AOS Semiconductor Product Reliability Report

AON6414AL, rev g

Plastic Encapsulated Device

ALPHA \& OMEGA Semiconductor, Inc

This AOS product reliability report summarizes the qualification result for AON6414AL. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AON6414AL passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

I. Product Description
II. Package and Die information
III. Environmental Stress Test Summary and Result
IV. Reliability Evaluation

I. Product Description:

The AON6414AL uses advanced trench technology to provide excellent $R_{\text {DS(ON) }}$, low gate charge. This device is suitable for use as a high side switch in SMPS and general purpose applications.
-RoHS Compliant
-Halogen Free
Detailed information refers to datasheet.

II. Die / Package Information:

AON6414AL

Process
Standard sub-micron
Low voltage N channel
Package Type
DFN 5x6
Lead Frame
Cu
Die Attach
Bonding Wire
Mold Material
MSL (moisture sensitive level)
Ag epoxy
Cu wire
Epoxy resin with silica filler
Level 1 based on J-STD-020
Note * based on information provided by assembler and mold compound supplier
III. Result of Reliability Stress for AON6414AL

Test Item	Test Condition	Time Point	Lot Attribution	```Total Sample size```	Number of Failures	Standard
MSL Precondition	168hr 85 ${ }^{\circ}$ /85\%RH + 3 cycle reflow@260	-	11 lots	1815pcs	0	$\begin{gathered} \text { JESD22- } \\ \text { A113 } \end{gathered}$
HTGB	$\begin{aligned} & \text { Temp = } 150^{\circ} \mathrm{c}, \\ & \text { Vgs }=100 \% \text { of } \\ & \text { Vgsmax } \end{aligned}$	168hrs 500 hrs 1000 hrs	$\begin{aligned} & 2 \text { lots } \\ & 1 \text { lot } \\ & 1 \text { lot } \end{aligned}$	308pcs 77pcs / lot	0	$\begin{gathered} \hline \text { JESD22- } \\ \text { A108 } \end{gathered}$
HTRB	$\begin{aligned} & \text { Temp }=150{ }^{\circ} \mathrm{c}, \\ & \text { Vds }=80 \% \text { of } \\ & \text { Vdsmax } \end{aligned}$	168hrs 500 hrs 1000 hrs	$\begin{aligned} & 2 \text { lots } \\ & 1 \text { lot } \\ & 1 \text { lot } \end{aligned}$	308pcs 77pcs / lot	0	$\begin{gathered} \text { JESD22- } \\ \text { A108 } \end{gathered}$
HAST	$\begin{aligned} & 130+/-2^{\circ} \mathrm{c}, \\ & 85 \% \mathrm{RH}, 33.3 \text { psi, } \\ & \text { Vgs }=100 \% \text { of } \\ & \text { Vgs max } \end{aligned}$	100 hrs	11 lots (Note A*)	605pcs 55pcs / lot	0	$\begin{gathered} \text { JESD22- } \\ \text { A110 } \end{gathered}$
Pressure Pot	$\begin{aligned} & 121^{\circ} \mathrm{c}, 29.7 \mathrm{psi}, \\ & \mathrm{RH}=100 \% \end{aligned}$	96 hrs	11 lots (Note A*)	605pcs 55pcs / lot	0	$\begin{gathered} \text { JESD22- } \\ \text { A102 } \end{gathered}$
Temperature Cycle	$\begin{aligned} & -65^{\circ} \mathrm{c} \text { to } 150^{\circ} \mathrm{c}, \\ & \text { air to air } \end{aligned}$	$250 / 500$ cycles	11 lots (Note A*)	605pcs 55pcs / lot	0	$\begin{gathered} \hline \text { JESD22- } \\ \text { A104 } \end{gathered}$

Note A: The reliability data presents total of available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 13
MTTF = 9101 years
The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AON6414AL). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

```
Failure Rate \(=\mathrm{Chi}^{2} \times 10^{9} /[2(\mathrm{~N})(\mathrm{H})(\mathrm{Af})]\)
    \(=1.83 \times 10^{9} /[2 \times(4 \times 77 \times 168+2 \times 77 \times 500+2 \times 77 \times 1000) \times 258]=13\)
MTTF \(=10^{9} /\) FIT \(=7.97 \times 10^{7}\) hrs \(=9101\) years
```

$\mathbf{C h i}^{2}=$ Chi Squared Distribution, determined by the number of failures and confidence interval
$\mathbf{N}=$ Total Number of units from HTRB and HTGB tests
H = Duration of HTRB/HTGB testing
$\mathbf{A f}=$ Acceleration Factor from Test to Use Conditions ($\mathrm{Ea}=0.7 \mathrm{eV}$ and $\mathrm{Tuse}=55^{\circ} \mathrm{C}$)
Acceleration Factor [Af] = Exp [Ea/k (1/Tju-1/Tj s)]
Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16
Tj $\mathbf{u}=$ The use junction temperature in degree (Kelvin), $K=C+273.16$
$\mathrm{K}=$ Boltzmann's constant, $8.617164 \times 10^{-5} \mathrm{eV} / \mathrm{K}$

