UNISONIC TECHNOLOGIES CO., LTD LR1185 **Preliminary CMOS IC** # 150mA CMOS LDO WITH SHUTDOWN AND REFERENCE **BYPASS** #### **DESCRIPTION** The UTC LR1185, a 150mA LDO regulator has very high PSRR and super low dropout voltage especially suitable for wireless and portable applications. In the field of hand-held wireless devices, board space and battery life are the main concerns of designers and end-users. Because of the low quiescent current and low ESR ceramic capacitors, UTC LR1185 can satisfy those concerns. Furthermore, low current consumption (50µA), high output accuracy, current limiting protection, and high ripple rejection ratio are advantages of UTC LR1185. #### **FEATURES** - * Operating voltage ranges: 2.7V~5.5V - * Dropout: 100mV at 150mA - * When IC shutdown: 5mA discharge current of Vout - * Extreme low Noise for DSC application - * Extreme fast response in line/load transient - * Internal current limiting protection - * Internal thermal shutdown protection - * High PSRR - * Recommended 1µF output capacitor only for stability - * With TTL logic controlled shutdown input ### ORDERING INFORMATION | Ordering | Number | Daakana | Dealing | | |------------------------|------------------|----------|-----------|--| | Lead Free Halogen Free | | Package | Packing | | | LR1185L-xx-AE5-R | LR1185G-xx-AE5-R | SOT-23-5 | Tape Reel | | Note: xx: Output Voltage, refer to Marking Information. # ■ MARKING INFORMATION | PACKAGE | VOLTAGE CODE | MARKING | | | |----------|--------------|--|--|--| | SOT-23-5 | 4B: 4.15V | Voltage Code L:Lead Free G: Halogen Free | | | # ■ PIN CONFIGURATION # ■ PIN DESCRIPTION | PIN NO. | PIN NAME | DESCRIPTION | |---------|------------------|--| | 1 | V_{IN} | Unregulated supply input. | | 2 | GND | Ground terminal. | | 3 | SHDN | Shutdown control input. | | 4 | Bypass | Reference bypass input. Connecting a 470pF to this input further reduces output noise. | | 5 | V _{OUT} | Regulated voltage output. | # ■ BLOCK DIAGRAM # ■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified.) | PARAMETER | SYMBOL | RATINGS | UNIT | |--|------------------|---------------------------|------| | Supply Input Voltage | V_{IN} | 6 | V | | Output Voltage | V_{OUT} | -0.3~V _{IN} +0.3 | V | | Power Dissipation (T _A =25°C) | P _D | 0.38 | W | | Junction Temperature | TJ | 150 | °C | | Storage Temperature | T _{STG} | -65~+150 | °C | Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied. #### ■ THERMAL DATA | PARAMETER | SYMBOL | RATINGS | UNIT | |---------------------|---------------|---------|------| | Junction to Ambient | θ_{JA} | 256 | °C/W | #### OPERATING CONDITIONS | PARAMETER | SYMBOL | RATINGS | UNIT | |----------------------|----------|----------|------| | Supply Input Voltage | V_{IN} | 2.7~5.5 | V | | Junction Temperature | T_J | -40~+125 | °C | | Ambient Temperature | T_A | -40~+85 | °C | #### ■ ELECTRICAL CHARACTERISTICS $(V_{IN}=V_{OUT}+0.5V, V_{EN}=V_{IN}, C_{IN}=C_{OUT}=1\mu F$ (Ceramic), $T_A=25^{\circ}C$, unless otherwise specified.) | PARAMETER | | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------------|------------|--|--|-----|------|-----|---------------| | Input Voltage | | V_{IN} | | | | 5.5 | V | | Output Voltage A | ccuracy | ΔV_{OUT} | I _{OUT} =10mA | | 0 | +2 | % | | Line Regulation | | $\frac{\Delta V \text{OUT}}{\Delta V \text{IN} \times V \text{OUT}}$ | V _{IN} =(V _{OUT} +0.5V)~5.5V, I _{OUT} =1mA | | 0.01 | 0.2 | %/V | | Load Regulation (Note 1) | | <u>Δ</u> Vουτ | 1mA <i<sub>OUT<150mA, 2.7V≤V_{IN}≤5.5V</i<sub> | | 0.5 | 1 | % | | Quiescent Current (Note 2) | | IQ | V _{EN} =5V, I _{OUT} =0mA | | 25 | 50 | μΑ | | Standby Current | | I _{STN-BY} | V _{EN} =0V | | | 1 | μΑ | | Current Limit | | I _{LIMIT} | R _{LOAD} =0Ω, 2.7V≤V _{IN} ≤5.5V | | 0.3 | 0.5 | Α | | Dropout Voltage (Note 3) | | V_D | I _{OUT} =150mA | | 100 | 200 | mV | | Soft Start Time | | | V_{OUT} =2.5V, C_{SS} =1nF, C_{OUT} =1 μ F | | 0.7 | 1.2 | ms | | | Logic-Low | V_{IL} | | | | 0.6 | V | | EN Threshold | Logic-High | V _{IH} | | 1.6 | | | V | | Enable Pin Current | | I _{EN} | | 0.1 | 1 | 5 | μA | | Over Temperature Shutdown | | OTS | | | 170 | | °C | | Over Temperature Hysteresis C | | OTH | | | 30 | | °C | | Power Supply Rejection Rate | | PSRR | I _{OUT} =10mA, f=10kHz | | 55 | | dB | | Output Noise Voltage | | e _N | V_{OUT} =1.5 V , C_{OUT} =1 μ F, I_{OUT} =0 m A, C_{SS} =1 n F | | 40 | | μV_{RMS} | - Notes: 1. Regulation is measured at constant junction temperature by using a 2ms current pulse. Devices are tested for load regulation in the load range from 1mA to 500mA. - 2. Quiescent, or ground current, is the difference between input and output currents. It is defined by I_Q=I_{IN} I_{OUT} under no load condition (I_{OUT}=0mA). The total current drawn from the supply is the sum of the load current plus the ground pin current. - 3. The dropout voltage is defined as V_{IN} - V_{OUT} , which is measured when V_{OUT} is $V_{\text{OUT}(\text{NORMAL})} \times 98\%$. #### TYPICAL APPLICATION CIRCUIT UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.