### 2N4118 N-CHANNEL JFET # Linear Systems replaces discontinued Siliconix 2N4118 ## The 2N4118 is an Ultra-High Input Impedance N-Channel JFET The 2N4118 provides ultra-high input impedance. The device is specified with a 10-pA limit and is ideal for use as a high-impedance sensitive front-end amplifier. #### 2N4118 Benefits: - Insignificant Signal Loss/Error Voltage with High-Impedance Source - Low Power Consumption (Battery) - Maximum Signal Output, Low Noise - High Sensitivity to Low-Level Signals #### 2N4118 Applications: - High-Impedance Transducer - Smoke Detector Input - Infrared Detector Amplifier - Precision Test Equipment | FEATURES | | | | |------------------------------------------|-------------------------|--|--| | DIRECT REPLACEMENT FOR SILICONIX 2N4118 | | | | | LOW POWER | I <sub>DSS</sub> <90 μA | | | | MINIMUM CIRCUIT LOADING | I <sub>GSS</sub> <10 pA | | | | ABSOLUTE MAXIMUM RATINGS | | | | | @ 25°C (unless otherwise noted) | | | | | Maximum Temperatures | | | | | Storage Temperature | -65°C to +175°C | | | | Operating Junction Temperature | -55°C to +150°C | | | | Maximum Power Dissipation | | | | | Continuous Power Dissipation | 300mW | | | | MAXIMUM CURRENT | | | | | Gate Current (Note 1) | 50mA | | | | MAXIMUM VOLTAGES | | | | | Gate to Drain or Gate to Source (Note 2) | -40V | | | #### 2N4118 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted) | SYMBOL | CHARACTERISTIC | MIN | TYP. | MAX | UNITS | CONDITIONS | |-------------------|--------------------------------------------------|------|------|------|-------|---------------------------------------------| | BV <sub>GSS</sub> | Gate to Sou <mark>rc</mark> e Breakdown Voltage | -40 | | I. | V | $I_{G} = -1\mu A$ , $V_{DS} = 0V$ | | $V_{GS(off)}$ | Gate to Source Cutoff Voltage | -1 | | -3 | V | $V_{DS} = 10V$ , $I_{D} = 1$ nA | | I <sub>DSS</sub> | Gate to Sou <mark>rc</mark> e Saturation Current | 0.08 | | 0.24 | mA | $V_{DS} = 10V, V_{GS} = 0V$ | | I <sub>GSS</sub> | Gate Leakage Current | 1 | | -10 | pA | $V_{GS} = -20V, V_{DS} = 0V$ | | | | | | -25 | | $V_{GS} = -20V, V_{DS} = 0V, 150^{\circ}C$ | | <b>g</b> fs | Forward Transconductance(Note 3) | 80 | | 250 | μmho | $V_{DS} = 10V$ , $V_{GS} = 0V$ , $f = 1kHz$ | | g <sub>os</sub> | Output Conductance | | | 5 | | | | C <sub>iss</sub> | Input Capacitance | | | 3 | pF | $V_{DS} = 10V$ , $V_{GS} = 0V$ , $f = 1MHz$ | | C <sub>rss</sub> | Reverse Transfer Capacitance | | | 1.5 | | | NOTES - 1 . Absolute maximum ratings are limiting values above which 2N4118 serviceability may be impaired. - 2. Due to symmetrical geometry, these units may be operated with source and drain leads interchanged - 3. This parameter is measured during a 2ms interval 100ms after power is applied. (Not a JEDEC condition.) Micross Components Europe Tel: +44 1603 788967 Email: <a href="mailto:chipcomponents@micross.com">chipcomponents@micross.com</a> Web: <a href="mailto:http://www.micross.com/distribution">http://www.micross.com/distribution</a> Available Packages: 2N4118 in TO-71 2N4118 in bare die. Please contact Micross for full package and die dimensions TO-71 (Bottom View) Information furnished by Linear Integrated Systems and Micross Components is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.