USE GAL DEVICES FOR NEW DESIGNS

PALCE20RA10 Family

Lattice Semiconductor

24-Pin Asynchronous EE CMOS Programmable Array Logic

DISTINCTIVE CHARACTERISTICS

- Low power at 100 mA Icc
- As fast as 7.5 ns maximum propagation delay and $100 \mathrm{MHz} \mathrm{f}_{\mathrm{max}}$ (external)
- Individually programmable asynchronous clock, preset, reset, and enable
- Registered or combinatorial outputs
- Programmable polarity
- Programmable replacement for high-speed CMOS or TTL logic
- TTL-level register preload for testability
- Extensive third-party software and programmer support through FusionPLD partners
- 24-pin PDIP and 28-pin PLCC packages save space
■ $7.5 \mathrm{~ns}, 10 \mathrm{~ns}$, and 15 ns versions utilize split leadframes for improved performance

GENERAL DESCRIPTION

The PALCE20RA10 is an advanced PAL device built with low-power, high-speed, electrically-erasable CMOS technology. The PALCE20RA10 offers asynchronous clocking for each of the ten flip-flops in the device. The ten macrocells feature programmable clock, preset, reset, and enable, and all can operate asynchronously to other macrocells in the same device. The PALCE20RA10 also has flip-flop bypass, allowing any combination of registered and combinatorial outputs.

The PALCE20RA10 utilizes the familiar sum-of-products (AND/OR) architecture that allows users to implement complex logic functions easily and efficiently. Multiple levels of combinatorial logic can always be reduced to sum-of-products form, taking advantage of the
very wide input gates available in PAL devices. The equations are programmed into the device through floating-gate cells in the AND logic array that can be erased electrically.

CONNECTION DIAGRAMS

Top View

SKINNYDIP

PLCC JEDEC

Note: Pin 1 is marked for orientation.

PIN DESIGNATIONS

GND = Ground
I = Input
I/O = Input/Output
NC = No Connect
$\overline{\mathrm{OE}}=$ Output Enable
$\overline{\mathrm{PL}}=$ Preload
Vcc = Supply Voltage

ORDERING INFORMATION

Commercial and Industrial Products

Programmable logic products for commercial and industrial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
PALCE20RA10H-7	JC, JI
PALCE20RA10H-10	PC, JC, PI, JI
PALCE20RA10H-15	
PALCE20RA10H-20	

Valid Combinations
Valid Combinations lists configurations planned to be supported in volume for this device. Consult your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Commercial and Industrial Products

Figure 1. PALCE20RA10 Macrocell

FUNCTIONAL DESCRIPTION

The PALCE20RA10 has ten dedicated input lines and ten programmable $1 / O$ macrocells. The Registered Asynchronous (RA) macrocell is shown in Figure 1. $\overline{\mathrm{PL}}$ serves as global register preload and $\overline{\mathrm{OE}}$ serves as global output enable. Programmable output polarity is available to provide user-programmable output polarity for each individual macrocell.

The programmable functions in the PALCE20RA10 are automatically configured from the user's design specification, which can be in a number of formats. The design specification is processed by development software to verify the design and create a programming file. This file, once downloaded to a programmer, configures the device according to the user's desired function.

Programmable Preset and Reset

In each macrocell, two product lines are dedicated to asynchronous preset and asynchronous reset. If the preset product line is HIGH, the Q output of the register becomes a logic 1 and the output pin will be a logic 0 . If the reset product line is HIGH, the Q output of the register becomes a logic 0 and the output pin will be logic 1 . The operation of the programmable preset and reset overrides the clock.

Combinatorial/Registered Outputs

If both the preset and reset product lines are HIGH, the flip-flop is bypassed and the output becomes combinatorial. Otherwise, the output is from the register. Each output can be configured to be combinatorial or registered.

Programmable Clock

The clock input to each flip-flop comes from the programmable array, allowing any flip-flop to be clocked independently if desired.

Figure 2. Macrocell Configurations

Three-State Outputs

The devices provide a product term dedicated to local output control. There is also a global output control pin. The output is enabled if both the global output control pin is LOW and the local output control product term is HIGH. If the global output control pin is HIGH, all outputs will be disabled. If the local output control product term is LOW, then that output will be disabled.

Security Bit

A security bit is also provided to prevent unauthorized copying of PAL device patterns. Once the bit is programmed, the circuitry enabling verification is permanently disabled, and the array will read as if every bit is programmed. With verification not operating, it is impossible to simply copy the PAL device pattern on a PAL device programmer. The security bit can only be erased in conjunction with the entire pattern.

Programmable Polarity

The outputs can be programmed either active-LOW or active-HIGH. This is represented by the Exclusive-OR gate shown in the PALCE20RA10 logic diagram. When the output polarity bit is programmed, the lower input to the Exclusive-OR gate is HIGH, so the output is activeHIGH. Similarly when the output polarity bit is unprogrammed, the output is active-LOW. The programmable output polarity feature allows the user a higher degree of flexibility when writing equations.

Programming and Erasing

The PALCE20RA10 can be programmed on standard logic programmers. Approved programmers are listed at the end of this databook. It also may be erased to reset a previously configured device back to its virgin state. Erasure is automatically performed by the programming hardware. No special erase operation is required.

Output Register Preload

The output registers on the PALCE20RA10 can be preloaded from the output pins to facilitate functional testing of complex state machine designs. This feature allows direct loading of arbitrary states, making it unnecessary to cycle through long test vector sequences to reach a desired state. In addition, transitions from illegal states can be verified by loading illegal states and observing proper recovery. Register preload is controlled by a TTL-level signal, making it a convenient board-level initialization function. Details on output register preload can be found on page 16.

Power-Up Reset

All flip-flops power up to a logic LOW for predictable system initialization. Registered outputs of the PALCE20RA10 will be HIGH due to the output inverter. The state of combinatorial outputs will be a function of the logic. Details on power-up reset can be found on page 16.

Quality and Testability

The PALCE20RA10 offers a very high level of built-in quality. The erasability of the device provides a means of verifying performance of all AC and DC parameters. In addition, this verifies complete programmability and functionality of the device to provide the highest programming yields and post-programming functional yields in the industry.

Technology

The high-speed PALCE20RA10 is fabricated with Our advanced electrically erasable (EE) CMOS process. The array connections are formed with proven EE cells. Inputs and outputs are designed to be compatible with TTL devices. This technology provides strong input clamp diodes, output slew-rate control, and a grounded substrate for clean switching.

LOGIC DIAGRAM SKINNYDIP (PLCC JEDEC) Pinouts

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with Respect to Ground	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
DC Output or I/O	
Pin Voltage	-0.5 V to Vcc +0.5 V
Static Discharge Voltage	. 2001 V
Latchup Current $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)$	100 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (T_{A})
Operating in Free Air $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (V_{Cc})
with Respect to Ground
+4.75 V to +5.25 V
Industrial (I) Devices
Ambient Temperature (T_{A})
Operating in Free Air $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage ($\mathrm{V}_{c \mathrm{c}}$) with
Respect to Ground +4.5 V to +5.5 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{IOH}=-3.2 \mathrm{~mA} \\ & \mathrm{VIN}=\mathrm{VIH} \text { or } \mathrm{VIL} \\ & \mathrm{VCC}=\mathrm{Min} \end{aligned}$		2.4		V
Vol	Output LOW Voltage	$\begin{aligned} & \mathrm{IOL}=16 \mathrm{~mA} \\ & \mathrm{VIN}=\mathrm{V} \mathrm{IH} \text { or } \mathrm{VIL} \\ & \mathrm{~V} C \mathrm{CC}=\mathrm{Min} \\ & \hline \end{aligned}$			0.4	V
V_{IH}	Input HIGH Voltage Voltage for all Inputs	Guaranteed Input Logical HIGH (Note 1)		2.0		V
VIL	Input LOW Voltage Voltage for all Inputs	Guaranteed Input Logical LOW (Note 1)			0.8	V
IIH	Input HIGH Leakage Current	V IN $=5.5 \mathrm{~V}, \mathrm{~V}$ cc $=$ Max			10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	V IN $=0 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$			-100	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { Vout }=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { VIN }=\text { VIL or } \mathrm{V}_{\text {IH }}(\text { Note 2) } \end{aligned}$			10	$\mu \mathrm{A}$
lozl	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = } 0 \text { V, VCC = Max } \\ & \text { VIN = VIL or VIH (Note 2) } \end{aligned}$			-100	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max (Note 3)		-30	-130	mA
Icc	Commercial Supply Current	VIN $=0 \mathrm{~V}$, Outputs Open Iout $=0 \mathrm{~mA}, \mathrm{Vcc}=\mathrm{Max},($ Note 4$)$	-7/10/15		100	mA
(Static)			-20		90	mA
Icc (Static)	Industrial Supply Current	VIN $=0$ V, Outputs Open Iout $=0 \mathrm{~mA}, \mathrm{Vcc}=\mathrm{Max},($ Note 4$)$	$\frac{-7 / 10 / 15}{-20}$		115	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of IIL and lozL (or IIH and lozH).
3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. This parameter is guaranteed under worst case test conditions.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description		Test Conditions		Typ	Unit
CIN	Input Capacitance	Inputs	V IN $=2.0 \mathrm{~V}$	$\mathrm{VCC}=5.0 \mathrm{~V}$	5	
		$\overline{\mathrm{OE}}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	9	pF
Cout	Output Capacitance		Vout $=2.0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	8	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			-7		-10		-15		-20		Unit
				Min (3)	Max							
tpd	Input or Feedback to Combinatorial Output				7.5		10		15		20	ns
ts	Setup Time from Input, Feedback or SP to Clock			2.5		3		4		4		ns
th	Hold Time			2.5		3		4		4		ns
tco	Clock to Output or Feedback				7.5		10		15		20	ns
tap	Asynchronous Preset to Registered Output				7.5		10		15		20	ns
tAPW	Asynchronous Preset Width (Note 3)			5		8		10		12		ns
tAPR	Asynchronous Preset Recovery Time (Note 3)				5		7		10		12	ns
tAR	Asynchronous Reset to Registered Output				7.5		10		15		20	ns
tarw	Asynchronous Reset Width (Note 3)			5		8		10		12		ns
tARR	Asynchronous Reset Recovery Time (Note 3)				5		7		10		12	ns
twL	Clock Width	LOW		4		5		8		12		ns
twh		HIGH		4		5		8		12		ns
fmax	Maximum Frequency (Note 4)	External Feedback	1/(ts + tco)	100		76.9		52.6		37		MHz
		No Feedback	1/(twh + twL)	125		100		62.5		41.6		MHz
tpzx	$\overline{\text { OE to Output Enable }}$				5		8		10		15	ns
tpXZ	$\overline{\text { OE }}$ to Output Disable				5		8		10		15	ns
tea	Input to Output Enable Using Product Term Control				7.5		10		15		20	ns
ter	Input to Output Disable Using Product Term Control				7.5		10		15		20	ns
twp	Preload Pulse Duration			5		7		10		15		ns
tSP	Preload Setup Time			5		7		10		15		ns
thP	Preload Hold Time			5		7		10		15		ns

Notes:

2. See Switching Test Circuit for test conditions.
3. These parameters are not 100% tested, but are evaluated at initial characterization and at any time design is modified where these parameters may be affected.
4. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where the frequency may be affected.

SWITCHING WAVEFORMS

Registered Output

$15434 \mathrm{H}-11$

Asynchronous Preset

15434G-12

Clock Width

Input to Output Disable/Enable

$\overline{\text { OE to Output Disable/Enable }}$

Notes:

1. $V_{T}=1.5 \mathrm{~V}$
2. Input pulse amplitude 0 V to 3.0 V
3. Input rise and fall times 2 ns -5 ns typical.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	Must be Steady	Will be Steady
	May Change from H to L	Will be Changing from H to L
	May Change from L to H	Will be Changing from L to H
	Don't Care, Any Change Permitted	Changing, State Unknown
	Does Not Apply	Center Line is HighImpedance "Off" State

SWITCHING TEST CIRCUIT

Specification	S1	CL	Commercial and Industrial		Measured Output Value
			R1	R2	
tpd, tco	Closed	50 pF	$\begin{aligned} & \text { All except H-20: } \\ & 300 \Omega \end{aligned}$	$\begin{aligned} & \text { All except H-20: } \\ & 300 \Omega \end{aligned}$	1.5 V
tpzx, tEA	$\mathrm{Z} \rightarrow \mathrm{H}$: Open Z \rightarrow L: Closed				1.5 V
tPxz, tER	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z} \text { : Open } \\ & \mathrm{L} \rightarrow \mathrm{Z} \text { : Closed } \end{aligned}$	5 pF	H-20: 560Ω	H-20: $1.1 \mathrm{k} \Omega$	$\begin{aligned} \mathrm{H} & \rightarrow \mathrm{Z}: \mathrm{VOH}-0.5 \mathrm{~V} \\ \mathrm{~L} & \rightarrow \mathrm{Z}: \mathrm{VOL}+0.5 \mathrm{~V} \end{aligned}$

TYPICAL Icc CHARACTERISTICS

$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Icc vs. Frequency

The selected "typical" pattern utilized 50\% of the device resources. Half of the macrocells were programmed as registered, and the other half were programmed as combinatorial. Half of the available product terms were used for each macrocell. On any vector, half of the outputs were switching.

By utilizing 50\% of the device, a midpoint is defined for Icc. From this midpoint, a designer may scale the Icc graphs up or down to estimate the Icc requirements for a particular design.

ENDURANCE CHARACTERISTICS

The PALCE20RA10 is manufactured using our advanced Electrically Erasable process. This technology uses an EE cell to replace the fuse link used in bipolar
parts. As a result, the device can be erased and reprogrammed-a feature which allows 100% testing at the factory.

Symbol	Parameter	Test Conditions	Min	Unit
tDR	Min Pattern Data Retention Time	Max Storage Temperature	10	Years
		Max Operating Temperature	20	Years
N	Min Reprogramming Cycles	Normal Programming Conditions	100	Cycles

Robustness

The PALCE20RA10 has been designed with some unique features that make it extremely robust, even when operating in high-speed design environments. Pull-up resistors on the inputs and I/Os cause unconnected pins to default to the HIGH state. Please note that these pull-up resistors are only for this purpose, and do not provide enough current to sufficiently pull a bus line high. We recommend that external pull-up or
pull-down resistors be used if the condition of a floating bus line exists.

Input-clamping circuitry limits negative overshoot, eliminating the possibility of false clocking caused by subsequent ringing. A special noise filter makes the programming circuitry completely insensitive to any positive overshoot that has a pulse width of less than about 100 ns .

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Typical Input

POWER-UP RESET

The PALCE20RA10 has been designed with the capability to reset during system power-up. Following powerup, all flip-flops will be reset to LOW. The output state will be HIGH independent of the logic polarity. This feature provides extra flexibility to the designer and is especially valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset
and the wide range of ways $V_{c c}$ can rise to its steady state, two conditions are required to ensure a valid power-up reset. These conditions are:

- The V_{Cc} rise must be monotonic.
- Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.

Parameter Symbol	Parameter Descriptions	Max	Unit
tPR	Power-Up Reset Time	1000	ns
ts	Input or Feedback Setup Time	See Switching Characteristics	
twL	Clock Width LOW		

OUTPUT REGISTER PRELOAD

The preload function allows the register to be loaded from the output pins. This feature aids functional testing of sequential designs by allowing direct setting of output states. The procedure for preloading follows.

1. Disable output registers.
2. Apply either V_{IH} or V_{IL} to all registered outputs. Leave combinatorial outputs floating.
3. Pulse $\overline{P L}$ from $\mathrm{V}_{\mathbb{I}}$ to V_{IL} to V_{IH}.
4. Remove $\mathrm{V}_{\mathrm{IL}} / \mathrm{V}_{\mathrm{IH}}$ from all registered output pins.
5. Enable the output registers.
6. Verify $\mathrm{V}_{\mathrm{OL}} / \mathrm{V}_{\mathrm{OH}}$ at all registered output pins. Note that because of the output inverter, a register that has been preloaded HIGH will provide a LOW at the output. Also note that because there is an inverter on the register preload input, the level presented on the register preload input at the time of preload will be present on the register output pin following the preload sequence e.g., a low on the register pin at the time of preload will result in a low on that pin after preload.

Output Register Preload Waveform

