FDN304P

General Description

This P-Channel 1.8V specified MOSFET uses Fairchild's advanced low voltage PowerTrench process. It has been optimized for battery power management applications.

Applications

- · Battery management
- Load switch
- Battery protection

Features

• -2.4 A, -20 V. $R_{DS(ON)} = 0.052 \ \Omega \ @V_{GS} = -4.5 \ V$ $R_{DS(ON)} = 0.070 \ \Omega \ @V_{GS} = -2.5 \ V$ $R_{DS(ON)} = 0.100 \ \Omega \ @V_{GS} = -1.8 \ V$

- · Fast switching speed
- High performance trench technology for extremely low $R_{\mbox{\scriptsize DS(ON)}}$
- SuperSOT[™] -3 provides low R_{DS(ON)} and 30% higher power handling capability than SOT23 in the same footprint

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±8	V
I _D	Drain Current - Continuous	(Note 1a)	-2.4	А
	Pulsed		-10	
P _D	Maximum Power Dissipation	(Note 1a)	0.5	W
		(Note 1b)	0.46	
T _J , T _{STG}	Operating and Storage Junction Tem	perature Range	-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	250	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	75	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
.304	FDN304P	7"	8mm	3000 units

FDN304P

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chai	racteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	V _{GS} = 0 V, I _D = -250 μA	-20			V
<u>ΔBV_{DSS}</u> ΔΤ _J	Breakdown Voltage Temperature Coefficient	I_D = -250 μ A,Referenced to 25°C		-13		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 8 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	V _{GS} = -8 V V _{DS} = 0 V			-100	nA
On Char	acteristics (Note 2)				•	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.4	-0.8	-1.5	V
$\Delta V_{GS(th)} \over \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	I_D = -250 μ A,Referenced to 25°C		3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -2.4 \text{ A}$ $V_{GS} = -2.5 \text{ V}, I_D = -2.0 \text{ A}$ $V_{GS} = -1.8 \text{ V}, I_D = -1.8 \text{ A}$		0.036 0.047 0.065	0.052 0.070 0.100	Ω
I _{D(on)}	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, \qquad V_{DS} = -5 \text{ V}$	-10			Α
g FS	Forward Transconductance	$V_{DS} = -5 \text{ V}, \qquad I_{D} = -1.25 \text{ A}$		12		S
Dynamio	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$		1312		pF
Coss	Output Capacitance	f = 1.0 MHz		240		pF
C _{rss}	Reverse Transfer Capacitance	7		106		pF
Switchir	ng Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -10 \text{ V}, \qquad I_{D} = -1 \text{ A},$		15	27	ns
t _r	Turn-On Rise Time	$V_{DD} = -10 \text{ V}, \qquad I_{D} = -1 \text{ A},$ $V_{GS} = -4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$		15	27	ns
$t_{d(off)}$	Turn-Off Delay Time	7		40	64	ns
t _f	Turn-Off Fall Time	7		25	40	ns
Qg	Total Gate Charge	$V_{DS} = -10 \text{ V}, \qquad I_{D} = -2.4 \text{ A},$ $V_{GS} = -4.5 \text{ V}$		12	20	nC
Q _{gs}	Gate–Source Charge			2		nC
Q_{gd}	Gate-Drain Charge	7		2		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings		•	•	•
l _s	Maximum Continuous Drain–Source				-0.42	Α
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = -0.42 \text{(Note 2)}$		-0.6	-1.2	V

Notes

 R_{eJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{eJC} is guaranteed by design while R_{eCA} is determined by the user's board design.

 a) 250°C/W when mounted on a 0.02 in² pad of 2 oz. copper.

b) 270°C/W when mounted on a minimum pad.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%