C194Q8 Issued Date : 2013.05.31

Revised Date : Page No. : 2/7

Typical Application Circuit

Pin Description

8 7 6 5	Pin1: VIN	Pin5: PWM_D			
	Pin2: CS	Pin6: VDD			
0	Pin3: Ground	Pin7: LD			
1 2 3 4	Pin4: Gate	Pin8: Rosc			

Absolute Maximum Ratings

Vin to GN	0.5~+600V
CS, LD, PWM_D, GATE to GND	0.3 V ~ VDD+0.3V
Continuous power dissipation (T _A =25 °C)	630mW
Operating temperature range	40~+85°C
Junction temperature	
Storage temperature range	

^{*}Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Spec. No. : C194Q8 Issued Date : 2013.05.31

Revised Date : Page No. : 3/7

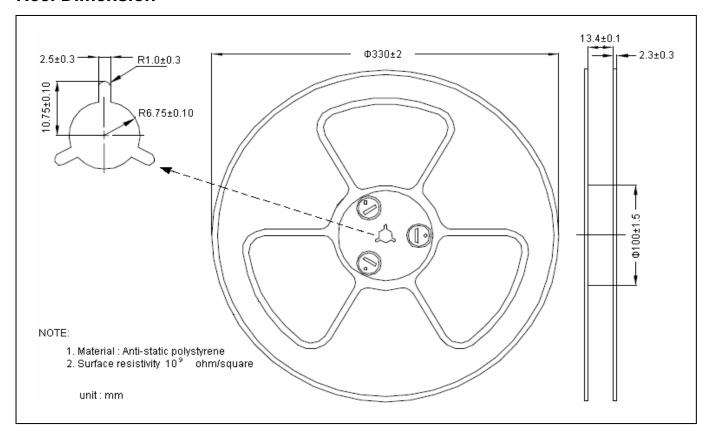
Electrical Characteristics (Ta=25°C, unless otherwise noted)

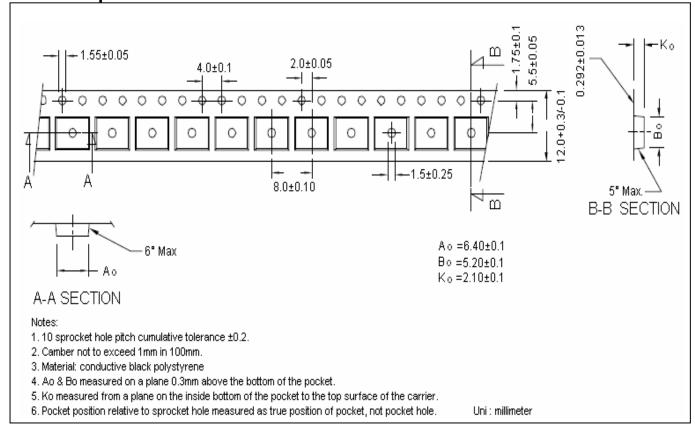
Parameter	Test Condition	Symbol	Min.	Тур.	Max.	Unit
Input DC supply voltage range	DC input voltage	VINDC *	10	-	600	V
Shut down mode supply current	Pin PWM_D to GND, VIN=8V	Iinsd	0.5	1	1	mA
Internally regulated voltage	VIN=10 to 600V, IDD(ext)=0, pin Gate open	V_{DD}	7	7.5	8	V
Load regulation of VDD	IDD(ext)=0 to 1mA, 500pF at GATE, Rosc=226k Ω ,PWM_D=VDD	$\triangle V$ DD, load	0	ı	100	mV
Maximum pin VDD voltage	When an external voltage is applied to pin VDD	VDD, max	ı	ı	10	V
VDD current available for external circuitry	V _{IN} =10 to 100V	IDD(ext)	ı	ı	0.7	mA
VDD under voltage lockout threshold	VIN rising	UVLO	6.45	6.7	6.95	V
VDD under voltage lockout hysteresis	VIN falling	△UVLO	-	500	-	mV
Pin PWM_D input low voltage	VIN=10 to 600V	VEN(lo)	-	-	0.8	V
Pin PWM_D input high voltage	V _{IN} =10 to 600V	VEN(hi)	2	-	-	V
Pin PWM_D pull down resistance	VEN=5V	Ren	50	100	150	kΩ
Current sense pull-in threshold voltage	Ta=-40°C ~ +85°C	VCS(hi)	225	250	275	mV
GATE high output voltage	IOUT=10mA	VGATE(hi)	V _{DD} -0.3	-	Vdd	V
GATE low output voltage	IOUT=-10mA	VGATE(lo)	0	-	0.3	V
Oscillator frequency	Rosc= $1M\Omega$ Rosc= $226k\Omega$	fosc	20 80	25 100	30 120	kHz
Maximum oscillator PWM duty cycle	FPWMhf=25kHz, at GATE, CS to GND	DMAXhf	-	1	100	%
Pin LD(Linear Dimming) voltage range	TA<85°C, VIN=12V	V_{LD}	0	ı	250	mV
Current sense blanking interval	Vcs=0.55Vld, Vld=Vdd	TBLANK	150	215	280	ns
Delay from CS to GATE lo	VIN=12V, VLD=0.15V, Vcs=0 to 0.22V after TBLANK	tDELAY	ı	1	300	ns
GATE output rise time	CGATE=500pF, VDD=7.5V	trise	30	-	50	ns
GATE output fall time	CGATE=500pF, VDD=7.5V	tfall	30	-	50	ns

^{*} Also limited by package power dissipation limit, whichever is lower.

Spec. No. : C194Q8 Issued Date : 2013.05.31

Revised Date : Page No. : 4/7

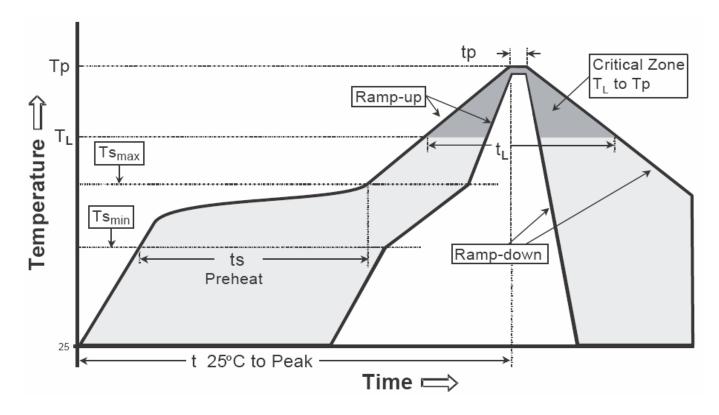

Block Diagram


Spec. No. : C194Q8 Issued Date : 2013.05.31

Revised Date : Page No. : 5/7

Reel Dimension

Carrier Tape Dimension

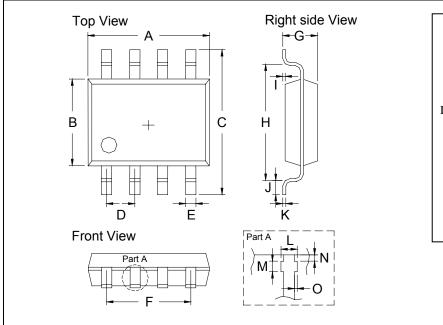

Spec. No. : C194Q8 Issued Date : 2013.05.31

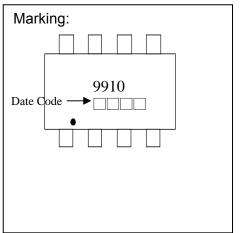
Revised Date : Page No. : 6/7

Recommended wave soldering condition

Product	Peak Temperature	Soldering Time		
Pb-free devices	260 +0/-5 °C	5 +1/-1 seconds		

Recommended temperature profile for IR reflow


Profile feature	Sn-Pb eutectic Assembly	Pb-free Assembly		
Average ramp-up rate (Tsmax to Tp)	3°C/second max.	3°C/second max.		
Preheat				
-Temperature Min(Ts min)	100°C	150°C		
-Temperature Max(Ts max)	150°C	200°C		
-Time(ts min to ts max)	60-120 seconds	60-180 seconds		
Time maintained above:				
-Temperature (T∟)	183°C	217°C		
– Time (t∟)	60-150 seconds	60-150 seconds		
Peak Temperature(T _P)	240 +0/-5 °C	260 +0/-5 °C		
Time within 5°C of actual peak temperature(tp)	10-30 seconds	20-40 seconds		
Ramp down rate	6°C/second max.	6°C/second max.		
Time 25 °C to peak temperature	6 minutes max.	8 minutes max.		


Note: All temperatures refer to topside of the package, measured on the package body surface.

Spec. No. : C194Q8 Issued Date : 2013.05.31

Revised Date : Page No. : 7/7

SO-8 Dimension

8-Lead SO-8 Plastic Package CYStek Package Code: Q8

*: Typical

DIM	Inc	hes	Millim	meters DIM		Inc	hes	Millim	neters
DIIVI	Min.	Max.	Min.	Max.	ווועו	Min.	Max.	Min.	Max.
Α	0.1909	0.2007	4.85	5.10		0.0019	0.0078	0.05	0.20
В	0.1515	0.1555	3.85	3.95	J	0.0118	0.0275	0.30	0.70
С	0.2283	0.2441	5.80	6.20	K	0.0074	0.0098	0.19	0.25
D	0.0480	0.0519	1.22	1.32	L	0.0145	0.0204	0.37	0.52
Е	0.0145	0.0185	0.37	0.47	М	0.0118	0.0197	0.30	0.50
F	0.1472	0.1527	3.74	3.88	N	0.0031	0.0051	0.08	0.13
G	0.0570	0.0649	1.45	1.65	0	0.0000	0.0059	0.00	0.15
Н	0.1889	0.2007	4.80	5.10					

Notes: 1.Controlling dimension: millimeters.

2.Maximum lead thickness includes lead finish thickness, and minimum lead thickness is the minimum thickness of base material. 3.If there is any question with packing specification or packing method, please contact your local CYStek sales office.

Material:

- Lead: Pure tin plated.
- Mold Compound: Epoxy resin family, flammability solid burning class: UL94V-0.

Important Notice:

- All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of CYStek.
- CYStek reserves the right to make changes to its products without notice.
- CYStek semiconductor products are not warranted to be suitable for use in Life-Support Applications, or systems.
- CYStek assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.