

Quantum Cascade Laser

Quantum Cascade Lasers are semiconductor lasers that offer peak emission in the mid-IR range (4 µm to 10 µm). They have gained considerable attention as a new light source for mid-IR applications such as molecular gas analysis.

- Features
- ●Mid-IR laser (4 μm to 10 μm) ●Compact, lightweight
- Applications Trace gas analysis Environmental measurement, Combustion gas measurement, Plasma measurement, In vivo gas analysis
 - •IR molecular spectroscopy Chemical sensing, Molecular oscillation

QCL LINEUP

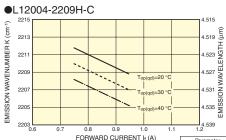
■DFB-CW Type

HHL package

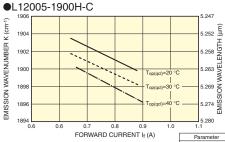
Quantum Cascade Lasers, using structures of SPC (Single Phonon-Continuum) depopulation and DFB (Distributed Feedback), emit CW (Continuous Wave) mid-IR laser under room temperature.

By controlling the chip's operating temperature through the Peltier element installed in the HHL package, it is possible to tune the emission wavelength without mode hopping while keeping longitudinal single mode operation.

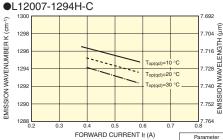
Type No. Wavelength		Operating temperature (QCL) (*1)		Line width (*2)	Tunable range (*3)	Output power	Threshold current	Side-mode suppression ratio (SMSR)
	Тур.	Min.	Max.	Max.	Min.	Min.	Max.	Min.
L12004-2209H-C	4.53 μm	+10 °C	+50 °C	0.2 cm ^{-1 (*4)}	±1.0 cm ⁻¹	20 mW	1.0 A	25 dB
L12004-2209H-C	4.53 μπ		Cond	dition: K=2209 cm	1 -1 (*5)		Condition: T	op(qcl)=20 °C
L12004-2190H-C	4.57 μm	+10 °C	+50 °C	0.2 cm ^{-1 (*4)}	±1.0 cm ⁻¹	20 mW	1.0 A	25 dB
L12004-2190Π-C 4.57 μΠ		Condition: K=2190 cm ⁻¹ (*5)					Condition: Top(qcl)=20 °C	
L12005-1900H-C	5.26 um	+10 °C	+50 °C	0.2 cm ^{-1 (*4)}	±1.0 cm ⁻¹	20 mW	1.0 A	25 dB
L12005-1900Π-C 5.26 μΠ		Condition: K=1900 cm ⁻¹ (*5)					Condition: Top(qcl)=20 °C	
L12006-1631H-C	140000 400411 0		+50 °C	0.2 cm ^{-1 (*4)}	±1.0 cm ⁻¹	20 mW	1.0 A	25 dB
L12006-1631H-C 6.13 μm		Condition: K=1631 cm ⁻¹ (*5)				Condition: Top(qcl)=20 °C		
L12007-1294H-C	7.73 µm	+10 °C	+50 °C	0.2 cm ⁻¹ (*4)	±1.0 cm ⁻¹	20 mW	1.0 A	25 dB
L12007-1294H-C	1.13 μπ	Condition: K=1294 cm ⁻¹ (*5)				Condition: T	op(qcl)=20 °C	

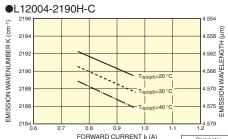

*1) This specifies the temperature range within which the target emission wavenumber (K) can be realized. (*2) Full-width half maximum

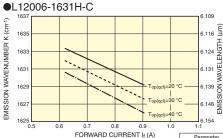
(*3) This specifies the continuous tunable range (without mode hopping). The center wavenumber of the tuning range is the emission wavenumber (K).


(*4) The figures are limited by the resolution and signal/noise ratio of the measuring instruments used. (*5) K: Emission wavenumber (cm⁻¹)

■ Limited quantities of QCLs with emission wavelengths close to those specified above may be available occasionally. Please contact a Hamamatsu sales office for information on available stock.


Characteristics examples

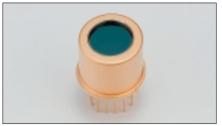

Parameter Symbol Condition Typical value δКт If fixed -0.18 cm⁻¹/°C


Typical value δΚΤ -0.14 cm⁻¹/°C If fixed δΚς -0.016 cm⁻¹/mA

Typical value Current coeffici δКс Top(qcl) fixed -0.01 cm⁻¹/mA of wavenumber

Parameter Symbol Condition Typical value δКт If fixed -0.18 cm-1/°C

Typical value δΚτ -0.15 cm⁻¹/°C If fixed δKc Top(qcl) fixed -0.015 cm⁻¹/mA


CLASS 3B LASER

Invisible Laser Radiation: Avoid Exposure to Beam

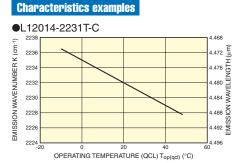
●The Laser emits invisible laser radiation The instrument which used the LASER, opera-ted under ordinary conditions, is classified as Class 3B according to the laser product classi-fication code IEC 60825-1. See IEC 60825-1, -14 for more details and safety operation concerning the above counter measures.

■DFB-Pulsed Type

Quantum Cascade Lasers, using structures of SPC (Single Phonon-Continuum) depopulation and DFB (Distributed Feedback), emit pulsed mid-IR laser under room temperature.

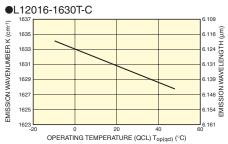
By controlling the chip's operating temperature through the Peltier element installed in the TO-8 package, it is possible to tune the emission wavelength without mode hopping while keeping longitudinal single mode operation.

TO-8 package

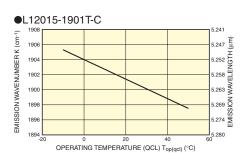

Type No.	Wavelength	Operating temperature (QCL) (*1)		Line width (*2)	Tunable range (*3)	Pulsed output power	Threshold current	Side-mode suppression ratio (SMSR)
	Тур.	Min.	Max.	Max.	Min.	Min.	Max.	Min.
L12014-2231T-C	4.48 μm	-10 °C	+50 °C	0.2 cm ⁻¹ (*4)	±1.0 cm ⁻¹	50 mW	1.5 A	25 dB
L12014-22311-C	4.46 μπ		Condition: K=2231 cm ⁻¹ (*5)					25 UD
L10015 1001T.C	F 06m	-10 °C	+50 °C	0.2 cm ^{-1 (*4)}	±1.0 cm ⁻¹	50 mW	1.5 A	25 dB
L12015-1901T-C 5.26 μm		Condition: K=1901 cm ⁻¹ (*5)					1.5 A	25 QB
L12016-1630T-C	6.13 µm	-10 °C	+50 °C	0.2 cm ^{-1 (*4)}	±1.0 cm ⁻¹	50 mW	1.5 A	25 dB
L12016-16301-C 6.13 μΠ		Condition: K=1630 cm ⁻¹ (*5)				1.5 A	25 UB	
L10017 1070T.C	7 90m	-10 °C	+50 °C	0.2 cm ^{-1 (*4)}	±1.0 cm ⁻¹	50 mW	15 /	OE dD
L12017-1278T-C	7.82 μm	Condition: K=1278 cm ^{-1 (*5)}				1.5 A	25 dB	

Standard driving conditions: t_W =10 ns, f_r =200 kHz, $T_{op(qcl)}$ =20 °C

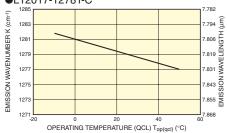
(*1) This specifies the temperature range within which the target emission wavenumber (K) can be realized.


(*2) Full-width half maximum

(*3) This specifies the continuous tunable range (without mode hopping). The center wavenumber of the tuning range is the emission wavenumber (K). (*4) The figures are limited by the resolution and signal/noise ratio of the measuring instruments used. (*5) K: Emission wavenumber (cm-1)


 Parameter
 Symbol
 Condition
 Typical value

 Temperature coefficient of wavenumber
 δKT
 Ifp fixed
 -0.15 cm⁻¹/°C


 Parameter
 Symbol
 Condition
 Typical value

 Temperature coefficient
 δKT
 Itp
 -0.11 cm⁻¹/°C

ı	Parameter	Symbol	Condition	Typical value
	Temperature coefficient of wavenumber	δΚτ	I _{fp} fixed	-0.13 cm ⁻¹ /°C

●L12017-1278T-C

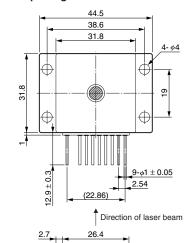
Parameter	Symbol	Condition	Typical value
Temperature coefficient	δКт	Ifp fixed	-0.08 cm-1/°C
of wovenumber	OKI	itb lixen	*0.06 CIII 1/ C

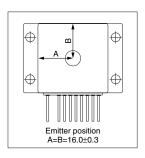
CLASS 3R LASER

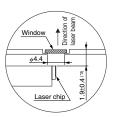
Invisible Laser Radiation: Avoid Direct Exposure of eyes to Beam

•The Laser emits invisible laser radiation. The instrument which used the LASER, operated under ordinary conditions, is classified as Class 3R according to the laser product classification code IEC 60825-1.
See IEC 60825-1 for more details and safety

operation concerning the above countermea


QCL LINEUP

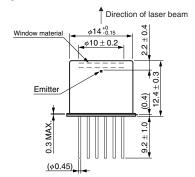

■DFB-CW Type

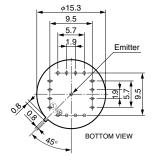

Dimensional outline (unit: mm)

HHL package

2.9

- (*1) Tolerance is +/- 0.2 mm unless specified.
- (*2) Edge of QCL chip and outside of the package


PIN No. (*3)	FUNCTION	PIN No. (*3)	FUNCTION
1	TEC Cathode (-)	7	QCL Cathode (-)
3	N.C.	8	Thermistor (Top(c))
4)	QCL Anode (+)	9	Thermistor (Top(c))
(5)	Thermistor (Top(qcl))	10	TEC Anode (+)
6	Thermistor (Top(qcl))	_	_


(*3) 3 is electrically connected to the package. The other pins are electrically iso-

■DFB-Pulsed Type

Dimensional outline (unit: mm)

TO-8 package

PIN No.	FUNCTION	PIN No.	FUNCTION	PIN No.	FUNCTION
1	TEC Cathode (-)	7	QCL Anode (+)	13	QCL Cathode (-)
2	N.C.	8	QCL Anode (+)	14)	QCL Cathode (-)
3	N.C.	9	Thermistor (Top(qcl))	15	QCL Cathode (-)
4	TEC Anode (+)	10	Thermistor (Top(qcl))	16	QCL Cathode (-)
(5)	QCL Anode (+)	11)	N.C.		_
6	QCL Anode (+)	12	N.C.	_	_

^{*} All the pins are electrically isolated from the package

CONNECTION EXAMPLE

DFB-CW QCL

- 1) DFB-CW QCL (L12004, L12005, L12006, L12007 Series)
- 2 Peltier TEC Driver C11330-01
- ③Forced Air Cooling HHL Mount A11709-01 or Water Cooling HHL Mount A11709-02
- 4 Aspheric ZnSe lens A11331-0x and/or Lens unit A11331-0xH (Select a suitable Aspheric ZnSe Lens in accordance with the QCL's emission wavelength.)
- **5** Cable A11134-04
- **6** Laser Power Supply

DFB-Pulsed QCL

- ①DFB-Pulsed QCL (L12014, L12015, L12016, L12017 series)
- 2) Peltier TEC Driver C11330-02
- **3 Pulsed QCL Driver Module C11635**
- (4) Aspheric ZnSe lens A11331-0x and/or Lens unit A11331-0xH (Select a suitable Aspheric ZnSe Lens in accordance with the QCL's emission wavelength.)
- **5** Cable A11134-04

PERIPHERAL INSTRUMENTS AND ACCESSORIES

■HHL Mount A11709 Series

A11709-01 Forced air cooling

A11709-02 Water cooling

Cooling Unit for HHL packaged QCL. Two types of cooling, forced air and water, are available. An Aspheric ZnSe Lens Unit A11331-0xH can be mounted.

Parameter	A11709-01	A11709-02	Unit
Cooling method	Forced air cooling	Water cooling	—
Maximum heat discharge power	Approx. 30 (*1)	Approx. 50 (*2)	W
Thermal resistance	Approx. 0.5 (*1)	Approx. 0.3 (*2)	°C/W
Applicable package	H	_	
Operating temperature	0 to +40		°C
Size $(W \times H \times D)$	$68 \times 82 \times 117$	$60 \times 103 \times 50$	mm
Weight	0.5	0.52	kg

^(*1) DC fan speed 7600 min-1 at ambient temperature 25 °C

- Features Two types of cooling (water, forced air) are available.
 - Easy to mount
 - Easily set on optical tables
 - ●Can be mounted to the lens unit A11331-0xH

■TO-8 Pulse Driver C11635

^{*} Driver shown in photo has a TO-8 package QCL.

Pulsed QCL Driver for TO-8 packaged pulsed QCL. It outputs low noise pulsed current, and TO-8 packaged pulsed QCL can be mounted directly.

An Aspheric ZnSe Lens Unit A11331-0xH can be mounted.

- Features

 ■Can be connected to TO-8 package QCL
 - Pulse width: 10 ns (Typ.)
 - Repetition frequency: <1 MHz
 - Low noise, high stability
 - Designed to be built into an instrument

	Parameter	Symbol	Value	Unit
	Output current range	I(pulse)	0 to 3	Α
O	Pulse width (Typ.)	Pw	10	ns
Output	Rise / fall time (Typ.)	Tr	5	ns
Current	Repetition frequency	_	Approx. 150 kHz to Approx. 1 MHz	_
	Duty ratio	DR	<5	%
Dimensions	$(W \times H \times D)$	_	90 × 68 × 43	mm
Weight		_	0.3	kg

- can be mounted to aspheric lens unit A11331-0xH.
- repetition frequency up to 2 MHz
- * pulse width down to 40 ns (repetition frequency < 500 kHz)
- * pulse width up to 1000 ns (repetition frequency < 100 kHz)
- * external trigger operation by removing the oscillating board
- * Two types of DC power supplies and a TEC driver are separately needed * An oscilloscope is separately needed for observation of current output shape.
- * Bias source or TTL gate source should be separately prepared at the needs of usage.

TO-8 QCL (*1) V (ic) INPUT (DC) +12 V (Typ.) TEC CONTROLLER for TO-8	Setup example	OSCILLOSCOPE Δ 50 Ω TERMIN	IAL H	HV INPUT (DC)
		C11635		
separately from the pulse driver.			_	1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

ITEC Driver C11330 Series

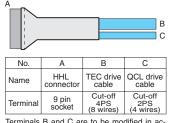
Peltier TEC (thermoelectric cooler) driver is used to control QCL temperature with high accuracy and high stability. Designed to be built into an instrument.

- - ●Temperature stability: 0.01 °C
 - ●TEC heatsink monitoring function
 - •Bipolar output, digital PID control

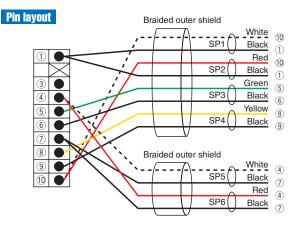
	Parameter	C11330-01	C11330-02	Unit
Applicable p	ackage	HHL	TO-8	_
TEC	TEC control current	-8 to +8	-1.9 to +1.9	Α
output (*1)	Compliance voltage	±2	24	V
Temperature	Thermistor	NTC,	2 lines	_
sensor (*2)	RTD sensor	3-line platinum temperature me	easurement resistance (Pt100)	_
	Temperature control range (Thermistor/RTD)	-50 to +125	/-50 to +150	°C
Temperature	Setup resolution	0.0	01	°C
control	Temperature stability	±0.01	(Typ.)	°C
	Control frequency	0.1 to	100	s
	Control algorithm	Digital PI	TO-8 -1.9 to +1.9 ±24 NTC, 2 lines returne measurement resistance (Pt100) +125 / -50 to +150 0.01 ±0.01 (Typ.) 0.1 to 100 pital PID loop (*3) -232C, RS-422 00 × 110 × 33	_
Host interfac	ce	RS-232C	, RS-422	_
Main body s	size $(W \times H \times D)$	100 × 1	10×33	mm
Weight		0	.3	kg

- (*1) Actual output depends on characteristics of the connected load (TEL module), input power supply voltage, and current.
- (*2) Thermistor and Pt100 cannot be used simultaneously; select one of them.
- (*3) Auto-tuning function can be set by the host interface.
- * This can be controlled from a PC through RS-232C or RS-422.
- * A power supply (DC 24V), power cable, output cable, communication cable, terminal for control are separately needed.
- * When controlling through a PC which does not have any ports or terminal emulators for serial communication, use an USB serial converter of HPK's recommendation (Windows7 or later).

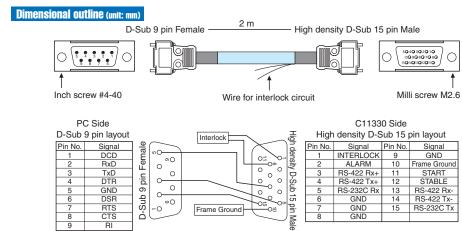
^{*} Mounts shown in photos have HHL package QCL


^(*2) Necessary flow rate and water temperature: 2000 cc/min. at 20 °C

PERIPHERAL INSTRUMENTS AND ACCESSORIES


■Cables

●HHL Socket Cable A11134-01

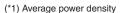


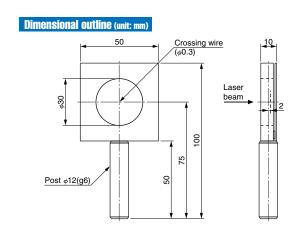
Terminals B and C are to be modified in accordance with the type of TEC and power supply.

Signal Cable for C11330 A11134-04

■Heatseeker A10767

Heatseeker A10767 consists of 2 types of thermal viewing card and an alignment target. It can be used for visualization and alignment of the QCL laser beam.


Thermal Viewing Card


Thermal material provides visibility of the IR laser beam. Facilitates tracing of the invisible laser beam. Two cards with different sensitivity ranges are provided.

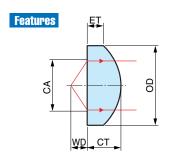
Alignment Target

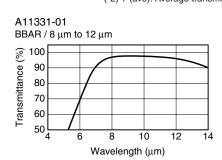
The light axis of the invisible IR laser beam can be easily aligned. Includes a cross target for checking the light axis. Thermal viewing card can be inserted.

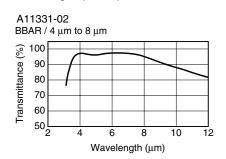
F	Parameter	Description / value	Unit
Detectable	Thermal viewing card #01	18 to 32	°C
temperature range	Thermal viewing card #02	30 to 35	°C
Usable wavelength	range	1.0 to 20	μm
Power required for visibility (*1)		>3	mW/mm ²
Damage threshold (Max. power density)	20	mW/mm ²
Maximum aperture		φ30	mm
Storage temperature	е	-5 to +60 (No condensation)	°C
Dimensions (W × H	×D)	$50 \times 100 \times \phi 12$	mm

■Lens / Lens Unit

Aspheric ZnSe Lens for QCL. It can be installed into an Aspheric ZnSe Lens Unit A11331-0xH, and can be mounted onto HHL Mount A11709 series and Pulsed QCL Driver C11635.


●Aspheric ZnSe Lens A11331-0x




^{*} When using the lens by itself, a lens holder is required.

Parameter	Symbol	A11331-01	A11331-02	Unit	
Primary design wavelength	λ	8	5	μm	
Numerical aperture (NA)	NA	0.	0.78		
Effective diameter	CA	1	10		
Actual focal distance	EFL	4.	4.8		
Working distance	WD	3.0		mm	
Periphery	OD	14.9 to 15.0		mm	
Center thickness	CT	6.4 ± 0.2	6.3 ± 0.2	mm	
Edge thickness	ET	3	3		
Material	_	Zn	Se	_	
Refractive index	n	2.417 at 8 μm	2.429 at 5 μm	_	
AR coating	_	BBAR, T (ave)>97 % (*1)	BBAR, T (ave)>96 % (*2)	_	
Weight	_	Ę	5	g	

(*1) T (ave): Average transmittance at wavelength 8 μm to 12 μm (*2) T (ave): Average transmittance at wavelength 4 μm to 8 μm

●Aspheric ZnSe Lens Unit A11331-0xH

Parameter		Value
Lens mounting unit	Applicable lens	A11331-01 or A11331-02
XYZ translator	X/Y movable range	±1 mm

x in the suffix of the part number indicates the type of embedded lens.

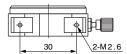
Dimensional outline (unit: mm)

20.35

Usage example

A11331-0xH can be mounted on HHL mount A11709 series and pulsed QCL driver C11635.

Mounted on A11709-02 Mounted on C11635


30 $4 - \phi 6.01$ Locking set screws

2- \phi1.3

O-Ring

1.035"-40

S

Read carefully before using QCL

For safe and effective use of a QCL, carefully read the documents that came with the purchased goods. Also, read carefully to the end of manuals and instructions, and observe the local law regulations about using lasers.

This catalog is not a guarantee of product perfection. When the products are used in an instrument which may cause bodily harm or damage properties, it is dangerous to operate the instrument unless proper safety measures are taken against possible product defects.

Absolute maximum ratings

Absolute maximum ratings listed in the specification sheet and/or test sheet are limiting values that must not be exceeded even momentarily. Using this product under conditions where any one of the maximum ratings is exceeded may cause serious and irreparable damage to the products.

Values in absolute maximum ratings for forward current and forward voltage differ in each product, so always check the values listed in the test sheet that comes with each product and make sure that these values are not exceeded.

Laser driver power supply

Current surges and current fluctuations may impair performance of the laser device. Do not apply reverse current and reverse voltage to the QCL.

Heat dissipation

This product uses a Peltier element to control temperature of the laser device, so the Joule heat generated in this product must be dissipated. If operated with poor heat dissipation, the device temperature may soon exceed the absolute maximum rating for the operating case temperature listed in specification sheet. Make sure that a proper heatsink is installed on the product. Poor heat dissipation may lead to excessive heating during operation and cause device deterioration or open-circuit faults even if the Peltier current is within the maximum rating. Heat dissipation on the laser side may not be sufficient when supplying electrical current to the Peltier element in heating mode, and cause failures or affect reliability. Carefully check these points before actual operation.

U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P. O. Box 6910, Bridgewater. N.J. 08807-0910, U.S.A. Telephone: (1)908-231-1218 E-mail: usa@hamamatsu.com

Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-2658 E-mail: info@hamamatsu.de

France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: info@hamamatsu.fr

United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road Welwyn Garden City Herfürdshire AL7 1BW, United Kingdom, Telephone: (40)1707-294888, Fax: 44(0)1707-325777 E-mail: info@hamamatsu.co.uk

North Europe: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 SE-164 40 Kista, Sweden, Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se

Italy: Hamamatsu Photonics Italia: S.R.L.: Strada della Moia, 1/E, 20020 Arese, (Milano), Italy, Telephone: (39)02-935 81 733, Fax: (39)02-935 81 741 E-mail: info@hamamatsu.it China: Hamamatsu Photonics (China) Co., Ltd.: 1201 Tower B, Jiaming Center, 27 Dongsanhuan Road North, Chaoyang District, Beijing 100020, China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-2666 E-mail: hpc@hamamatsu.com.cn