

NDF0610 / NDS0610

General Description

These P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process has been designed to minimize on-state resistance, provide rugged and reliable performance and fast switching. They can be used, with a minimum of effort, in most applications requiring up to 180mA DC and can deliver pulsed currents up to 1A. This product is particularly suited to low voltage applications requiring a low current high side switch.

Features

- -0.18 and -0.12A, -60V. $R_{DS(ON)} = 10\Omega$
- Voltage controlled p-channel small signal switch
- High density cell design for low R_{DS(ON)}
- TO-92 and SOT-23 packages for both through hole and surface mount applications
- High saturation current

Absolute Maximum Ratings

T_A = 25°C unless otherwise noted

Symbol	Parameter	NDF0610	NDS0610	Units
V _{DSS}	Drain-Source Voltage	-6	V	
V_{DGR}	Drain-Gate Voltage ($R_{cs} \le 1 \text{ M}\Omega$)	-6	V	
V_{GSS}	Gate-Source Voltage - Continuous	±2	V	
	- Nonrepetitive (t _P < 50 µs)	±3	V	
I _D	Drain Current - Continuous	-0.18	-0.12	А
	- Pulsed	-1		
P _D	Maximum Power Dissipation T _A = 25°C	0.8	0.36	W
	Derate above 25°C	5	2.9	mW/°C
T _J ,T _{STG}	Operating and Storage Temperature Range	-55 to	°C	
T _L	Maximum lead temperature for soldering purposes, 1/16" from case for 10 seconds	30	°C	
THERMA	L CHARACTERISTICS			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	200	350	°C/W

NDF0610 / NDS0610

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHA	ARACTERISTICS	1			<u> </u>		<u> </u>
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{gs} = 0 \text{ V}, I_{p} = -10 \mu\text{A}$		-60			V
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}$				-1	μΑ
			T _J = 125°C			-200	μΑ
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$				10	nA
GSSR	Gate - Body Leakage, Reverse	$V_{gs} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-10	nA
ON CHAP	RACTERISTICS (Note 1)						
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -1 \text{ mA}$		-1	-2.4	-3.5	V
			T _J = 125°C	-0.6	-2.1	-3.2	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{gs} = -10 \text{ V}, \ I_{D} = -0.5 \text{ A}$			3.6	10	Ω
			T _J = 125°C		5.9	16	
		$V_{gs} = -4.5 \text{ V}, I_{D} = -0.25 \text{ A}$			5.2	20	
			T _J = 125°C		7.9	30	
I _{D(on)}	On-State Drain Current	$V_{GS} = -10 \text{ V}, V_{DS} = -10 \text{ V}$		-0.6	-1.6		Α
		$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}$	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}$		-0.35		
9 _{FS}	Forward Transconductance	$V_{DS} = -10 \text{ V}, I_{D} = -0.1 \text{ A}$		70	170		mS
DYNAMIC	CHARACTERISTICS				1		1
C _{iss}	Input Capacitance	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$			40	60	pF
C_{oss}	Output Capacitance			11	25	pF	
C _{rss}	Reverse Transfer Capacitance				3.2	5	pF
SWITCHI	NG CHARACTERISTICS (Note 1)						
t _{D(on)}	Turn - On Delay Time	$V_{DD} = -25 \text{ V}, I_{D} = -0.18 \text{ A},$			7	10	nS
r	Turn - On Rise Time	V_{GS} = -10 V, R_{GEN} = 25 Ω			5	15	nS
D(off)	Turn - Off Delay Time				13	15	nS
f	Turn - Off Fall Time				10	20	nS
Q_g	Total Gate Charge	$V_{DS} = -48 \text{ V},$ $I_D = -0.5 \text{ A}, V_{GS} = -10 \text{ V}$			1.43		nC
Q_{gs}	Gate-Source Charge				0.6		nC
Q_{gd}	Gate-Drain Charge				0.25		nC
DRAIN-SC	DURCE DIODE CHARACTERISTICS						
S	Maximum Continuous Source Current					-0.18	Α
SM	Maximum Pulse Source Current (Note 1)					-1	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -0.5 \text{ A}$ (Note 1)			-1.2	-1.5	V
		(NOTE 1)	T _J = 125°C		-0.98	-1.3	
rr	Reverse Recovery Time	$V_{GS} = 0 \text{ V, } I_{S} = -0.5 \text{ A,}$ $dI_{F}/dt = 100 \text{ A/}\mu\text{s}$			40		ns
l _{rr}	Reverse Recovery Current				2.8		Α

Note: 1. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.