

TruePHY™ ET1011 Gigabit Ethernet Transceiver

Features

- 10Base-T, 100Base-TX, and 1000Base-T gigabit Ethernet transceiver:
 - 0.13 µm process
 - 128-pin TQFP and 84-pin MLCC:
 - RGMII, GMII, MII, RTBI, and TBI interfaces to MAC or switch
 - 68-pin MLCC:
 - □ RGMII and RTBI interfaces to MAC or switch
- Low power consumption:
 - Typical power less than 750 mW in 1000Base-T mode
 - Advanced power management
 - ACPI compliant wake-on-LAN support
- Oversampling architecture to improve signal integrity and SNR
- Optimized, extended performance echo and NEXT filters
- All digital baseline wander correction
- Digital PGA control
- On-chip diagnostic support
- Automatic speed negotiation
- Automatic speed downshift
- Single supply 3.3 V or 2.5 V operation:
 - On-chip regulator controllers
 - 3.3 V or 2.5 V digital I/O
 - 1.0 V or 1.1 V core power supplies
 - 1.8 V or 2.5 V for transformer center tap
- JTAG

Introduction

Agere Systems ET1011 is a gigabit Ethernet transceiver fabricated on a single CMOS chip. Packaged in either a 128-pin TQFP, an 84-pin MLCC, or a 68-pin MLCC, the ET1011 is built on 0.13 µm technology for low power consumption and application in server and desktop NIC cards. It features single power supply operation using on-chip regulator controllers. The 10/100/1000Base-T device is fully compliant with *IEEE*® 802.3, 802.3u, and 802.3ab standards.

The ET1011 uses an oversampling architecture to gather more signal energy from the communication channel than possible with traditional architectures. The additional signal energy or analog complexity transfers into the digital domain. The result is an analog front end that delivers robust operation, reduced cost, and lower power consumption than traditional architectures.

Using oversampling has allowed for the implementation of a fractionally spaced equalizer, which provides better equalization and has greater immunity to timing jitter, resulting in better signal-to-noise ratio (SNR) and thus improved BER. In addition, advanced timing algorithms are used to enable operation over a wider range of cabling plants.

Table of Contents

Contents	Page	Contents	Page
Features	1	MII 10Base-T Transmit Timing	75
Introduction	1	MII 10Base-T Receive Timing	76
Functional Description	5	Serial Management Interface Timing	77
Oversampling Architecture	5	Reset Timing	78
Automatic Speed Downshift		Clock Timing	79
Transmit Functions		JTAG Timing	80
Receive Functions	6	Package Diagram, 128-Pin TQFP	
Autonegotiation	7	Package Diagram, 84-Pin MLCC	
Carrier Sense(128-pin TQFP and 84-pin M	LCC	Package Diagram, 68-Pin MLCC	
only)		Ordering Information	
Link Monitor		Related Product Documentation	
Loopback Mode			
Digital Loopback		Table	Page
Analog Loopback		3.0.0	90
LEDs		Table 1. Agere Systems ET1011 Device Signa	als by
Regulator Control		Interface, 128-Pin TQFP, 84-Pin	,
Resetting the ET1011		and 68-Pin MLCC	15
Low-Power Modes		Table 2. Multiplexed Signals on the ET1011	
Pin Information		Table 3. GMII Signal Description (1000Base-T	
Pin Diagram, 128-Pin TQFP		(128-pin TQFP and 84-pin MLCC o	
Pin Diagram, 68-Pin MLCC		Table 4. RGMII Signal Description	,,
Pin Descriptions, 128-Pin TQFP, 84-Pin M		(1000Base-T Mode)	23
and 68-Pin MLCC		Table 5. MII Interface (100Base-TX and 10Ba	
Hardware Interfaces		(128-pin TQFP and 84-pin MLCC O	,
MAC Interface		Table 6. Ten-Bit Interface (1000Base-T) (128-	• .
Management Interface		TQFP and 84-pin MLCC Only)	•
Configuration Interface		Table 7. RTBI Signal Description	
LEDs Interface		(1000Base-T Mode)	26
Media-Dependent Interface: Transformer		Table 8. Management Frame Structure	
Interface	34	Table 9. Management Interface	
Clocking and Reset		Table 10. Autonegotiation Modes	
JTAG		Table 11. Master/Slave Preference	
Regulator Control		Table 12. MDI/MDI-X Configuration	
Power, Ground, and No Connect		Table 13. Configuration Signals	
Cable Diagnostics		Table 14. LED	
Register Description		Table 15. Transformer Interface Signals	
Register Address Map		Table 16. Clocking and Reset	
Register Functions/Settings		Table 17. JTAG Test Interface	
Electrical Specifications		Table 18. Regulator Control Interface	
Absolute Maximum Ratings		Table 19. Supply Voltage Combinations	
Recommended Operating Conditions		Table 20. Power, Ground, and No Connect	
Device Electrical Characteristics		Table 21. Cable Diagnostic Functions	
Timing Specification		Table 22. Register Address Map	
GMII 1000Base-T Transmit Timing		Table 23. Register Type Definition	
(128-pin TQFP only)	67	Table 24. Control Register—Address 0	
GMII 1000Base-T Receive Timing		Table 25. Status Register—Address 1	
(128-pin TQFP only)	62	Table 26. PHY Identifier Register 1—Address	
RGMII 1000Base-T Transmit Timing		Table 27. PHY Identifier Register 2—Address	
RGMII 1000Base-T Transmit Timing		Table 28. Autonegotiation Advertisement Reg	
MII 100Base-TX Transmit Timing		Address 4	
MII 100Base-TX Transmit Tilling		Addi 033 T	

Table of Contents (continued)

Table	Page	Table	Page
Table 29. Autonegotiation Link Partne	r Ability	Table 58. ET1011N0 and ET1011R0 Current	
Register—Address 5	44	Consumption RGMII 1000BASE-T	62
Table 30. Autonegotiation Expansion	Register—	Table 59. ET1011N0 and ET1011R0 Current	
Address 6	45	Consumption RGMII 100BASE-TX	62
Table 31. Autonegotiation Next Page	Transmit	Table 60. ET1011N0 and ET1011R0 Current	
Register—Address 7	45	Consumption RGMII 10BASE-T	63
Table 32. Link Partner Next Page Reg	jister—	Table 61. ET1011N0 and ET1011R0 Current	
Address 8	46	Consumption RGMII 10BASE-T Idle.	63
Table 33. 1000 Base-T Control Regist	er—	Table 62. ET1011N1 and ET1011R1 Current	
Address 9		Consumption GMII 1000Base-T	64
Table 34. 1000Base-T Status Register		Table 63. ET1011N1 and ET1011R1 Current	
Address 10	48	Consumption GMII 100Base-TX	64
Table 35. Reserved Registers—Addre		Table 64. ET1011N1 and ET1011R1 Current	
Table 36. Extended Status Register—		Consumption GMII 10Base-T	64
Table 37. Reserved Registers—Addre		Table 65. ET1011N1 and ET1011R1 Current	
Table 38. Loopback Control Register-		Consumption GMII 10BASE-T Idle	65
Table 39. Reserved Registers—Addre		Table 66. ET1011N1 and ET1011R1 Current	
Table 40. Management Interface (MI)		Consumption RGMII 1000BASE-T	65
Register—Address 21		Table 67. ET1011N1 and ET1011R1 Current	
Table 41. PHY Configuration Register		Consumption RGMII 100BASE-TX	65
Address 22		Table 68. ET1011N1 and ET1011R1 Current	
Table 42. PHY Control Register—Add		Consumption RGMII 10BASE-T	66
Table 43. Interrupt Mask Register—Ad		Table 69. ET1011N1 and ET1011R1 Current	
Table 44. Interrupt Status Register—A		Consumption RGMII 10BASE-T Idle.	
Table 45. PHY Status Register—Addr		Table 70. GMII 1000Base-T Transmit Timing	
Table 46. LED Control Register 1—Ac		Table 71. GMII 1000Base-T Receive Timing	
Table 47. LED Control Register 2—Ac		Table 72. RGMII 1000Base-T Transmit Timing	
Table 48. Reserved Registers—Addre		Table 73. RGMII 1000Base-T Transmit Timing	
Table 49. Absolute Maximum Ratings		Table 74 . RGMII 1000Base-T Receive Timing	
Table 50. ET1011N0 and ET1011R0 F		Table 75. RGMII 1000Base-T Receive Timing	
Operating Conditions ¹		Table 76. MII 100Base-TX Transmit Timing	
Table 51. ET1011N1 and ET1011R1 F		Table 77. MII 100Base-TX Receive Timing	
Operating Conditions ¹		Table 78. MII 10Base-T Transmit Timing	
Table 52. Device Characteristics—3.3	•	Table 79. MII 10Base-T Receive Timing	
Supply (DVDDIO)		Table 80. Serial Management Interface Timing	
Table 53. Device Characteristics—2.5	•	Table 81. Reset Timing	
Supply (DVDDIO)		Table 82. Clock Timing	
Table 54. ET1011N0 and ET1011R0		Table 83. JTAG Timing	
Consumption GMII 1000B		Table 84. Chip Set Names and Part Numbers	
Table 55. ET1011N0 and ET1011R0 (Table 85. Related Product Documentation	84
Consumption GMII 100Ba			
Table 56. ET1011N0 and ET1011R0 (
Consumption GMII 10Bas			
Table 57. ET1011N0 and ET1011R0 (
Consumption GMII 10BAS	5E-1 Idle 62		

Table of Contents (continued)

Figure Page	Figure Page
Figure 1. ET1011 Block Diagram5	Figure 16. GMII 1000Base-T Receive Timing68
Figure 2. Loopback Functionality9	Figure 17. RGMII 1000Base-T Transmit Timing—
Figure 3. Digital Loopback9	Trace Delay69
Figure 4. Replica Analog Loopback10	Figure 18. RGMII 1000Base-T Transmit Timing—
Figure 5. Line Driver Analog Loopback10	Internal Delay70
Figure 6. Pin Diagram for ET1011 in 128-Pin TQFP	Figure 19. RGMII 1000Base-T Receive Timing—
Package (Top View)12	Trace Delay71
Figure 7. Pin Diagram for ET1011 in 84-Pin MLCC	Figure 20. RGMII 1000Base-T Receive Timing—
Package (Top View)13	Internal Delay72
Figure 8. Pin Diagram for ET1011 in 68-Pin MLCC	Figure 21. MII 100Base-TX Transmit Timing73
Package (Top View)14	Figure 22. MII 100Base-TX Receive Timing74
Figure 9. ET1011 Gigabit Ethernet Card	Figure 23. MII 10Base-T Transmit Timing75
Block Diagram21	Figure 24. MII 10Base-T Receive Timing76
Figure 10. GMII MAC-PHY Signals22	Figure 25. Serial Management Interface Timing77
Figure 11. RGMII MAC-PHY Signals23	Figure 26. Reset Timing78
Figure 12. MII Signals24	Figure 27. Clock Timing79
Figure 13. Ten-Bit Interface25	Figure 28. JTAG Timing80
Figure 14. Reduced Ten-Bit Interface26	
Figure 15. GMII 1000Base-T Transmit Timing67	

Functional Description

Agere Systems ET1011 is a gigabit Ethernet transceiver that simultaneously transmits and receives on each of the four UTP pairs of category 5 cable (signal dimensions or channels A, B, C, and D) at 125 Msymbols/s using five-level pulse amplitude modulation (PAM). Figure 1 is a block diagram of its basic configuration.

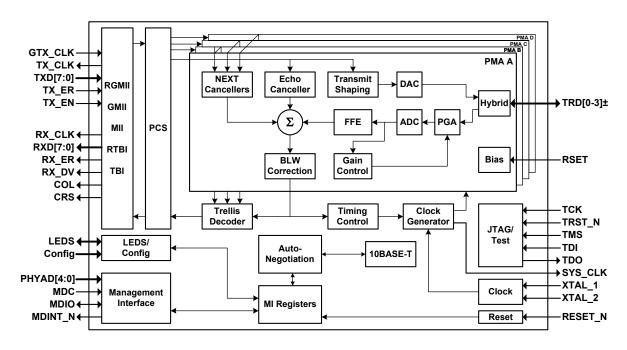


Figure 1. ET1011 Block Diagram

Oversampling Architecture

The ET1011 architecture uses oversampling techniques to sample at two times the symbol rate. A fractionally spaced feed forward equalizer (FFE) adapts to remove intersymbol interference (ISI) and to shape the spectrum of the received signal to maximize the (SNR) at the trellis decoder input. The FFE equalizes the channel to a fixed target response. Oversampling enables the use of a fractionally spaced equalizer (FSE) structure for the FFE, resulting in symbol rate clocking for both the FFE and the rest of the receiver. This provides robust operation and substantial power savings.

Automatic Speed Downshift

Automatic speed downshift is an enhanced feature of autonegotiation that allows the ET1011 to:

- Fallback in speed, based on cabling conditions or link partner abilities.
- Operate over CAT-3 cabling (in 10Base-T mode).
- Operate over two-pair CAT-5 cabling (in 100Base-TX mode).

For speed fallback, the ET1011 first tries to autonegotiate by advertising 1000Base-T capability. After a number of failed attempts to bring up the link, the ET1011 falls back to advertising 100Base-TX and restarts the autonegotiation process. This process continues through all speeds down to 10Base-T. At this point, there are no lower speeds to try and so the host enables all technologies and starts again.

PHY configuration register, address 22, bits 11and 10 enable automatic speed downshift and specifies if fall-back to 10Base-T is allowed. PHY control register, address 23, bits 11and 12 specify the number of failed attempts before downshift (programmable to 1, 2, 3, or 4 attempts).

Transmit Functions

1000Base-T Encoder

In 1000Base-T mode, the ET1011 translates 8-bit data from the MAC interfaces into a code group of four quinary symbols that are then transmitted by the PMA as 4D five-level PAM signals over the four pairs of CAT-5 cable.

100Base-TX Encoder

In 100Base-TX mode, 4-bit data from the media independent interface (MII) is 4B/5B encoded to output 5-bit serial data at 125 MHz. The bit stream is sent to a scrambler, and then encoded to a three-level MLT3 sequence that is then transmitted by the PMA.

10Base-T Encoder

In 10Base-T mode, the ET1011 transmits and receives Manchester-encoded data.

Receive Functions

Decoder 1000Base-T

In 1000Base-T mode, the PMA recovers the 4D PAM signals after compensating for the cabling conditions. The resulting code group is decoded to 8-bit data. Data stream delimiters are translated appropriately, and the data is output to the receive data pins of the MAC interfaces. The GMII receive error signal is asserted when invalid code groups are detected in the data stream.

Decoder 100Base-TX

In 100Base-TX mode, the PMA recovers the three-level MLT3 sequence that is descrambled and 5B/4B decoded to 4-bit data. This is output to the MII receive data pins after data stream delimiters have been translated appropriately. The MII receive error signal is asserted when invalid code groups are detected in the data stream.

Decoder 10Base-T

In 10Base-T mode, the ET1011 decodes the Manchester-encoded received signal.

Hybrid

The hybrid subtracts the transmitted signal from the input signal allowing full-duplex operation on each of the twisted-pair cables.

Programmable Gain Amplifier (PGA)

The PGA operates on the received signal in the analog domain prior to the analog-to-digital converter (ADC). The gain control module monitors the signal at the output of the ADC in the digital domain to control the PGA. It implements a gain that maximizes the signal at the ADC while ensuring that no hard clipping occurs.

Clock Generator

A clock generator circuit uses the 25 MHz input clock signal and a phase-locked loop (PLL) circuit to generate all the required internal analog and digital clocks. A 125 MHz system clock is also generated and is available as an output clock.

Analog-to-Digital Converter

The ADC operates at 250 MHz oversampling at twice the symbol rate in 1000Base-T and 100Base-TX. This enables innovative timing recovery and fractional skew correction and has allowed transfer of analog complexity to the digital domain.

Timing Recovery/Generation

The timing recovery and generator block creates transmit and receive clocks for all modes of operation. In transmit mode, the 10Base-T and 100Base-TX modes use the 25 MHz clock input. While in receive mode, the input clock is locked to the receive data stream. 1000Base-T is implemented using a master-slave timing scheme, where the master transmit and receive are locked to the 25 MHz clock input, and the slave acquires timing information from the receive data stream. Timing recovery is accomplished by first acquiring lock on one channel and then making use of the constant phase relationship between channels to lock on the other pairs, resulting in a simplified PLL architecture. Timing shifts due to changing environmental conditions are tracked by the ET1011.

Adaptive Fractionally Spaced Equalizer

The ET1011's unique oversampling architecture employs an FSE in place of the traditional FFE structure. This results in robust equalization of the communications channel, which translates to superior bit error rate (BER) performance over the widest variety of worst-case cabling scenarios. The all-digital equalizer automatically adapts to changing conditions.

Echo and Crosstalk Cancellers

Since the four twisted pairs are bundled together and not insulated from each other in Gigabit Ethernet, each of the transmitted signals is coupled onto the three other cables and is seen at the receiver as near-end crosstalk (NEXT). A hybrid circuit is used to transmit and receive simultaneously on each pair. If the transmitter is not perfectly matched to the line, a signal component will be reflected back as an echo. Reflections can also occur at other connectors or cable imperfections. The ET1011 cancels echo and NEXT by subtracting an estimate of these signals from the equalizer output.

Baseline Wander Correction

A known issue for 1000Base-T and 100Base-TX is that the transformer attenuates at low frequencies. As a result, when a large number of symbols of the same sign are transmitted consecutively, the signal at the receiver gradually dies away. This effect is called baseline wander. By employing a circuit that continuously monitors and compensates for this effect, the probability of encountering a receive symbol error is reduced.

Autonegotiation

Autonegotiation is implemented in accordance with *IEEE* 802.3. The device supports 10Base-T, 100Base-TX, and 1000Base-T and can autonegotiate between them in either half- or full-duplex mode. It can also parallel detect 10Base-T or 100Base-TX. If autonegotiation is disabled, a 10Base-T or 100Base-TX link can be manually selected via the *IEEE* MII registers.

Pair Skew Correction

In gigabit Ethernet, pair skew (timing differences between pairs of cable) can result from differences in length or manufacturing variations between the four individual twisted-pair cables. The ET1011 automatically corrects for both integer and fractional symbol timing differences between pairs.

Automatic MDI Crossover

During autonegotiation, the ET1011 automatically detects and sets the required MDI configuration so that the remote transmitter is connected to the local receiver and vice versa. This eliminates the need for crossover cables or crosswired (MDIX) ports. If the remote device also implements automatic MDI crossover, and/or the crossover is implemented in the cable, the crossover algorithm ensures that only one element implements the required crossover.

Polarity Inversion Correction

In addition to automatic MDI crossover that is necessary for autonegotiation, 10Base-T, and 100Base-TX operation, the ET1011 automatically corrects crossover of the additional two pairs used in 1000Base-T. Polarity inversion on all pairs is also corrected. Both of these effects may arise if the cabling has been incorrectly wired.

Carrier Sense (128-pin TQFP and 84-pin MLCC only)

The carrier sense signal (CRS) of the MAC interface is asserted by the ET1011 whenever the receive medium is nonidle. In half-duplex mode, CRS may also be asserted when the transmit medium is nonidle. The CRS may be enabled on transmit in half-duplex mode by writing to the PHY configuration register, address 22, bit 15.

Link Monitor

1000Base-T

Once 1000Base-T is autonegotiated and the link is established, both link partners continuously monitor their local receiver status. If the master device determines a problem with its receiver, it signals the slave and both devices cease transmitting data but transmit IDLE. If the master retrains its receiver within 750 ms, then normal operation recommences. Otherwise, both devices restart autonegotiation.

If the slave device determines a problem with its receiver, it ceases transmitting and expects the master to transmit the IDLE sequence. If the slave retrains its receiver within 350 ms, normal operation recommences when the master signals that its receiver is ready. If either receiver fails to reacquire, then autonegotiation is restarted.

100Base-TX

In 100Base-TX mode, the ET1011 monitors the link and determines the link quality based on signal energy, mean square error and scrambler lock. If the link quality is deemed insufficient, transmit and receive data are disabled. If the link had been autonegotiated then control is handed back to autonegotiation. If the link had been manually set, the 100Base-TX receiver is retrained, and the transmitter is set to transmit idle. Once the link quality has been recovered, data transmit and receive are enabled.

10Base-T

In 10Base-T mode, the ET1011 monitors the link and determines the link quality based either on the presence of valid link pulses or valid 10BaseT packets. If the link is deemed to have failed and the link had been autonegotiated, then control is handed back to autonegotiation. If the link had been manually set, the ET1011 continues to try to reestablish the link.

Loopback Mode

Enabling loopback mode allows in-circuit testing of the ET1011's digital and analog data path.

The ET1011 provides several options for loopback that test and verify various functional blocks within the PHY. These are digital loopback and analog loopback. Figure 2 is a block diagram that shows the PHY loopback functionality.

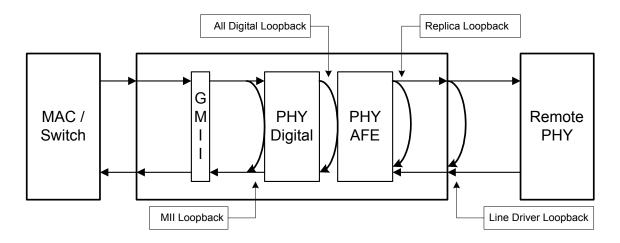


Figure 2. Loopback Functionality

The loopback mode is selected by setting the respective bit in the PHY loopback control register, MII register address 19. The default loopback mode is digital MII loopback. Loopback is enabled by writing to the PHY control register, address 0, bit 14.

Digital Loopback

Digital loopback provides the ability to loop the transmitted data back to the receiver via the digital circuitry. The point at which the signal is looped back is selected using the loopback control register with the following options being provided: MII and all digital. Selecting the MII option gives a simple loopback with minimal latency where the data is looped back directly at the media-independent interface. This loopback is currently set as the default, but it should be noted that it only exercises a small percentage of the PHY circuitry. When the all-digital option is selected, the transmitted data is looped back at the interface between the digital and the analog circuitry, thereby exercising a high percentage of the digital logic. Figure 3 shows a block diagram of digital loopback.

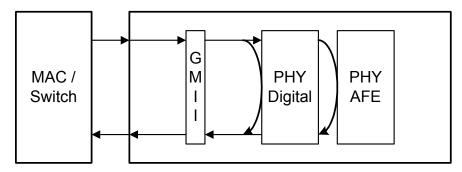


Figure 3. Digital Loopback

Analog Loopback

Analog loopback provides the ability to loop the transmitted signal back to the receiver within the AFE. The point at which the signal is looped back is selected using the loopback control register with the following options being provided: replica and line driver.

Selecting the replica option causes the transmitted signal to be looped back through the replica generation circuitry of the on-chip hybrid, thereby allowing most of the digital and analog circuitry to be exercised. This loopback mode may be used even when the device is connected to a network because nothing is transmitted to or received from the MDI in this case.

The most thorough loopback test available without the cooperation of a link partner is provided by selecting the line driver option where the PHY transmits to and receives from the MDI. However, in general, this loopback may not be used when the device is connected to a network because it could cause an unanticipated response from the link partner. Figure 4 shows a block diagram of replica analog loopback and Figure 5 shows a block diagram of line driver analog loopback.

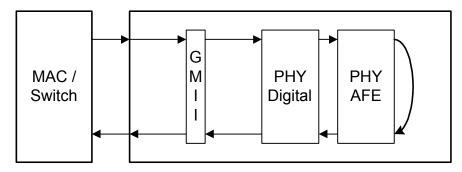


Figure 4. Replica Analog Loopback

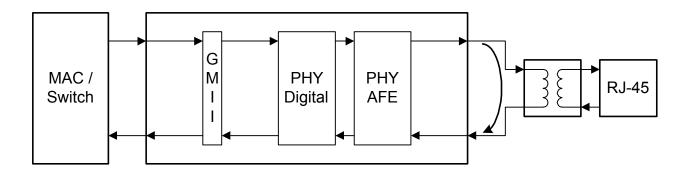


Figure 5. Line Driver Analog Loopback

LEDs

Seven status LEDs are provided. These can be used to indicate speed of operation, duplex mode, link status, etc. There is a very high degree of programmability allowed. Hence, the LEDs can be programmed to different status functions from their default value, or they can be controlled directly from the MII register interface. The LED signal pins can also be used for general-purpose I/O if not needed for LED indication.

Note: The 68-pin MLCC and 84-pin MLCC have only two LEDs. Both can be programmed through MII register 28 to provide all speed indications as well as link and activity indications.

Regulator Control

The ET1011 has two on-chip regulator controllers. This allows the device to be powered from a single supply, either 3.3 V or 2.5 V. The on-chip regulator control circuits provide output control voltages that can be used to control two external transistors and thus provide regulated 1.0 V and 2.5 V supplies.

Resetting the ET1011

The ET1011 provides the ability to reset the device by hardware (pin RESET_N) or via software through the management interface. A hardware reset is accomplished by driving the active-low pin RESET_N to 0 volts for a minimum of 20 μs . The configuration pins and the physical address configuration are read during a hardware reset.

A software reset is accomplished by setting bit 15 of the control register (MII register address 0 bit 15). The configuration pins and the physical address configuration are not read during software reset.

Low-Power Modes

The ET1011 supports a number of powerdown modes.

Hardware Powerdown Mode

Hardware powerdown is entered when the COMA signal is driven high. In hardware powerdown, all PHY functions (analog and digital) are disabled. During hardware powerdown, SYS_CLK is not available and the MII registers are not accessible.

At exit from hardware powerdown, the ET1011 does the following:

- Initializes all analog circuits including the PLL.
- Initializes all digital logic and state machines.
- Reads and latches the PHY address pins.
- Initializes all MII registers to their default values (H/W configuration pins are reread).

Software Powerdown Mode

Software powerdown is entered when bit 11 of the control register (MII register address 0 bit 11) is set. In software powerdown, all PHY functions except the serial management interface and clock circuitry are disabled. The MII registers can be read or written. If the system clock output is enabled (MII register address 22 bit 4), the 125 MHz system clock will still be available for use by the MAC on pin SYS CLK.

At exit from software powerdown, the ET1011 does the following:

■ Initializes all digital logic and state machines.

Note: At exit from software powerdown, the H/W configuration pins and the PHY address pins are not reread and the MII registers are not reset to their default values. These operations are only done during reset or recovery from hardware powerdown.

Wake-On-LAN Powerdown Mode

ACPI power consumption compliant Wake-On-LAN mode is implemented on the ET1011 by using the *IEEE* standard MII registers to put the PHY into 10Base-T or 100Base-TX modes. Clearing the advertisement of 1000Base-T (MII register address 9 bits 8, 9) and setting the desired 10Base-T and 100Base-TX advertisement (MII register address 4 bits 5-8) activates this feature. This must be followed by an autonegotiation restart via the control register (MII register address 0 bit 9).

Low-Power Energy-Detect Mode

When COMA is asserted, low-power energy-detect (LPED) mode is enabled if LPED_EN_N is low. In this mode, the PHY monitors the cable for energy. If energy is detected, the MDINT_N pin is asserted. The PHY exits from LPED mode when COMA is deasserted.

Pin Information

Pin Diagram, 128-Pin TQFP

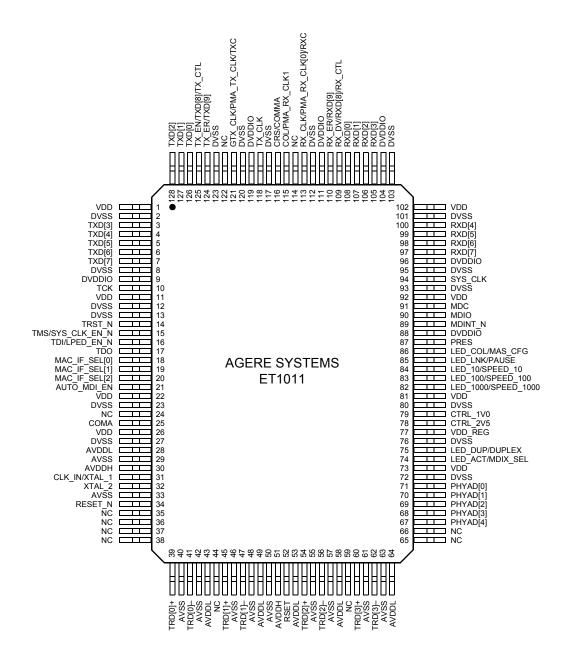


Figure 6. Pin Diagram for ET1011 in 128-Pin TQFP Package (Top View)

Pin Diagram, 84-Pin MLCC

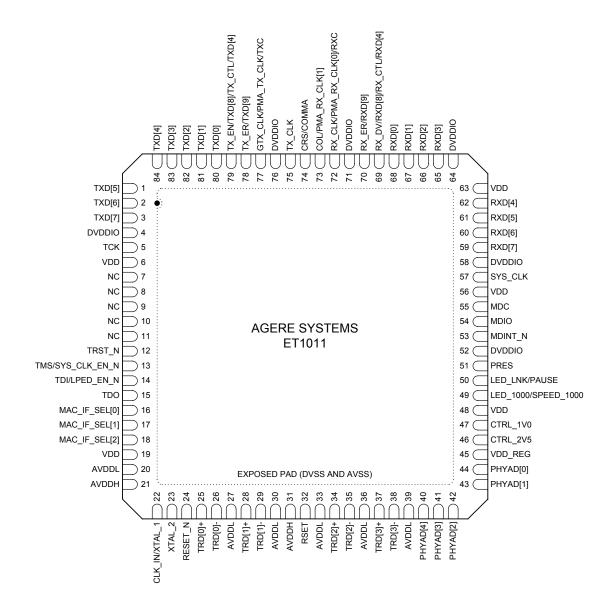


Figure 7. Pin Diagram for ET1011 in 84-Pin MLCC Package (Top View)

Pin Diagram, 68-Pin MLCC

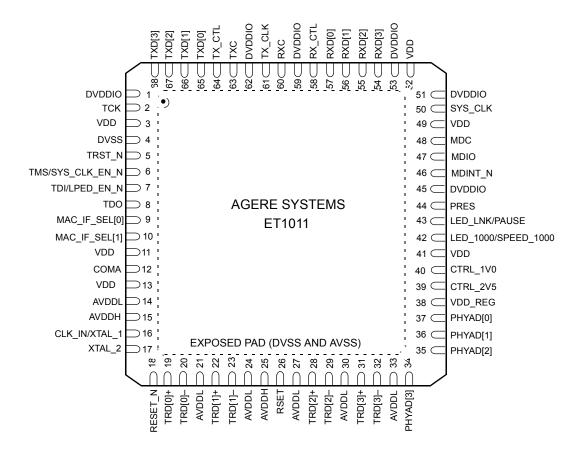


Figure 8. Pin Diagram for ET1011 in 68-Pin MLCC Package (Top View)

Pin Descriptions, 128-Pin TQFP, 84-Pin MLCC, and 68-Pin MLCC

Table 1. Agere Systems ET1011 Device Signals by Interface, 128-Pin TQFP, 84-Pin and 68-Pin MLCC

Name	Description	Pad Type	Internal Pull-Up/ Pull-Down	3-State	Analog	Pin # 128-pin TQFP	Pin# 84-pin MLCC	Pin # 68-pin MLCC	
MAC: GMII—Gigabit Media Independent Interface (128-pin TQFP and 84-pin MLCC Only)									
GTX_CLK	GMII transmit clock	ı	_	_	_	121	77	_	
TX_ER	Transmit error		_		_	124	78	_	
TX_EN	Transmit enable		_		_	125	79	_	
TXD[7:0]	Transmit data bits	_		_	_	7, 6, 5, 4, 3 128, 127, 126	3, 2, 1, 84, 83, 82, 81, 80	_	
RX_CLK	Receive clock	0	_	Z	_	113	72	_	
RX_ER	Receive error	0	_	Z	_	110	70	_	
RX_DV	Receive data valid	0	_	Z	_	109	69	_	
RXD[7:0]	Receive data bits	0		Z		97, 98, 99, 100, 105, 106, 107, 108	59, 60, 61, 62, 65, 66, 67, 68	_	
CRS	Carrier sense	0	_	Z	_	116	74	_	
COL	Collision detect	0	_	Z	_	115	73	_	
	MAC: RGI	/III—R	educed Giga	bit Medi	a Indepe	ndent Interface)		
TXC	RGMII transmit clock	I		_	_	121	77	63	
TXD[3:0]	Transmit data bits		_	_	_	3, 128, 127, 126	83, 82, 81, 80	68, 67, 66, 65	
TX_CTL	Transmit control		_	_	_	125	79	64	
RXC	Receive clock	0	_	Z	_	113	72	60	
RXD[3:0]	Receive data bits	0		Z	_	105, 106, 107, 108	65, 66, 67, 68	54, 55, 56, 57	
RX_CTL	Receive control	0	_	Z	_	109	69	58	
	MAC: MII—Media Ir	deper	ndent Interfa	ce (128-p	in TQFP	and 84-pin ML	CC Only)		
TX_CLK	MII transmit clock	0	_	Z	_	118	75	_	
TX_ER	Transmit error		_	_	_	124	78	_	
TX_EN	Transmit enable		_	_	_	125	79	_	
TXD[3:0]	Transmit data bits	I		_	_	3, 128, 127, 126	83, 82, 81, 80	_	
RX_CLK	Receive clock	0	_	Z	_	113	72	_	
RX_ER	Receive error	0		Z		110	70		
RX_DV	Receive data valid	0		Z		109	69	_	
RXD[3:0]	Receive data bits	0	_	Z	_	105, 106, 107, 108	65, 66, 67, 68	_	
CRS	Carrier sense	0	_	Z	_	116	74	_	
COL	Collision detect	0	_	Z	_	115	73	_	

Pin Descriptions, 128-Pin TQFP, 84-Pin MLCC, and 68-Pin MLCC (continued)

Table 1. Agere Systems ET1011 Device Signals by Interface, 128-Pin TQFP, 84-Pin and 68-Pin MLCC (cont.)

Name	Description	Pad Type	Internal Pull-Up/ Pull-Down		Analog	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin # 68-pin MLCC			
	MAC: TBI—Ten-Bit Interface (128-pin TQFP and 84-pin MLCC Only)										
PMA_TX_CLK	TBI transmit clock	I	_	_	_	121	77	_			
TXD[9:0]	Transmit data bits		_	_	_	124, 125, 7, 6, 5, 4, 3, 128, 127, 126	78, 79, 3, 2, 1, 84, 83, 82, 81, 80,	_			
PMA_RX_CLK[0]	TBI receive clock	0	_	Z	_	113	72	_			
RXD[9:0]	Receive data bits	0	_	Z	_	110, 109, 97, 98, 99, 100, 105, 106, 107, 108	70, 69, 59, 60, 61, 62, 65, 66, 67, 68,				
PMA_RX_ CLK[1]	TBI receive clock	0	_	Z	_	115	73	_			
COMMA	Valid comma detect	I	_	_	_	116	74	_			
	MAC:	RTBI-	-Reduced	Ten-Bit I	nterface						
TXC	RTBI transmit clock	I	_	_	_	121	77	63			
TXD[3:0]	Transmit data bits	I	_	_	_	3, 128, 127, 126	83, 82, 81, 80,	68, 67, 66, 65			
TX_CTL	Transmit control	I	_	_	_	125	79	64			
RXC	RTBI receive clock	0	_	Z	_	113	72	60			
RXD[3:0]	Receive data bits	0	_	Z	_	105, 106, 107, 108	65, 66, 67, 68	54, 55, 56, 57			
RX_CTL	Receive control	0	_	Z	_	109	69	58			
		MDI:	Transforme	r Interfa	се						
TRD[0]+	Transmit and receive	I/O	_	_	Α	39	25	19			
TRD[0]-	differential pair					41	26	20			
TRD[1]+	Transmit and receive	I/O	_	_	Α	45	28	22			
TRD[1]-	differential pair					47	29	23			
TRD[2]+	Transmit and receive	I/O	_	_	Α	54	34	28			
TRD[2]-	differential pair					56	35	29			
TRD[3]+	Transmit and receive	I/O	_	_	Α	60	37	31			
TRD[3]-	differential pair					62	38	32			
RSET	Analog reference resistor	I/O	_	_	Α	52	32	26			

Pin Descriptions, 128-Pin TQFP, 84-Pin MLCC, and 68-Pin MLCC (continued)

Table 1. Agere Systems ET1011 Device Signals by Interface, 128-Pin TQFP, 84-Pin and 68-Pin MLCC (cont.)

Name	Description	Pad Typ e	Internal Pull-Up/ Pull-Down	3-State	Analog	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin # 68-pin MLCC
	M	lanage	ement Interfa	ce				
PHYAD[4:0]	PHY address 4—1	I	Pull-down	_	_	67, 68,	40, 41,	34, 35,
	PHY address 0	I	Pull-up	_		69, 70, 71	42, 43, 44	36, 37 PHYAD [3:0]
MDC	Management interface clock	I	Pull-down	_	_	91	55	48
MDIO	Management data I/O	I/O	Pull-up	_	_	90	54	47
MDINT_N	Management interface interrupt	0		_	_	89	53	46
		Cor	nfiguration ¹					
SPEED_1000	1000Base-T speed select	I	Pull-up		_	82	49	42
SPEED_100	100Base-TX speed select	I	Pull-up	_	_	83	_	_
SPEED_10	10Base-T speed select	I	Pull-up	_	_	84	_	_
DUPLEX	Half- or full-duplex configuration	I	Pull-up	_		75	1	1
MAS_CFG	Master slave configuration		Pull-down			86		
PAUSE	Pause mode		Pull-down			85	50	43
AUTO_MDI_EN	Auto-MDI detection enable		Pull-up	_		21		
MDIX_SEL	MDI/MDI-X selection	ı	Pull-down	_	_	74	_	_
MAC_IF_SEL[0]	MAC interface select 0	I	Pull-down	_	_	18	16	9
MAC_IF_SEL[1]	MAC interface select 1	I	Pull-down	_	_	19	17	10
MAC_IF_SEL[2]	MAC interface select 2	J	Pull-down			20	18	_
SYS_CLK_EN_N	System clock enable		Pull-up	_	_	15	13	6
LPED_EN_N	Low power energy detection enable	I	Pull-up	_	_	16	14	7
PRES	Precision resistor	I			_	87	51	44

^{1.} Configuration signals are multiplexed with the LED controls. During a reset, the status of the configuration pins are latched and used to set the configuration and later to select the polarity to drive the LEDs.

Pin Descriptions, 128-Pin TQFP, 84-Pin MLCC, and 68-Pin MLCC (continued)

Table 1. Agere Systems ET1011 Device Signals by Interface, 128-Pin TQFP, 84-Pin and 68-Pin MLCC (cont.)

Name	Description	Pad Type	Internal Pull-Up/ Pull-Down	3-State	Analog	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin # 68-pin MLCC
LED Interface								
LED_1000	1000Base-T LED	0	Pull-up	_	_	82	49	42
LED_100	100Base-TX LED	0	Pull-up	_	_	83	_	_
LED_10	10Base-T LED	0	Pull-up	_	_	84	_	_
LED_DUP	Duplex LED	0	Pull-up	_	_	75	_	_
LED_LNK	Link established LED	0	Pull-down	_	_	85	50	43
LED_COL	Collision LED	0	Pull-down	_	_	86	_	_
LED_ACT	Transmit and receive activity	0	Pull-down	_	_	74	_	_
			JTAG					
TCK	Test clock	I	Pull-up	_	_	10	5	2
TRST_N	Test reset	I	Pull-down	_	_	14	12	5
TMS	Test mode select	ı	Pull-up	_	_	15	13	6
TDI	Test data input	ı	Pull-up	_	_	16	14	7
TDO	Test data output	0	Pull-up	_	_	17	15	8
		CI	ocking and	Reset				
CLK_IN	Reference clock input	I/O	_	_	Α	31	22	16
XTAL_1	Reference crystal input	I/O	_	_	Α	31	22	16
XTAL_2	Reference crystal	I/O	_	_	Α	32	23	17
SYS_CLK	System clock	0	_	_	_	94	57	50
RESET_N	Reset	ı	_	_	_	34	24	18
COMA	Hardware powerdown	I	Pull-down			25		12
		R	egulator Co	ntrol				
CTRL_1V0	Regulator control 1.0 V	0	_	_	Α	79	47	40
CTRL_2V5	Regulator control 2.5 V	0	_	_	Α	78	46	39

^{1.} Configuration signals are multiplexed with the LED controls. During a reset, the status of the configuration pins are latched and used to set the configuration and later to select the polarity to drive the LEDs.

Pin Descriptions, 128-Pin TQFP, 84-Pin MLCC, and 68-Pin MLCCC (continued)

Table 1. Agere Systems ET1011 Device Signals by Interface, 128-Pin TQFP, 84-Pin and 68-Pin MLCC (cont.)

Name	Description	Pad Type	Internal Pull-Up/ Pull-Down	3-State	Analog	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin # 68-pin MLCC
		Powe	er, Ground, a	nd No C	onnect			
VDD_REG	Regulator 2.5 V or 3.3 V supply	VDD	_			77	45	38
DVDDIO	Digital I/O 2.5 V or 3.3 V supply	VDD	_	_	_	9, 88, 96, 104, 111, 119	4, 52, 58, 64, 71, 76	1, 45, 51, 53, 59, 62
VDD	Digital core 1.0 V supply	VDD	_	_	_	1, 11, 22, 26, 73, 81, 92, 102	6, 19, 48, 56, 63	3, 11, 13, 41, 49, 52
DVSS ²	Digital ground	Vss	_	_	_	2, 8, 12, 13, 23, 27, 72, 76, 80, 93, 95, 101, 103, 112, 117, 120, 123	_	4
AVDDH	Analog power 2.5 V	Vdd	_	_	_	30, 51	21, 31	15, 25
AVDDL	Analog power 1.0 V	VDD	_			28, 43, 49, 53, 58, 64	20, 27, 30, 33, 36, 39	14, 21, 24, 27, 30, 33
AVSS ²	Analog ground	Vss	_	_	_	29, 33, 40, 42, 46, 48, 50, 55, 57, 61, 63	_	_
NC	Reserved—do not connect	_	_	_	_	24, 35, 36, 37, 38, 44, 59, 65, 66, 114, 122	7, 8, 9, 10, 11	_

^{1.} Configuration signals are multiplexed with the LED controls. During a reset, the status of the configuration pins are latched and used to set the configuration and later to select the polarity to drive the LEDs.

^{2.} For the 84-pin and 68-pin MLCC, all AVSS and DVSS pins share a common ground pin (pad) in the center of the device.

Pin Descriptions, 128-Pin TQFP, 84-Pin MLCC, and 68-Pin MLCC

Table 2. Multiplexed Signals on the ET1011

Default	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin # 68-pin MLCC	Alternate
COL	115	73	_	COL ^{1, 6}
				PMA_RX_CLK[1] ²
CRS	116	74	_	CRS ^{1, 6}
				COMMA ²
GTX_CLK	121	77	_	GTX_CLK ¹
			_	PMA_TX_CLK ²
			63	TXC ^{3, 4}
LED_ACT	74	_	_	LED_ACT
				MDIX_SEL ⁵
LED_COL	86	_	_	LED_COL
				MAS_CFG ⁵
LED_DUP	75	_	_	LED_DUP
				DUPLEX ⁵
LED_LNK	85	50	43	LED_LNK
_				PAUSE ⁵
LED_1000	82	49	42	LED_1000
_				SPEED 1000 ⁵
LED_100	83	_	_	LED_100
_				SPEED_100 ⁵
LED_10	84	_	_	LED_10
_				SPEED_10 ⁵
RX_CLK	113	72	_	RX_CLK ^{1, 6}
			_	PMA_RX_CLK[0] ²
			60	RXC ^{3, 4}
RX_ER	110	70	_	RX ER ^{1, 6}
_				 RXD[9] ²
RX_DV	109	69	_	RX_DV ^{1, 6}
_			_	 RXD[8] ²
			58	RX CTL ^{3, 4}
TDI	16	14	7	TDI
				LPED EN N ⁵
TMS	15	13	6	TMS
				SYS CLK EN N ⁵
TX_ER	124	78	_	TX_ER ^{1, 6}
_		-		TXDI91 ²
TX_EN	125	79	_	TX_EN ^{1, 6}
_		-	_	TXD[8] ²
			64	TX_CTL ^{3, 4}
XTAL_1	31	22	16	XTAL_1
· - -		= -	-	CLK_IN

^{1.} GMII signal.

^{4.} RTBI signal.

^{2.} TBI signal.

^{5.} Reset/configuration signal.

^{3.} RGMII signal.

^{6.} MII signal.

Hardware Interfaces

The following hardware interfaces are included on the ET1011 gigabit Ethernet transceiver:

- MAC interfaces:
 - GMII (128-pin TQFP only)
 - RGMII
 - MII (128-pin TQFP only)
 - TBI (128-pin TQFP only)
 - RTBI
- Media dependent interface
- Management interface

- Configuration interface
- LED interface
- Clock and reset signals
- JTAG interface
- Regulator control
- Power and ground signals

Several of the pins of the MAC interface are multiplexed, but they are designed to be interchangeable so that the device can change the MAC interface once the transmission capabilities (1000Base-T, 100Base-TX, and 10Base-T) are established.

The following diagram shows the various interfaces on each ET1011 and how they connect to the MAC and other support devices in a typical application.

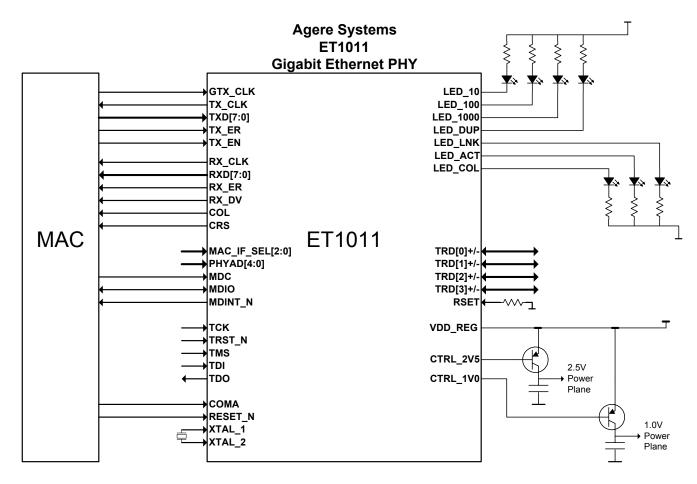


Figure 9. ET1011 Gigabit Ethernet Card Block Diagram

MAC Interface

The ET1011 supports RGMII, GMII, MII, RTBI, and TBI interfaces to the MAC. The MAC interface mode is selected via the hardware configuration pins, MAC_IF_SEL[2:0].

Gigabit Media Independent Interface (GMII) (128-pin TQFP only)

The GMII is fully compliant with *IEEE* 802.3 clause 35. The GMII interface mode is selected by setting the hardware configuration pins MAC IF SEL[2:0] = 000.

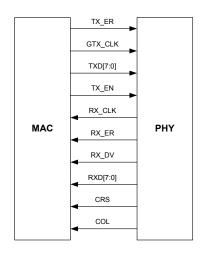


Figure 10. GMII MAC-PHY Signals

Table 3. GMII Signal Description (1000Base-T Mode) (128-pin TQFP and 84-pin MLCC only)

Pin Name	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin Description	Functional Description
GTX_CLK	121	77	Transmit clock	The MAC drives this 125 MHz clock signal that is held low during autonegotiation or when operating in modes other than 1000Base-T.
TX_ER	124	78	Transmit error	The MAC drives this signal high to indicate a transmit coding error.
TX_EN	125	79	Transmit enable	The MAC drives this signal high to indicate that data is available on the transmit data bus.
TXD[7:0]	7, 6, 5, 4, 3, 128, 127, 126	3, 2, 1, 84, 83, 82, 81, 80	Transmit data bits 7—0	The MAC transmits data synchronized with GTX_CLK to the ET1011 for transmission on the media dependent (transformer) interface.
RX_CLK	113	72	Receive clock	The ET1011 generates a 125 MHz clock to synchronize receive data.
RX_ER	110	70	Receive error	The ET1011 drives RX_ER to indicate that an error was detected in the frame that was received and is being transmitted to the MAC.
RX_DV	109	69	Receive data valid	The ET1011 drives RX_DV to indicate that it is sending recovered and decoded data to the MAC.
RXD[7:0]	97, 98, 99, 100, 105, 106, 107, 108	59, 60. 61, 62, 65, 66, 67, 68	Receive data	The ET1011 transmits data that is synchronized with RX_CLK to the MAC.
CRS	116	74	Carrier sense	The carrier sense signal (CRS) of the MAC interface is asserted by the ET1011 whenever the receive medium is nonidle. In half-duplex mode, CRS may also be asserted when the transmit medium is nonidle. The CRS may be enabled on transmit in half-duplex mode by writing to the PHY configuration register, address 22, bit 15.
COL	115	73	Collision detect	In 10Base-T, 100Base-TX, and 1000Base-T half-duplex modes, COL is asserted when both transmit and receive media are nonidle.

Reduced Gigabit Media Independent Interface (RGMII)

The RGMII interface is fully compliant with the RGMII Rev. 1.3 specification. The RGMII interface mode is selected by setting the hardware configuration pins MAC_IF_SEL[2:0] = 100 (trace delay) or 110 (DLL delay).

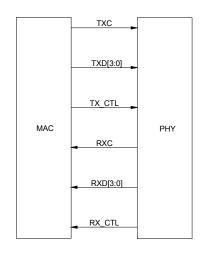


Figure 11. RGMII MAC-PHY Signals

Table 4. RGMII Signal Description (1000Base-T Mode)

Pin Name	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin # 68-pin MLCC	Pin Description	Functional Description
TXC	121	77	63	Transmit clock	The MAC drives this 125 MHz clock signal that is held low during autonegotiation or when operating in modes other than 1000Base-T. To obtain the 1 gigabit transmission rate, the MAC uses both the positive and negative clock transitions.
TXD[3:0]	3, 128, 127, 126	83, 82, 81, 80	68, 67, 66, 65	Transmit data bits	The MAC transmits data synchronized with TXC to the ET1011 for transmission on the media dependent (transformer) interface. The MAC transmits bits 3:0 on a positive transition of TXC and bits 7:4 on a negative transition of TXC.
TX_CTL	125	79	64	Transmit control	The MAC transmits control signals across this line (TX_ER and TX_EN). The MAC transmits TX_EN¹ on a positive transition of TXC and TX_EN and TX_ER¹ on the negative transition of TXC.
RXC	113	72	60	Receive clock	The ET1011 generates a 125 MHz clock to synchronize receive data. To obtain the 1 gigabit transmission rate, the ET1011 uses both the positive and negative clock transitions.
RXD[3:0]	105, 106, 107, 108	65, 66, 67, 68	54, 55, 56, 57	Receive data	The ET1011 transmits data that is synchronized with RX_CLK to the MAC. The ET1011 transmits bits 3:0 on a positive transition of RXC and bits 7:4 on the negative transition of RXC.
RX_CTL	109	69	58	Receive control	The ET1011 transmits control signals across this line (RX_ER and RX_EN). The ET1011 transmits RX_DV ¹ on a positive transition of RXC and RX_EN ¹ and RX_ER ¹ on the negative transition of TXC.

 $^{1.\} Reference\ the\ GMII\ interface\ for\ description\ of\ the\ following\ parameters:\ TX_EN,\ TX_ER,\ RX_DV,\ RX_EN,\ and\ RX_ER.$

Media Independent Interface (MII) (128-pin TQFP only)

The MII is fully compliant with *IEEE* 802.3 clause 22. The MII interface mode is selected by setting the hardware configuration pins MAC_IF_SEL[2:0] = 000.

In 100Base-TX and 10Base-T mode, the RXD[7:4] pins are driven low by the ET1011 and the TXD[7:4] pins are ignored. They should not be left floating but should be set either high or low. In the MII interface mode, the GTX CLK pin may be held low.

An alternative to the standard MII is provided when operating in 10Base-T or 100Base-TX mode by setting hardware configuration pins MAC_IF_SEL[2:0] = 010. In this alternative interface, the MAC provides a reference clock at 2.5 MHz or

25 MHz at the GTX_CLK pin. The ET1011 then uses a FIFO to resynchronize data presented synchronously with this reference clock.

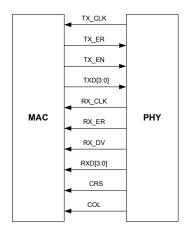


Figure 12. MII Signals

Table 5. MII Interface (100Base-TX and 10Base-T) (128-pin TQFP and 84-pin MLCC Only))

Pin Name	Pin # 128-pin	Pin # 84-pin	Pin Description	Functional Description
	TQFP	MLCC	Bescription	
TX_CLK	118	75	Transmit	In 100Base-TX mode, the ET1011 generates 25 MHz reference
			clock	clocks and in 10Base-T mode provides 2.5 MHz reference clocks.
				MAC_IF_SEL[2:0] = 000—this is default behavior.
GTX_CLK	121	77	Alternate	In 100Base-TX mode, the MAC generates the 25 MHz reference
			transmit	clock and in 10Base-T mode provides a 2.5 MHz reference clock.
			clock	MAC_IF_SEL[2:0] = 010.
TX_ER	124	78	Transmit	The MAC drives this signal high to indicate a transmit coding error.
			error	
TX_EN	125	79	Transmit	The MAC drives this signal high to indicate that data is available on
			enable	the transmit data bus.
TXD[3:0]	3, 128,	83, 82,	Transmit	The MAC transmits data synchronized with TX_CLK to the ET1011
	127, 126	81, 80	data bits	for transmission on the media-dependent (transformer) interface.
RX_CLK	113	72	Receive	In 100Base-TX mode, the ET1011 generates 25 MHz reference
			clock	clocks and in 10Base-T mode provides 2.5 MHz reference clocks.
RX_ER	110	70	Receive	The ET1011 drives RX_ER to indicate that an error was detected in
			error	the frame that was received and is being transmitted to the MAC.
RX_DV	109	69	Receive	The ET1011 drives RX_DV to indicate that it is sending recovered
			data valid	and decoded data to the MAC.
RXD[3:0]	105, 106,	65, 66,	Receive	The ET1011 transmits data synchronized with RX_CLK to the
	107, 108	67, 68	data bits	MAC.
CRS	116	74	Carrier	The carrier sense signal (CRS) of the MAC interface is asserted by
			sense	the ET1011 whenever the receive medium is nonidle. In half-
				duplex mode, CRS may also be asserted when the transmit
				medium is non-idle. The CRS may be enabled on transmit in half-
				duplex mode by writing to the PHY configuration register, address
				22, bit 15.
COL	115	73	Collision	In 10Base-T, 100Base-TX, and 1000Base-T half-duplex modes,
			detect	COL is asserted when both transmit and receive media are noni-
				dle.

Ten-Bit Interface (TBI) (128-pin TQFP only)

The TBI is fully compliant with *IEEE* 802.3 clause 36. It may be used as an alternative to the GMII in 1000Base-T mode. The TBI mode is selected by setting the hardware configuration pins MAC_IF_SEL[2:0] = 001.

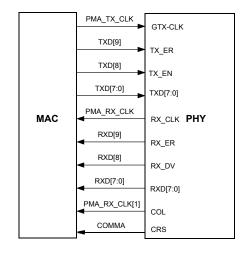


Figure 13. Ten-Bit Interface

Table 6. Ten-Bit Interface (1000Base-T) (128-pin TQFP and 84-pin MLCC Only)

Pin Name	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin Description	Functional Description
PMA_TX_CLK	121	77	TBI transmit clock	The MAC drives this 125 MHz clock signal and should be held low during autonegotiation or when operating in modes other than 1000Base-T.
TXD[9:0]	124, 125, 7, 6, 5, 4, 3, 128, 127, 126	78, 79, 3, 2, 1, 84, 83, 82, 81, 80	Transmit data bits	The MAC transmits data synchronized with PMA_TX_CLK to the ET1011 for transmission on the media dependent (transformer) interface.
PMA_RX_CLK[0]	113	72	Receive clock	The ET1011 generates a 62.5 MHz clock to synchronize receive data for the odd code group. This signal is 180 degrees out of phase from PMA_RX_CLK[1].
RXD[9:0]	110, 109, 97, 98, 99, 100, 105, 106, 107, 108	70, 69, 59, 60, 61, 62, 65, 66, 67, 68	Receive data bits	The ET1011 transmits data that is synchronized with PMA_ RX_CLK[0] to the MAC.
PMA_RX_CLK[1]	115	73	Receive clock	The ET1011 generates a 62.5 MHz clock to synchronize receive data for the even code group. This signal is 180 degrees out of phase from PMA_RX_CLK[0].
COMMA	116	74	Comma signal	This signal indicates that COMMA has been detected.

Reduced Ten-Bit Interface (RTBI)

The RTBI is fully compliant with RGMII rev 1.3 specification. The RTBI mode is selected by setting the hardware configuration pins MAC_IF_SEL[2:0] = 101 (trace delay) or 111 (DLL delay).

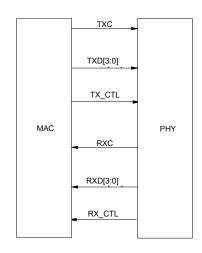


Figure 14. Reduced Ten-Bit Interface

Table 7. RTBI Signal Description (1000Base-T Mode)

Pin Name	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin # 68-pin MLCC	Pin Description	Functional Description
TXC	121	77	63	Transmit clock	The MAC drives this 125 MHz clock signal that is held low during autonegotiation or when operating in modes other than 1000Base-T.
TXD[3:0]	3, 128, 127, 126	83, 82, 81, 80	68, 67, 66, 65	Transmit data bits	The MAC transmits data synchronized with TXC to the ET1011 for transmission on the media dependent (transformer) interface. The MAC transmits bits 3:0 on a positive transition of TXC and bits 8:5 on a negative transition of TXC.
TX_CTL	125	79	64	Transmit control	The MAC transmits bit 5 and bit 10 synchronized with TXC to the ET1011 for transmission on the media-dependent (transformer) interface. The MAC transmits bit 5 on a positive transition of TXC and bit 10 on the negative transition of TXC.
RXC	113	72	60	Receive clock	The ET1011 generates a 125 MHz clock to synchronize receive data.
RXD[3:0]	105, 106, 107, 108	65, 66, 67, 68	54, 55, 56, 57	Receive data	The ET1011 transmits data that is synchronized with RXC to the MAC. The ET1011 transmits bits 3:0 on a positive transition of RXC and bits 8:5 on the negative transition of RXC.
RX_CTL	109	69	58	Receive control	The ET1011 transmits bit 5 and bit 10 synchronized with RXC to the MAC. The ET1011 transmits bit 5 on a positive transition of RXC and bit 10 on the negative transition of RXC.

Management Interface

Serial Management Interface

The MII management interface (MI) provides a simple, two-wire serial interface between the MAC and the PHY to allow access to control and status information in the internal registers of the ET1011. The interface is compliant with *IEEE* 802.3 clause 22 and is compatible with the clause 45.3, enabling the two systems to co-exist on the same MDIO bus.

Management Frame Structure

Frames transmitted on the MI have the following structure.

Table 8. Management Frame Structure

	PRE	ST	OP	PHYAD	REGAD	TA	DATA	IDLE
Read	11	01	10	aaaaa	rrrrr	ZO	d d	Z
Write	11	01	01	aaaaa	rrrrr	10	d d	Z

- PRE (preamble): At the beginning of each transaction, the MAC may send a sequence of 32 contiguous logic one bits on MDIO with 32 corresponding cycles on MDC to provide the PHY with a pattern that it can use to establish synchronization. The ET1011 supports MF preamble suppression, and thus the MAC may initiate management frames with the ST (start of frame) pattern.
- ST (start of frame): The start of frame is indicated by a <01> pattern. This pattern ensures transitions from the default logic one line state to zero and back to one. When a clause 45 start of frame <00> is received, the frame is ignored.
- **OP** (operation code): The operation code for a read transaction is <10>, while the operation code for a write transaction is <01>.
- PHYAD (phy address): The PHY address is 5 bits. The first PHY address bit transmitted and received is the MSB of the address. Only the PHY that is addressed will respond to the MI operation.
- **REGAD** (register address): The register address is 5 bits. The first register address bit transmitted and received is the MSB of the address.
- **TA** (turnaround): The turnaround time is a 2-bit time spacing between the register address field and the data field of a management frame to avoid contention during a read transaction. For a read transaction, the PHY remains in a high-impedance state for the first bit time of the turnaround and drives a zero bit during the second bit time of the turnaround. During a write transaction, the PHY expects a one for the first bit time of the turnaround and a zero for the second bit time of the turnaround.
- **DATA** (data): The data field is 16 bits. The first data bit transmitted and received is the MSB of the register being addressed.
- **IDLE** (idle condition): The IDLE condition on MDIO is a high-impedance state, and the ET1011 internal pull-up resistor will pull the MDIO line to logic one.

Table 9. Management Interface

Pin Name	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin # 68-pin MLCC	Pin Description	Functional Description
PHYAD [4:0]	67, 68, 69, 70, 71	40, 41, 42, 43, 44	34, 35, 36, 37 (PHYAD [3:0])	PHY Address	The physical address of the ET1011 is configured at reset by the current state of the PHYAD[4:0] pins. Once these pins have been latched in at reset, the ET1011 is accessible via the management interface at the configured address. The default address is set to 1 by internal pull up/downs. These may be overridden by external pull-up/downs. The valid range is 0 to 31 ¹ .
MDC	91	55	48	Management Interface Clock	The management data clock (MDC) is a reference for the data signal and is generated by the MAC. It should be turned off when the MI is not being used. This pin has an internal pull-down resistor. MDC is nominally 2.5 MHz, and can work up to a maximum of 12.5 MHz.
MDIO	90	54	47	Management Data I/O	The management data input/output (MDIO) is a bidirectional data signal between the MAC and one or more PHYs. MDIO is a 3-state pin that allows either the MAC or the selected PHY to drive this signal. This pin has an internal pull-up resistor. An external pull-up resistor should also be used, the exact value depending on the number of PHYs sharing the MDIO signal. Data signals written by the MAC are sampled by the PHY synchronously with respect to the MDC. Data signals written by the PHY are generated synchronously with respect to the MDC. This pin requires an external pull-up (1 k Ω to 10 k Ω).
MDINT_N	89	53	46	Management Interface Interrupt	This pin requires an external pull-up (1 $\kappa\Omega$ to 10 $\kappa\Omega$). This pin is active-low and indicates an unmasked management interrupt. This pin requires an external pull-up resistor (1 $\kappa\Omega$ to 4.7 $\kappa\Omega$). Pin is open drain.

^{1.} PHYAD description applies to the 128-TQFP only. For the 68-MLCC, the valid range will be 0—15.

Management Interrupt

The ET1011 is capable of generating hardware interrupts on pin MDINT_N in response to a variety of user-selectable conditions. MDINT_N is an open-drain, active-low signal that can be wire-ORed with several other ET1011 devices. A single 2.2 $k\Omega$ pull-up resistor is recommended for this wire-OR configuration.

When an interrupt occurs, the system can poll the status of the interrupt status register on each device to determine the origin of the interrupt. There are nine conditions that can be selected to generate an interrupt:

- Autonegotiation status change
- Autonegotiation page received
- FIFO overflow/underflow
- Link status change
- CRC errors
- Full error counter
- Local/remote rx status change
- Automatic speed downshift occurred
- MDIO synchronization lost

The ET1011 is configured to generate an interrupt based on any of these conditions by use of the interrupt mask register (MII register 24). By setting the corresponding bit in the interrupt mask register for the desired condition, the ET1011 will generate the desired interrupt. The ET1011 can be polled on the status of an activated interrupt condition by accessing MII register interrupt status register (MII register 25). If this condition has occurred, the corresponding bit in the interrupt status register will be set. The interrupt status register is self-clearing on a read operation.

Configuration Interface

The hardware configuration pins listed in Table 13 initialize the ET1011 at poweron and reset. The configuration is latched during initialization and stored. These pins set the default value of their corresponding MII register bits.

Some configuration inputs are shared with LED pins. The hardware configuration and LED pins are read on initial powerup of the ET1011, during a hardware reset and during recovery from hardware powerdown. The logic value at the pin is sensed and latched. After RESET_N has been deasserted (raised high), the shared configuration pins become outputs that are used to drive LEDs¹.

Note: The 68-MLCC, unlike its 128-TQFP counterpart, offers comparatively limited hardware configuration capabilities. It only has PAUSE, SPEED_1000, SYS_CLK_EN_N, and LPED_EN_N configuration pins. The other configuration inputs take on the default value at reset and can be changed via the MI registers.

Autonegotiation: Speed and Duplex Selection

The ET1011 supports 10Base-T, 100Base-TX, and 1000Base-T modes in both full and half duplex. For the purpose of autonegotiation, the *IEEE* defines a technology as a combination of speed and duplex capability. The PHY can be configured to advertise a subset of the available technologies as shown in Table 10.

Once autonegotiation is completed, an attempt is made to bring up a link with the highest common denominator technology.

Table 10. Autonegotiation M	lodes
-----------------------------	-------

SP_1000	SP_100	SP_10	DUPLEX	Autonegotiation Mode
0	0	1	0	Advertise only 10Base-T, half duplex.
0	0	1	1	Advertise only 10Base-T, full duplex.
0	1	0	0	Advertise only 100Base-TX, half duplex.
0	1	0	1	Advertise only 100Base-TX, full duplex.
1	0	0	0	Advertise only 1000Base-T, half duplex.
1	0	0	1	Advertise only 1000Base-T, full duplex.
0	1	1	0	Advertise 10Base-T and 100Base-TX, half duplex.
0	1	1	1	Advertise 10Base-T and 100Base-TX, full duplex.
1	0	1	0	Advertise 10Base-T and 1000Base-T, half duplex.
1	0	1	1	Advertise 10Base-T and 1000Base-T, full duplex.
1	1	0	0	Advertise 100Base-TX and 1000Base-T, half duplex.
1	1	0	1	Advertise 100Base-TX and 1000Base-T, full duplex.
1	1	1	0	Advertise all capabilities, half duplex.
1	1	1	1	Advertise all capabilities, full duplex.

Autonegotiation can be disabled and the technology forced by writing to the control register (MI register address 0, bits 12). This causes the PHY to transmit and receive in accordance with the selected technology irrespective of the capability of the link partner. Disabling autonegotiation is not recommended.

^{1.} For details on sharing LED and configuration pins, refer to the application note, *TruePHY ET1011 Gigabit Ethernet PHY Design and Layout Guide*.

Autonegotiation: Master/Slave Configuration

A PHY can advertise a preference for master or slave. The hardware configuration pin MAS_CFG sets the preference as shown in Table 11. If both PHYs advertise the same master/slave preference, the master/slave configuration is resolved during autonegotiation as described in the *IEEE* standards.

Table 11. Master/Slave Preference

MAS_CFG	Autonegegotiation Master/Slave Mode
0	Autonegotiation, advertise slave preference.
1	Autonegotiation, advertise master preference.

The PHY can be manually configured for master or slave by writing to the 1000Base-T control register (MI register address 9, bits 12 and 11). If both PHYs are manually configured to the same master/slave setting, a 1000Base-T link cannot be established. Manual master/slave configuration is not recommended.

Autonegotiation: MDI/MDI-X Configuration

The PHY can be configured to automatically detect MDI/MDI-X configuration, or the MDI/MDI-X configuration can be forced as shown in Table 12.

Table 12. MDI/MDI-X Configuration

AUTO_MDI_EN	MDI_SEL	MDI/MDI-X Configuration	
1	X	Automatic MDI/MDI-X detection.	
0	0	MDI configuration (NIC/DTE).	
0	1	MDI-X configuration (switch).	

Table 13. Configuration Signals

Pin Name	Pin#	Pin#	Pin#	Pin	Functional Description
	128-pin TQFP	84-pin MLCC	68-pin MLCC	Description	
SPEED_1000	82	49	42	Speed 1000	
SPEED_100	83	_	_	Speed 100	speed.
SPEED_10	84	_	_	Speed 10	The assertion of each input enables advertisement of the corresponding speed to the remote end.
					SPEED_1000 → Advertise 1000Base-T SPEED_100 → Advertise 100Base-TX SPEED_10 → Advertise 10Base-T
					The default is to advertise all three speeds.
DUPLEX	75	_	_	Duplex	DUPLEX selects the duplex mode to be advertised (half or both half and full).
					0 = Advertise half duplex. 1 = Advertise both half and full duplex (default).
MAS_CFG	86	_	_	Master	This input determines the master/slave preference.
				slave configura- tion	0 = Advertise a preference to operate as slave (default).
					1 = Advertise a preference to operate as master.
PAUSE	85	50	43	Pause	This input sets the pause mode.
					If PAUSE is asserted, full-duplex pause and asymmetric pause operation are advertised.
					0 = Don't advertise pause (default). 1 = Advertise full-duplex pause and asymmetric pause.

Table 13. Configuration Signals (continued)

Pin Name	Pin#	Pin#	Pin#	Pin	Functional Description
Pin Name	128-pin TQFP		68-pin MLCC	Description	Functional Description
AUTO_	21	_	_	Autoconfig-	These inputs determine the MDI/MDI-X configuration.
MDI_EN MDIX_SEL	74		_	ure MDI/ MDI-X MDI/MDI-X Selection	If AUTO_MDI_EN is asserted, automatic MDI/MDI-X detection is enabled and the MDI/MDI-X configuration is determined by the PHY automatically. The MDIX_SEL signal is ignored.
					If AUTO_MDI_EN is not asserted, MDIX_SEL determines the MDI/MDI-X configuration. If MDIX_SEL is asserted, the MDI-X configuration is selected. If MDIX_SEL is not asserted, the MDI configuration is selected.
					Autoconfigure MDI/MDI-X 0 = Automatic MDI/MDI-X detection disabled. 1 = Automatic MDI/MDI-X detection enabled (default).
					MDI/MDI-X Selection 0 = MDI configuration (default). 1 = MDI-X configuration mode.
MAC_IF_	20	18		MAC Inter-	This input selects the desired MAC interface mode.
SEL[2:0]	L[2:0] 19 17 18 16	10 9	face Mode	Configure the MAC during reset as follows:	
			(MAC_IF_ SEL[1:0] (See Note 1.)		000 = GMII/MII (128-TQFP default). 001 = TBI. 010 = GMII/MII (clocked by GTX_CLK instead of TX_CLK) 011 = Reserved. 100 = RGMII (trace delay; 68-MLCC default). 101 = RTBI (trace delay). 110 = RGMII (DLL delay). 111 = RTBI (DLL delay).
SYS_CLK_ EN_N	15	13	6	SYS_CLK Enable	Enables the system clock. If SYS_CLK_EN_N is asserted when RESET_N is low, SYS_CLK will be enabled and will continue to be generated while RESET_N is low. If SYS_CLK_EN_N is not asserted when RESET_N is low, then SYS_CLK is disabled. 0 = SYS_CLK enabled. 1 = SYS_CLK disabled (default).
LPED_EN_ N	16	14	7	Low Power Energy Detection Enable	LPED_EN_N enables the low-power energy-detect (LPED) mode when COMA is asserted. When the PHY is in LPED mode, it can wake the MAC/ controller (instead of <i>Magic Packet</i>) by asserting the MDINT_N pin to indicate the presence of cable energy. 0 = Low-power energy-detect mode enable. 1 = Low-power energy-detect mode disabled (default).
PRES	87	51	44	Precision Resistor	Connect a 1.0 k Ω precision resistor to ground to set termination for all digital I/O's.

^{1.} In the 68-MLCC, MAC_IF_SEL 2 (=1) will be set internally.

LEDs Interface

The ET1011 is capable of sinking or sourcing current to drive LEDs. These LEDs are used to provide link status information to the user. The ET1011 is capable of automatically sensing the polarity of the LEDs. The device determines the active sense of the LED based upon the input that is latched during configuration. Thus, if logic 1 is read, the device will drive the pin to ground to activate the LED; otherwise, it will drive the pin to supply to activate the LED.

The LEDs can be programmed to stretch out events to either 28, 60, or 100 ms. This makes very short events more visible to the user. All LEDs can be programmed to be on, off, or blink instead of the default status function. This is useful for alternative function indication under host processor control: for example, a system error during power-on self-check. Four of the LEDs (LED_ACT, LED_LNK¹, LED_100 and LED_1000¹) can be programmed to indicate one of thirteen different status functions instead of the default status function:

- 1000Base-T
- 100Base-TX
- 10Base-T
- 1000Base-T (on) and 100Base-TX (blink)
- Link established
- Transmit activity
- Receive activity

- Transmit or receive activity
- Full duplex
- Collision
- Link established (on) and activity (blink)
- Link established (on) and receive activity (blink)
- Full duplex (on) and collision (blink)

The LED drivers can be configured by use of LED control register 1 and LED control register 2 (MII registers 27—28).

1. Only LED_LNK and LED_1000 are available in the 68-pin MLCC.

Table 14. LED

Pin Name	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin # 68-pin MLCC	Pin Description	Functional Description
LED_1000	82	49	42	1000Base-T LED	This LED indicates that the device is operating in 1000Base-T mode. Setting can be overridden.
LED_100	83	_	_	100Base-TX LED	This LED indicates that the device is operating in 100Base-TX mode. Setting can be overridden.
LED_10	84	_	_	10Base-T LED	This LED indicates that the device is operating in 10Base-T mode. Setting can be overridden.
LED_DUP	75	_	_	Duplex LED	This LED indicates that the device is operating in full-duplex mode. Setting can be overridden.
LED_LNK	85	50	43	Link Established LED	This LED indicates that the link is established. Setting can be overridden.
LED_COL	86		_	Collision LED	This LED indicates that both transmit and receive activity is occurring in half-duplex mode. Setting can be overridden.
LED_ACT	74			Transmit/Receive Activity LED	This LED indicates that there is transmit or receive activity. Setting can be overridden.

Media-Dependent Interface: Transformer Interface

Table 15. Transformer Interface Signals

Dis. N	D: "	D: "	- D: "	Dia Dani 1 di	For effect 5
Pin Name	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin # 68-pin MLCC	Pin Description	Functional Description
TRD[0]+ TRD[0]-	39 41	25 26	19 20	Receive Differ-	Connect this signal pair through a transformer to the media-dependent interface.
				ential Pair 0	In 1000Base-T mode, transmit and receive occur simultaneously at TRD[0]±.
					In 10Base-T and 100Base-TX modes, TRD[0]± are used to transmit when operating in the MDI configuration and to receive when operating in the MDI-X configuration.
					The PHY automatically determines the appropriate MDI/MDI-X configuration.
TRD[1]+ TRD[1]-	45 47	28 29	22 23	Transmit/ Receive Differ-	Connect this signal pair through a transformer to the media dependent interface.
				ential Pair 1	In 1000Base-T mode, transmit and receive occurs simultaneously at TRD[1]±.
					In 10Base-T and 100Base-TX modes, TRD[1]± are used to receive when operating in the MDI configuration and to transmit when operating in the MDI-X configuration.
					The PHY automatically determines the appropriate MDI/MDI-X configuration.
TRD[2]+ TRD[2]-	54 56	34 35	28 29	Transmit/ Receive Differ-	Connect this signal pair through a transformer to the media-dependent interface.
				ential Pair 2	In 1000Base-T mode, transmit and receive occurs simultaneously at TRD[2]±.
					In 10Base-T and 100Base-TX modes, TRD[2]± are unused.
TRD[3]+ TRD[3]-	60 62	37 38	31 32	Transmit/ Receive Differ-	Connect this signal pair through a transformer to the media-dependent interface.
				ential Pair 3	In 1000Base-T mode, transmit and receive occurs simultaneously at TRD[3]±.
					In 10Base-T and 100Base-TX modes, TRD[3]± are unused.
RSET	52	32	26	Analog Reference Resistor	RSET sets an absolute value reference current for the transmitter.
					Connect this signal to analog ground through a precision 6.34 $k\Omega$ 1% resistor.

Clocking and Reset

Table 16. Clocking and Reset

Pin Name	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin # 68-pin MLCC	Pin Description	Functional Description
CLK_IN	31	22	16	Reference Clock Input	Connect this signal to a 25 MHz clock input (CLK_IN) or a 25 MHz ± 50 ppm tolerance crys-
XTAL_1	31	22	16	Reference Crystal Input	tal (XTAL_1).
XTAL_2	32	23	17	Reference Crystal Input	Connect this signal to a 25 MHz ± 50 ppm toler- ance crystal. Float this signal if an external clock is used (CLK_IN).
SYS_CLK	94	57	50	System Clock	Use this signal to supply a 125 MHz clock to the MAC.
					By default, the SYS_CLK output is disabled. The SYS_CLK output can be enabled by asserting the SYS_CLK_EN_N pin or via the management interface.
RESET_N	34	24	18	Reset	Drive RESET_N low for 20 μ s to initiate a hardware reset. The ET1011 completes all reset operations within 5 ms of this signal returning to a high state.
					The configuration pins and the physical address configuration are read during a hardware reset.
COMA	25	_	12	Hardware Powerdown	Drive COMA high to initiate a hardware power- down. The ET1011 completes all reset opera- tions within 5 ms of this signal returning to a low state. All hardware functions are disabled during a hardware powerdown.
					The configuration pins and the physical address configuration are read during a hardware powerdown.

JTAG

The ET1011 has a standard *IEEE* 1149.1 JTAG test interface. The interface provides extensive test and diagnostics capability. It contains internal circuitry that allows the device to be controlled through the JTAG port to provide on-chip, in-circuit emulation.

The JTAG interface is a bidirectional serial interface with its own reset strobe (TRST_N). The reset strobe can be used independently to reset the JTAG state machine but must be used during a power-on reset (see Reset Timing on page 78).

Table 17. JTAG Test Interface

Pin Name	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin # 68-pin MLCC	Pin Description	Functional Description
TDI	16	14	7	Test Data Input	This signal is the JTAG serial input. All instructions and scanned data are input using this pin. This pin has an internal pull-up resistor.
TDO	17	15	8	Test Data Output	This signal is the JTAG serial output. Scanned data and status bits are output using this pin.This pin has an internal pull-up resistor.
TCK	10	5	2	Test Clock	This signal is the JTAG serial shift clock. It clocks all of the data that passes through the port on TDI and TDO. This pin has an internal pull-up resistor.
TMS	15	13	6	Test Mode Select	This signal is the JTAG test mode control. This pin has an internal pull-up resistor.
TRST_N	14	12	5	Test Reset (JTAG Reset)	This signal is active low and causes the JTAG TAP controller to enter the reset state. This pin has an internal pull-down resistor.

Regulator Control

The ET1011 has two on-chip regulator controllers. This allows the device to be powered from a single supply, either 3.3 V or 2.5 V. The on-chip regulator control circuits provide output control voltages that can be used to control two external transistors and thus provide regulated 1.0 V and 2.5 V supplies.

Table 18. Regulator Control Interface

Pin Name	Pin # 128-pin TQFP	Pin # 84-pin MLCC	Pin # 68-pin MLCC	Pin Description	Functional Description
CTRL_1V0	79	47	40	Regulator Control for 1.0 V	This is the regulator output control voltage for the 1.0 V supply. It is used to control an external transistor and thus provide a regulated 1.0 V supply.
CTRL_2V5	78	46	39	Regulator Control for 2.5 V	This is the regulator output control voltage for the 2.5 V supply. It is used to control an external transistor and thus provide a regulated 2.5 V supply.

Hardware Interfaces (continued)

Regulator Control (continued)

The ET1011 digital and analog core operates at 1.0 V. The analog I/O operates at 2.5 V. The digital I/O can operate at either 3.3 V or 2.5 V. The GMII interface operates at 3.3 V and the RGMII interface operates at 2.5 V. The on-chip regulator control allows the device to be operated from a wide variety of external supply combinations. When more than one external supply is available, one or both of the regulator control circuits may be left unused. Table 19 lists example combinations of available external supplies and shows how the on-chip regulator control may be used to provide the required supplies.

Table 19. Supply Voltage Combinations

Available External Supplies	AVDDL	DVDD	AVDDH	VDD_REG1	Description
3.3 V only	1.0	1.0	2.5	3.3	Digital I/O can be either 3.3 V or 2.5 V. Regulator control is used to provide 1.0 V and 2.5 V.
2.5 V only	1.0	1.0	2.5	2.5	Digital I/O is 2.5 V. Regulator control is used to provide 1.0 V.
3.3 V and 1.0 V	1.0	1.0	2.5	3.3	Digital I/O can be either 3.3 V or 2.5 V. Regulator control is used to provide 2.5 V.
2.5 V and 1.0 V	1.0	1.0	2.5	2.5	Digital I/O is 2.5 V. Regulator controls are not connected.
3.3 V and 2.5 V	1.0	1.0	2.5	3.3	Digital I/O can be either 3.3 V or 2.5 V. Regulator control is used to provide 1.0 V.
3.3 V, 2.5 V, and 1.0 V	1.0	1.0	2.5	3.3 or 2.5	Digital I/O can be either 3.3 V or 2.5 V. Regulator controls are not connected.

^{1.} Even if the regulator controls are not connected, VDD_REG must be powered.

Power, Ground, and No Connect

Table 20. Power, Ground, and No Connect

Pin Name	Pin Description	Functional Description
VDD_REG	VDD	Regulator 2.5 V or 3.3 V supply.
DVDDIO	VDD	Digital I/O 3.3 V or 2.5 V supply.
DVDD	VDD	Digital core 1.0 V supply.
DVSS	Vss	Digital ground ¹ .
AVDDH	VDD	Analog power 2.5 V.
AVDDL	VDD	Analog power 1.0 V.
AVSS	Vss	Analog ground ¹ .
NC	No Connect	Reserved—do not connect.

^{1.} For the 84-pin and 68-pin MLCC, all AVSS and DVSS pins share a common ground pin (exposed pad) in the center of the device.

Cable Diagnostics

The ET1011 has on-chip cable diagnostics. The cable analysis uses two distinct methods for evaluating the cable: link analysis and time domain reflectometry (TDR) analysis. This analysis can be used to detect cable impairments that may be preventing a gigabit link or affecting performance.

When there is a link active, the link analysis can detect cable length, link quality, pair skew, pair swaps (MDI/MDI-X configuration), and polarity reversal. When there is no link, TDR can detect cable faults (open circuit, short circuit), distance to the fault, pair fault is on, cable length, pair skew, and excessive crosstalk. Table 21 summarizes the specifications of the cable diagnostic functions.

Table 21. Cable Diagnostic Functions

Feature	Description	10	100	1000	Term	Unterm	Analysis
Detection of Cable Fault on	Cable open	_	_	_	✓	✓	Line
Any Pair	Cable short	_	_		✓	✓	Probing
	Indicate distance to fault	_	_	_	±2 m	±2 m	
	Pair swaps	✓	✓	√1	_	_	Link Analysis
Detect Polarity Reversal	_	✓	_2	✓	_	_	Link Analysis
Good Cable with Link	Indicate length	_	±5 m	±5 m	_	_	Link Analysis
Good Cable Without Link	Indicate length	_	_	_	±5 m ³	±2 m	Line Probing
Pair Skew with Link	Detect excessive, >50 ns	_	_	√	_	_	Link Analysis
Pair Skew Without Link	Detect excessive, >50 ns	_			√3	√	Line Probing
Excessive Crosstalk	Cable quality or split pairs	_	_	_	✓	√	Line Probing

^{1.} Pair swaps on C and D as well as pairs A and B are reported.

^{2.} Polarity reversal in 100Base-TX is not detected because MLT-3 signaling is polarity insensitive.

^{3.} If the magnitude of the peak reflection is greater than 15% of an open circuit.

Register Description

Register Address Map

Table 22. Register Address Map

Address	Description
0	Control register.
1	Status register.
2	PHY identifier register 1.
3	PHY identifier register 2.
4	Autonegotiation advertisement register.
5	Autonegotiation link partner ability register.
6	Autonegotiation expansion register.
7	Autonegotiation next page transmit register.
8	Link partner next page register.
9	1000Base-T control register.
10	1000Base-T status register.
11—14	Reserved.
15	Extended status register.
16—17	Reserved.
18	PHY control register 2.
19	Loopback control register.
20	Reserved.
21	Register management (MI) control register.
22	PHY configuration register.
23	PHY control register.
24	Interrupt mask register.
25	Interrupt status register.
26	PHY status register.
27	LED control register 1.
28	LED control register 2.
29-31	Reserved.

Table 23. Register Type Definition

Туре	Description
LL	Latching low.
LH	Latching high.
R/W	Read write. Register can be read or written.
RO	Read only. Register is read only. Writes to register are ignored.
SC	Self-clearing. Register is self-clearing; if a one is written, the register will automatically clear to zero after the function is completed.

Register Functions/Settings

Table 24. Control Register—Address 0

	Control Register					
Bit	Name	Description	Туре	Default	Notes	
15	Reset	1 = PHY reset. 0 = Normal operation.	R/W SC	0	1	
14	Loopback	1 = Enable loopback. 0 = Disable loopback.	R/W	0	2	
13	Speed Selection (LSB)	Bit 6,13. 11 = Reserved. 10 = 1000 Mbits/s. 01 = 100 Mbits/s. 00 = 10 Mbits/s.	R/W	SPEED_1000 SPEED_100 SPEED_10	3	
12	Autonegotiation Enable	1 = Enable autonegotiation process.0 = Disable autonegotiation process.	R/W	1	4	
11	Powerdown	1 = Powerdown.0 = Normal operation.	R/W	0	_	
10	Isolate	1 = Isolate PHY from MII. 0 = Normal operation.	R/W	0	5	
9	Restart Autonegoti- ation	1 = Restart autonegotiation process.0 = Normal operation.	R/W SC	0	_	
8	Duplex Mode	1 = Full duplex. 0 = Half duplex.	R/W	DUPLEX	6	
7	Collision Test	1 = Enable collision test. 0 = Disable collision test.	R/W	0	7	
6	Speed Selection (MSB)	See bit 13.	R/W	See bit 13	3	
5:0	Reserved	_	RO	0	_	

- 1. The reset bit is automatically cleared upon completion of the reset sequence. This bit is set to 1 during reset.
- 2. This is the master enable for digital and analog loopback as defined by the standard. The exact type of loopback is determined by the loopback control register (address 19).
- 3. The speed selection address 0 bits 13 and 6 may be used to configure the link manually. Setting these bits has no effect unless address 0 bit 12 is clear. The speed bits are set by the SPEED_10, SPEED_100, and SPEED_1000 pins at reset.
- 4. When this bit is cleared, the link configuration is determined manually.
- 5. Setting this bit isolates the PHY from the MII, GMII, or RGMII interfaces.
- 6. This bit may be used to configure the link manually. Setting this bit has no effect unless address 0 bit 12 is clear. Duplex is set on reset by the DUPLEX pin.

7. Enables IEEE 22.2.4.1.9 collision test.

Register Functions/Settings (continued)

Table 25. Status Register—Address 1

	Status Register					
Bit	Name	Description	Туре	Default	Notes	
15	100Base-T4	0 = Not 100Base-T4 capable.	RO	0	1	
14	100Base-X Full Duplex	1 = 100Base-X full-duplex capable. 0 = Not 100Base-X full-duplex capable.	RO	SPEED_100 and DUPLEX	2	
13	100Base-X Half Duplex	1 = 100Base-X half-duplex capable. 0 = Not 100Base-X half-duplex capable.	RO	SPEED_100	2	
12	10Base-T Full-Duplex	1 = 10Base-T full-duplex capable. 0 = Not 10Base-T full-duplex capable.	RO	SPEED_10 and DUPLEX	2	
11	10Base-T Half-Duplex	1 = 10Base-T half-duplex capable. 0 = Not 10Base-T half-duplex capable.	RO	SPEED_10	2	
10	100Base-T2 Full-Duplex	0 = Not 100Base-T2 full-duplex capable.	RO	0	_	
9	100Base-T2 Half-Duplex	0 = Not 100Base-T2 half-duplex capable.	RO	0	_	
8	Extended Status	1 = Extended status information in register 0Fh.	RO	1	_	
7	Reserved	_	RO	_	_	
6	MF Preamble Suppression	1 = Preamble suppressed management frames accepted.	RO	1	_	
5	Autonegotiation Complete	1 = Autonegotiation process complete.0 = Autonegotiation process not complete.	RO	0	3	
4	Remote Fault	1 = Remote fault detected. 0 = No remote fault detected.	RO LH	0	4	
3	Autonegotiation Ability	1 = Autonegotiation capable.0 = Not autonegotiation capable.	RO	1	_	
2	Link Status	1 = Link is up. 0 = Link is down.	RO LL	0	5	
1	Jabber Detect	1 = Jabber condition detected.0 = No jabber condition detected.	RO LH	0	_	
0	Extended Capability	1 = Extended register capabilities.	RO	1	6	

^{1.} The ET1011 does not support 100Base-T4 or 100Base-T2, therefore, these register bits will always be set to zero.

^{2.} These bits receive values from the SPEED_10, SPEED_100, SPEED_1000, and DUPLEX pins during reset as follows:

Register Bit	Configuration Pin Combination
14	SPEED_100 and DUPLEX
13	SPEED_100
12	SPEED_10 and DUPLEX
11	SPEED_10

 $^{{\}it 3. \ Upon \ completion \ of \ autonegotiation, \ this \ bit \ becomes \ set.}$

^{4.} This bit indicates that a remote fault has been detected. Once set, it remains set until it is cleared by reading register 1 via the management interface or by PHY reset.

^{5.} This bit indicates that a valid link has been established. Once cleared due to link failure, this bit will remain cleared until register 1 is read via the management interface.

^{6.} Indicates that the PHY provides an extended set of capabilities that may be accessed through the extended register set. For a PHY that incorporates a GMII/RGMII, the extended register set consists of all management registers except registers 0, 1, and 15.

Register Functions/Settings (continued)

Table 26. PHY Identifier Register 1—Address 2

	PHY Identifier Register 1				
Bit	Name	Description	Туре	Default	Notes
15:0	PHY Identifier Bits 3:18	Organizationally unique identifier (OUI), bits 3:18.	RO	0x0282	1

Table 27. PHY Identifier Register 2—Address 3

	PHY Identifier Register 2					
Bit	Name	Description	Type	Default	Notes	
15:10	PHY Identifier Bits 19:24	Organizationally unique identifier (OUI), bits 19:24.	RO	111100	1	
9:4	Model Number	Model number = 1.	RO	000001	_	
3:0	Revision Number	Revision number = 2.	RO	0010	_	

^{1.} Agere's OUI is 00-05-3D.

Register Functions/Settings (continued)

Table 28. Autonegotiation Advertisement Register—Address 4

	Autonegotiation Advertisement Register 1				
Bit	Name	Description	Туре	Default	Notes
15	Next Page	1 = Advertise next page ability supported. 0 = Advertise next page ability not supported.	R/W	0	_
14	Reserved	_	RO	0	
13	Remote Fault	1 = Advertise remote fault detected. 0 = Advertise no remote fault detected.	R/W	0	_
12	Reserved	_	RO	0	_
11	Asymmetric Pause	1 = Advertise asymmetric pause ability. 0 = Advertise no asymmetric pause ability.	R/W	PAUSE	1
10	Pause Capable	1 = Capable of full-duplex pause operation. 0 = Not capable of pause operation.	R/W	PAUSE	1
9	100Base-T4 Capa- bility	1 = 100Base-T4 capable. 0 = Not 100Base-T4 capable.	R/W	0	2
8	100Base-TX Full- Duplex Capable	1 = 100Base-TX full-duplex capable. 0 = Not 100Base-TX full-duplex capable.	R/W	SPEED_100 and DUPLEX	3
7	100Base-TX Half- Duplex Capable	1 = 100Base-TX half-duplex capable. 0 = Not 100Base-TX half-duplex capable.	R/W	SPEED_100	3
6	10Base-T Full- Duplex Capable	1 = 10Base-T full-duplex capable. 0 = Not 10Base-T full-duplex capable.	R/W	SPEED_10 and DUPLEX	3
5	10Base-T Half- Duplex Capable	1 = 10Base-T half-duplex capable. 0 = Not 10Base-T half-duplex capable.	R/W	SPEED_10	3
4:0	Selector Field	00001 = IEEE 802.3 CSMA/CD.	R/W	00001	

^{1.} Value read from PAUSE on reset.

 $[\]ensuremath{\mathtt{3}}.$ These bits receive values from the configuration pins upon reset as follows:

Register Bit	Configuration Pin Combination
8	SPEED_100 and DUPLEX
7	SPEED_100
6	SPEED_10 and DUPLEX
5	SPEED_10

Note: Any write to this register prior to the completion of autonegotiation is followed by a restart of autonegotiation. Also note that this register is not updated following autonegotiation.

^{2.} The ET1011 does not support 100Base-T4, so the default value of this register bit is zero.

Register Functions/Settings (continued)

Table 29. Autonegotiation Link Partner Ability Register—Address 5

Autonegotiation Link Partner Ability Register							
Bit	Name	Description	Туре	Default	Notes		
15	Next page	1 = Link partner has next page ability. 0 = Link partner does not have next page ability.	RO	0	_		
14	Acknowledge	1 = Link partner has received link code word. 0 = Link partner has not received link code word.	RO	0	_		
13	Remote Fault	1 = Link partner has detected remote fault. 0 = Link partner has not detected remote fault.	RO	0	_		
12	Reserved	_	RO	0	_		
11	Asymmetric Pause	1 = Link partner desired asymmetric pause. 0 = Link partner does not desire asymmetric pause.	RO	0	_		
10	Pause Capable	1 = Link partner capable of full-duplex pause operation. 0 = Link partner is not capable of pause operation.	RO	0	_		
9	100Base-T4 Capability	1 = Link partner is 100Base-T4 capable. 0 = Link partner is not 100Base-T4 capable.	RO	0	_		
8	100Base-TX Full- Duplex Capable	1 = Link partner is 100Base-TX full-duplex capable. 0 = Link partner is not 100Base-TX full-duplex capable.	RO	0	_		
7	100Base-TX Half- Duplex Capable	1 = Link partner is 100Base-TX half-duplex capable. 0 = Link partner is not 100Base-TX half-duplex capable.	RO	0	_		
6	10Base-T Full- Duplex Capable	1 = Link partner is 10Base-T full-duplex capable. 0 = Link partner is not 10Base-T full-duplex capable. ble.	RO	0	_		
5	10Base-T Half- Duplex Capable	1 = Link partner is 10Base-T half-duplex capable. 0 = Link partner is not 10Base-T half-duplex capable.	RO	0	_		
4:0	Protocol Selector Field	Link partner protocol selector field.	RO	0	_		

Register Functions/Settings (continued)

Table 30. Autonegotiation Expansion Register—Address 6

	Autonegotiation Expansion Register								
Bit	Name	Description	Type	Default	Notes				
15:5	Reserved	_	RO	_	_				
4	Parallel Detection	1 = Parallel link fault detected.	RO	0					
	Fault	0 = Parallel link fault not detected.	LH						
3	Link Partner Next Page Ability	1 = Link partner has next page capability. 0 = Link partner does not have next page capability.	RO	0	_				
2	Next Page Capability	1 = Local device has next page capability. 0 = Local device does not have next page capability.	RO LH	1	_				
1	Page Received	1 = New page has been received from link partner.0 = New page has not been received.	RO LH	0	_				
0	Link Partner Auto- negotiation Ability	1 = Link partner has autonegotiation capability. 0 = Link partner does not have autonegotiation capability.	RO	0					

Table 31. Autonegotiation Next Page Transmit Register—Address 7

	Autonegotiation Next Page Transmit Register								
Bit	Name	Description	Туре	Default	Notes				
15	Next Page	1 = Additional next pages follow. 0 = Sending last next page.	R/W	0	_				
14	Reserved	_	RO	0	_				
13	Message Page	1 = Formatted page. 0 = Unformatted page.	R/W	1	_				
12	Acknowledge 2	1 = Complies with message. 0 = Cannot comply with message.	R/W	0	_				
11	Toggle	 1 = Previous value of transmitted link code word was logic zero. 0 = Previous value of transmitted link code word was logic one. 	RO	0	_				
10:0	Message/ Unformatted Code Field	Next page message code or unformatted data.	R/W	1	_				

Register Functions/Settings (continued)

Table 32. Link Partner Next Page Register—Address 8

	Link Partner Next Page Register								
Bit	Name	Description	Туре	Default	Notes				
15	Next Page	1 = Additional next pages follow. 0 = Sending last next page.	RO	0					
14	Acknowledge	1 = Acknowledge. 0 = No acknowledge.	RO	0	_				
13	Message Page	1 = Formatted page. 0 = Unformatted page.	R/W	0	_				
12	Acknowledge 2	1 = Complies with message. 0 = Cannot comply with message.	R/W	0	_				
11	Toggle	1 = Previous value of transmitted link code word was logic zero.0 = Previous value of transmitted link code word was logic one.	RO	0	_				
10:0	Message/ Unformatted Code Field	Next page message code or unformatted data.	R/W	0	_				

Register Functions/Settings (continued)

Table 33. 1000 Base-T Control Register—Address 9

	1000Base-T Control Register								
Bit	Name	Description	Туре	Default	Notes				
15:13	Test Mode	000 = Normal mode. 001 = Test mode 1—transmit waveform test. 010 = Test mode 2—master transmit jitter test. 011 = Test mode 3—slave transmit jitter test (slave mode). 100 = Test mode 4—transmit distortion test. 101, 110, 111 = Reserved.	R/W	000					
12	Master/Slave Configuration Enable	1 = Enable master/slave configuration. 0 = Automatic master/slave configuration.	R/W	0	_				
11	Master/Slave Configuration Value	1 = Configure PHY as master. 0 = Configure PHY as slave.	R/W	MAS_CFG	1				
10	Port Type	1 = Prefer multiport device (master). 0 = Prefer single-port device (slave).	R/W	MAS_CFG	2				
9	Advertise 1000Base-T Full-duplex Capability	1 = Advertise 1000Base-T full-duplex capability. 0 = Advertise no 1000Base-T full-duplex capability.	R/W	SPEED_1000 and DUPLEX	3				
8	Advertise 1000Base-T Half-duplex Capability	1 = Advertise 1000Base-T half-duplex capability. 0 = Advertise no 1000Base-T half-duplex capability.	R/W	SPEED_1000	4				
7:0	Reserved	_	RO	9.7:0	_				

^{1.} Value read from MAS_CFG pin at reset. Setting this bit has no effect unless address 9 bit 12 is set.

Note: Logically, bits 12:8 may be regarded as an extension of the technology ability field of register 4.

^{2.} Value read from MAS_CFG at reset.

^{3.} Value is a result of (SPEED_1000 and DUPLEX) pins at reset.

^{4.} Value read from SPEED 1000 pin at reset.

Register Functions/Settings (continued)

Table 34. 1000Base-T Status Register—Address 10

	1000Base-T Status Register								
Bit	Name	Description	Туре	Default	Notes				
15	Master/ Slave Configu- ration Fault	1 = Master/slave configuration fault detected.0 = No master/slave configuration fault detected.	RO, LH, SC	0	1				
14	Master/Slave Configuration Resolution	1 = Local PHY resolved to master. 0 = Local PHY resolved to slave.	RO	0	2				
13	Local Receiver Status	1 = Local receiver okay. 0 = Local receiver not okay.	RO	0	_				
12	Remote Receiver Status	1 = Remote receiver okay. 0 = Remote receiver not okay.	RO	0	_				
11	Link Partner 1000Base-T Full-duplex Capability	1 = Link partner is capable of 1000Base-T full duplex. 0 = Link partner not 1000Base-T full-duplex capable.	RO	0	3				
10	Link Partner 1000Base-T Half-duplex Capability	1 = Link partner is 1000Base-T half-duplex capable. 0 = Link partner not 1000Base-T half-duplex capable.	RO	0	3				
9:8	Reserved	_	RO		_				
7:0	Idle Error Count	MSB of idle error count.	RO	0	4				

- 1. Once set, this bit remains set until cleared by the following actions:
 - Read of register 10 via the management interface.
 - Reset.
 - Completion of autonegotiation.
 - Enable of autonegotiation.
- 2. This bit is not valid when bit 15 is set.
- 3. Note that logically, bits 11:10 may be regarded as an extension of the technology ability field of register 5.
- 4. These bits contain a cumulative count of the errors detected when the receiver is receiving idles and both local and remote receiver status are OK. The count is held at 255 in the event of overflow and is reset to zero by reading register 10 via the management interface or by reset.

Register Description

Register Functions/Settings (continued)

Table 35. Reserved Registers—Addresses 11—14

		Reserved Registers			
Bit	Name	Description	Туре	Default	Notes
15:0	Reserved	_		_	_

Table 36. Extended Status Register—Address 15

	Extended Status Register									
Bit	Name	Description	Type	Default	Notes					
15	1000Base-X Full- duplex	0 = Not 1000Base-X full-duplex capable.	RO	0						
14	1000Base-X Half- duplex	0 = Not 1000Base-X half-duplex capable.	RO	0	_					
13	1000Base-T Full- duplex	1 = 1000Base-T full-duplex capable. 0 = Not 1000Base-T full-duplex capable.	RO	1	1					
12	1000Base-T Half- duplex	1 = 1000Base-T half-duplex capable. 0 = Not 1000Base-T half-duplex capable.	RO	1	_					
11:0	Reserved	_	RO	0						

^{1.} Value is a result of (SPEED_1000 and DUPLEX) pins at reset.

Table 37. Reserved Registers—Addresses 16—18

		Reserved Registers			
Bit	Name	Description	Type	Default	Notes
15:0	Reserved	_	_	_	

Register Functions/Settings (continued)

Table 38. Loopback Control Register—Address 19

	Loopback Control Register									
Bit	Name	Description	Туре	Default	Notes					
15	MII Select	1 = MII loopback selected. 0 = MII loopback not selected.	R/W	1	_					
14:13	Reserved	_	_	_	_					
12	All Digital Select	1 = All digital loopback selected. 0 = All digital loopback not selected.	R/W	0	_					
11	Replica Select	1 = Replica loopback selected. 0 = Replica loopback not selected.	R/W	0	1					
10	Line Driver Select	1 = Line driver loopback selected. 0 = Line driver loopback not selected.	R/W	0	_					
9:0	Reserved	_	_	_	_					

^{1.} Replica loopback is not available in 10Base-T.

Table 39. Reserved Registers—Address 20

		Reserved Registers			
Bit	Name	Description	Type	Default	Notes
15:0	Reserved	_		_	_

Table 40. Management Interface (MI) Control Register—Address 21

	Management Interface (MI) Control Register								
Bit	Name	Description	Туре	Default	Notes				
15:3	Reserved	_		_	_				
2	Ignore 10G Frames	1 = Management frames with ST = <00> are ignored. 0 = Management frames with ST = <00> are treated as wrong frames	R/W	1	_				
1	Reserved	_		_	_				
0	Preamble Sup- pression Enable	1 = MI preamble is ignored. 0 = MI preamble is required.	R/W	1	_				

Register Functions/Settings (continued)

Table 41. PHY Configuration Register—Address 22

	PHY Configuration Register							
Bit	Name	Description	Type	Default	Notes			
15	CRS Transmit Enable	1 = Enable CRS on transmit in half-duplex mode. 0 = Disable CRS on transmit.	R/W	0	_			
14	Reserved	_	_	_	_			
13:12	Transmit FIFO depth (1000Base-T)	$00 = \pm 8.$ $01 = \pm 16.$ $10 = \pm 24.$ $11 = \pm 32.$	R/W	01	_			
11:10	Automatic Speed Downshift Mode	00 = Disable automatic speed downshift. 01 = 10Base-T downshift enabled. 10 = 100Base-TX downshift enabled. 11 = 100Base-TX and 10Base-T enabled.	R/W	11	1			
9	TBI Detect Select	1 = CRS pin outputs comma detect. 0 = CRS pin outputs link status detect	R/W	0	_			
8	TBI Rate Select	1 = Output 125 MHz clock on RX_CLK while COL is held low (full rate). 0 = Output even/odd clocks on RX_CLK/COL	R/W	0	_			
7	Alternate Next-Page	1 = Enables manual control of 1000Base-T next pages only. 0 = Normal operation of 1000Base-T next page exchange	R/W	0	_			
6	Group MDIO Mode Enable	1 = Enable group MDIO mode. 0 = Disable Group MDIO mode.	R/W	0	_			
5	Transmit Clock Enable	1 = Enable output of 1000Base-T transmit clock (TX_CLK pin). 0 = Disable output.	R/W	0	_			
4	System Clock Enable	1 = Enable output of 125 MHz reference clock (SYS_CLK pin). 0 = Disable output of 125 MHz reference clock.	R/W	SYS_CLK_EN_N	2			
3	Reserved	_	_	_	_			
2:0	MAC Interface Mode Select	000 = GMII/MII 001 = TBI 010 = GMII/MII clocked by GTX_CLK instead of TX_CLK 011 = Reserved. 100 = RGMII (trace delay). 101 = RTBI (trace delay). 110 = RGMII (DLL delay). 111 = RTBI (DLL delay).	R/W	MAC_IF_SEL [2:0]	3			

^{1.} If automatic speed downshift is enabled and the PHY fails to autonegotiate at 1000Base-T, the PHY will fall back to attempt connection at 100Base-TX and, subsequently, 10Base-T. This cycle will repeat. If the link is broken at any speed, the PHY will restart this process by reattempting connection at the highest possible speed (e.g., 1000Base-T).

^{2.} Value is read from inversion of SYS_CLK_EN_N at reset.

^{3.} For the 68-pin MLCC, only RGMII and RTBI modes/options are supported.

Register Functions/Settings (continued)

Table 42. PHY Control Register—Address 23

	PHY Control Register							
Bit	Name	Description	Туре	Default	Notes			
15:13	Reserved	_	_	_	_			
12:11	Automatic Speed Downshift Attempts Before Downshift	00 = 1. 01 = 2. 10 = 3. 11 = 4.	R/W	01				
10:7	Reserved	_	_	_	_			
6	Alternative RGMII TXC DLL Delay	1 = TXC DLL delay in RGMII mode is opposite of RXC. 0 = TXC DLL delay in RGMII mode is same as RXC.	R/W	0	1			
5	Jabber (10Base-T)	1 = Disable jabber. 0 = Normal operation.	R/W	0	_			
4	SQE (10Base-T)	1 = Enable heartbeat. 0 = Disable heartbeat.	R/W	0	_			
3	TP_LOOPBACK (10Base-T)	1 = Disable TP loopback during half-duplex. 0 = Normal operation.	R/W	1	_			
2	Preamble Generation Enable	1 = Enable preamble generation for 10Base-T. 0 = Disable preamble generation for 10Base-T.	R/W	1	_			
1	Reserved	_	_	_	_			
0	Force Interrupt	1 = Assert MDINT_N pin. 0 = Deassert MDINT_N pin.	R/W	0	_			

^{1.} This bit allows independent control over TXC and RXC DLL delay. Settings are shown below.

RGMI	I Mode	Delay		Description	
22.2:0	23.6	TXC	RXC		
10x	0	0 ns	0 ns	RGMII (trace delay).	
11x	0	2 ns	2 ns	RGMII (TXC and RXC DLL delay).	
10x	1	2 ns	0 ns	RGMII (TXC DLL delay).	
11x	1	0 ns	2 ns	RGMII (RXC DLL delay).	

Register Functions/Settings (continued)

Table 43. Interrupt Mask Register—Address 24

	Interrupt Mask Register							
Bit	Name	Description	Туре	Default	Notes			
15:10	Reserved	_		_	_			
9	MDIO Sync Lost	1 = Interrupt enabled.0 = Interrupt disabled.	R/W	0	_			
8	Autonegotiation Status Change	1 = Interrupt enabled. 0 = Interrupt disabled.	R/W	0	_			
7	CRC Errors	1 = Interrupt enabled.0 = Interrupt disabled.	R/W	0	_			
6	Next Page Received	1 = Interrupt enabled. 0 = Interrupt disabled.	R/W	0	_			
5	Error Counter Full	1 = Interrupt enabled. 0 = Interrupt disabled.	R/W	0	_			
4	FIFO Overflow/ Underflow	1 = Interrupt enabled. 0 = Interrupt disabled.	R/W	0	_			
3	Receive Status Change	1 = Interrupt enabled. 0 = Interrupt disabled.	R/W	0	_			
2	Link Status Change	1 = Interrupt enabled. 0 = Interrupt disabled.	R/W	0	_			
1	Automatic Speed Downshift	1 = Interrupt enabled. 0 = Interrupt disabled.	R/W	0	_			
0	MDINT_N Enable	1 = MDINT_N enabled ¹ . 0 = MDINT_N disabled.	R/W	0	_			

^{1.} MDINT_N is asserted (active low) if MII Interrupt Pending = 1.

Register Functions/Settings (continued)

Table 44. Interrupt Status Register—Address 25

	Interrupt Status Register						
Bit	Name	Description	Type	Default	Notes		
15:10	Reserved	_	_	_	_		
9	MDIO Sync Lost	1 = Event has occurred. 0 = Event has not occurred.	RO SC	0	1		
8	Autonegotiation Status Change	1 = Event has occurred. 0 = Event has not occurred.	RO SC	0	_		
7	CRC Errors	1 = Event has occurred. 0 = Event has not occurred.	RO SC	0	_		
6	Next Page Received	1 = Event has occurred. 0 = Event has not occurred.	RO SC	0	_		
5	Error Counter Full	1 = Event has occurred. 0 = Event has not occurred.	RO SC	0	_		
4	FIFO Overflow/ Underflow	1 = Event has occurred. 0 = Event has not occurred.	RO SC	0	_		
3	Receive Status Change	1 = Event has occurred. 0 = Event has not occurred.	RO SC	0	_		
2	Link Status Change	1 = Event has occurred. 0 = Event has not occurred.	RO SC	0	_		
1	Automatic Speed Downshift	1 = Event has occurred. 0 = Event has not occurred.	RO SC	0	_		
0	MII Interrupt Pending	1 = Interrupt pending. 0 = No interrupt pending.	RO SC	0	2		

^{1.} If the management frame preamble is suppressed (MF preamble suppression, register 0, bit 6), it is possible for the PHY to lose synchronization if there is a glitch at the interface. The PHY can recover if a single frame with a preamble is sent to the PHY. The MDIO sync lost interrupt can be used to detect loss of synchronization and thus enable recovery.

^{2.} An event has occurred and the corresponding Interrupt Mask bit is enabled (set = 1).

Register Functions/Settings (continued)

Table 45. PHY Status Register—Address 26

	PHY Status Register							
Bit	Name	Description	Туре	Default	Notes			
15	Reserved	_	_	_	_			
14:13	Autonegotiation Fault Status	10 = Master/slave autonegotiation fault. 01 = Parallel detect autonegotiation fault. 00 = No autonegotiation fault.	RO	00	_			
12	Autonegotiation Status	1 = Autonegotiation is complete.0 = Autonegotiation not complete.	RO	0	_			
11	MDI-X Status	1 = MDI-X configuration. 0 = MDI configuration.	RO	0	_			
10	Polarity Status	1 = Polarity is normal (10Base-T only). 0 = Polarity is inverted (10Base-T only).	RO	1	_			
9:8	Speed Status	11 = Undetermined. 10 = 1000Base-T. 01 = 100Base-TX. 00 = 10Base-T.	RO	11	_			
7	Duplex Status	1 = Full duplex. 0 = Half duplex.	RO	0	_			
6	Link Status	1 = Link is up. 0 = Link is down.	RO	0	_			
5	Transmit Status	1 = PHY is transmitting a packet. 0 = PHY is not transmitting a packet.	RO	0	_			
4	Receive Status	1 = PHY is receiving a packet. 0 = PHY is not receiving a packet.	RO	0	_			
3	Collision Status	1 = Collision is occurring. 0 = Collision not occurring.	RO	0	_			
2	Autonegotiation Enabled	1 = Both partners have autonegotiation enabled.0 = Both partners do not have autonegotiation enabled.	RO	0	_			
1	PAUSE Enabled	1 = Link partner advertised PAUSE mode enabled.0 = Link partner advertised PAUSE mode disabled.	RO	0	_			
0	Asymmetric Direction	1 = Link partner advertised direction is symmetric. 0 = Link partner advertised that direction is asymmetric.	RO	0	_			

Register Functions/Settings (continued)

Table 46. LED Control Register 1—Address 27

LED Control Register 1							
Bit	Name	Description	Type	Default	Notes		
15:14	Reserved	_	—	_	_		
13:12	Duplex Indication LED	00 = Full duplex. 01 = Blink. 10 = On. 11 = Off.	R/W	00	1		
11:10	10Base-T LED	00 = 10Base-T operation. 01 = Blink. 10 = On. 11 = Off.	R/W	00	1		
9:8	Collision Indication LED	00 = Collision indication. 01 = Blink. 10 = On. 11 = Off.	R/W	00	1		
7:6	Reserved	_		_	_		
5.4	Reserved	_		_	_		
3:2	LED Pulse Dura- tion	00 = Stretch LED events to 28 ms. 01 = Stretch LED events to 60 ms. 10 = Stretch LED events to 100 ms. 11 = Reserved.	R/W	00	_		
1	Reserved	_	_	_	-		
0	Pulse Stretch 0	1 = Enable pulse stretching of LED functions: transmit activity, receive activity, and collision. 0 = Disable pulse stretching of LED functions: transmit activity, receive activity, and collision.	R/W	1	_		

^{1.} Not applicable in **the 84-pin** or 68-pin MLCC.

Register Functions/Settings (continued)

Table 47. LED Control Register 2—Address 28

	LED Control Register 2							
Bit	Name	Description	Type	Default	Notes			
15:12	Transmit/ Receive LED	0000 = 1000Base-T. 0001 = 100Base-TX. 0010 = 10Base-T. 0011 = 1000Base-T on, 100Base-TX blink. 0100 = Link established. 0101 = Transmit. 0110 = Receive. 0111 = Transmit or receive activity. 1000 = Full duplex. 1001 = Collision. 1010 = Link established (on) and activity (blink). 1011 = Link established (on) and receive (blink). 1100 = Full duplex (on) and collision (blink). 1101 = Blink. 1110 = On. 1111 = Off.	R/W	0111	1			
11:8	Link LED	As per 15:12.	R/W	0100	_			
7:4	100Base-TX LED	As per 15:12.	R/W	0001	1			
3:0	1000Base-T LED	As per 15:12.	R/W	0000	_			

^{1.} Not applicable in the **84-pin** or 68-MLCC.

Table 48. Reserved Registers—Addresses 29—31

	Reserved Registers							
Bit	Name	Description	Type	Default	Notes			
15:0	Reserved	_	_	_	_			

Electrical Specifications

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Table 49. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage (2.5 V analog)	AVDDH		4.2	V
Supply Voltage (1.0 V analog)	AVDDL	_	1.2	V
Supply Voltage (3.3 V/2.5 V digital)	DVDDIO	_	4.2	V
Supply Voltage (1.0 V digital)	VDD	_	1.2	V
ESD Protection	Vesd	_	2000	V
Storage Temperature	TSTORE	-40	125	°C

Recommended Operating Conditions

Table 50. ET1011N0 and ET1011R0 Recommended Operating Conditions¹

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	AVDDH	2.38	2.5	2.62	V
Supply Voltage (1.0 V analog)	AVDDL	0.95	1.0	1.05	V
Supply Voltage (3.3 V digital) ²	DVDDIO	3.14	3.3	3.46	V
Supply Voltage (2.5 V digital) ²	DVDDIO	2.38	2.5	2.62	V
Supply Voltage (1.0 V digital)	Vdd	0.95	1.0	1.15	V
Ambient Operating Temperature—Commercial	TA	0		70	°C
Ambient Operating Temperature—Industrial	TA	-40	_	85	°C
Maximum Junction Temperature	TJ	0	_	125	°C
Thermal Characteristics, 128 TQFP (JDEC 3 in. x					° C/W
4.5 in. 4-layer PCB):	Тјв	_	29	_	
	TJC	_	33	_	
	ΨJΤ	-	1	_	
0 m/s airflow	TJA	_	37	_	
1 m/s airflow	TJA	_	32	_	
2.5 m/s airflow	TJA	_	30	_	
Thermal Characteristics, 84-pin MLCC and					° C/W
68 MLCC (JDEC 3 in. x 4.5 in. 4-layer PCB):	Тјв	_	10	_	
	TJC		3		
	ψЈТ	-	1	_	
0 m/s airflow	TJA	_	24	_	
1 m/s airflow	TJA	_	23		
2.5 m/s airflow	Tja	_	21	_	

^{1.} The ET1011 is available in 1.0 V and 1.1 V versions.

^{2.} The part can operate at either 3.3 V (typically for an GMII interface) or 2.5 V (typically for an RGMII interface).

Recommended Operating Conditions (continued)

Table 51. ET1011N1 and ET1011R1 Recommended Operating Conditions¹

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	AVDDH	2.38	2.5	2.62	V
Supply Voltage (1.0 V analog)	AVDDL	1.05	1.1	1.15	V
Supply Voltage (3.3 V digital) ²	DVDDIO	3.14	3.3	3.46	V
Supply Voltage (2.5 V digital) ²	DVDDIO	2.38	2.5	2.62	V
Supply Voltage (1.0 V digital)	VDD	1.05	1.1	1.15	V
Ambient Operating Temperature—Commercial	TA	0	_	70	°C
Ambient Operating Temperature—Industrial	TA	-40	_	85	°C
Maximum Junction Temperature	TJ	0	_	125	° C
Thermal Characteristics, 128 TQFP (JDEC 3 in. x 4.5 in. 4-layer PCB):	Тлв Тлс үлт	_ _ _	29 33 1	_ _ _	° C/W
0 m/s airflow	TJA	_	37	_	
1 m/s airflow	TJA	_	32	_	
2.5 m/s airflow	TJA	_	30	_	
Thermal Characteristics, 84-pin MLCC and 68 MLCC (JDEC 3 in. x 4.5 in. 4-layer PCB):	Tjb Tjc vjt		10 3 1		° C/W
0 m/s airflow	TJA	_	24	_	1
1 m/s airflow	Тја	_	23		-
2.5 m/s airflow	TJA		21	_	

^{1.} The ET1011 is available in 1.0 V and 1.1 V versions.

^{2.} The part can operate at either 3.3 V (typically for an GMII interface) or 2.5 V (typically for an RGMII interface).

Device Electrical Characteristics

Device electrical characteristics refer to the behavior of the device under specified conditions imposed on the user for proper operation of the device. Unless otherwise noted, the parameters below are valid for the conditions described in the previous section, Recommended Operating Conditions.

Table 52. Device Characteristics—3.3 V Digital I/O Supply (DVDDIO)

Parameter	Symbol	Min	Тур	Max	Unit
Input Low Voltage (GMII input pins)	VIL	-0.3	_	0.8	V
Input Low Voltage (all other digital input pins)	VIL	-0.3	_	0.8	V
Input High Voltage (GMII input pins)	ViH	2.0	_	3.6	V
Input High Voltage (all other digital input pins)	ViH	2.0	_	3.6	V
Output Low Voltage (GMII output pins)	Vol	_	_	0.4	V
Output Low Voltage (all other digital output pins)	Vol	_	_	0.4	V
Output High Voltage (GMII output pins)	Vон	2.4	_	_	V
Output High Voltage (all other digital output pins)	Vон	2.4	_	_	V
Differential Output Voltage (analog MDI pins 1000Base-T)	Vodiff	0.67	0.75	0.82	V
Differential Output Voltage (analog MDI pins 100Base-TX)	Vodiff	0.95	1.0	1.05	V
Differential Output Voltage (analog MDI pins 10Base-T)	Vodiff	2.2	2.5	2.8	V
Bias Voltage	VBIAS	_	1.2		V

Table 53. Device Characteristics—2.5 V Digital I/O Supply (DVDDIO)

Parameter	Symbol	Min	Тур	Max	Unit
Input Low Voltage (GMII input pins)	VIL	-0.3	_	0.7	V
Input Low Voltage (all other digital input pins)	VIL	-0.3	_	0.7	V
Input High Voltage (GMII input pins)	ViH	1.7	_	2.8	V
Input High Voltage (all other digital input pins)	ViH	1.7	_	2.8	V
Output Low Voltage (GMII output pins)	Vol	_	_	0.4	V
Output Low Voltage (all other digital output pins)	Vol	_	_	0.4	V
Output High Voltage (GMII output pins)	Vон	2.0	_	_	V
Output High Voltage (all other digital output pins)	Vон	2.0	_	_	V
Differential Output Voltage (analog MDI pins 1000Base-T)	Vodiff	0.67	0.75	0.82	V
Differential Output Voltage (analog MDI pins 100Base-TX)	Vodiff	0.95	1.0	1.05	V
Differential Output Voltage (analog MDI pins 10Base-T)	Vodiff	2.2	2.5	2.8	V
Bias Voltage	VBIAS	_	1.2	_	V

Device Electrical Characteristics (continued)

Table 54. ET1011N0 and ET1011R0 Current Consumption GMII 1000Base-T

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Tx/Rx random data	_	59	_	mA
Supply Voltage (1.0 V analog)	lavddl	Tx/Rx random data	_	175	_	mA
Supply Voltage (3.3 V digital)	IDVDDIO	Tx/Rx random data	_	42	_	mA
Supply Voltage (1.0 V digital)	IVDD	Tx/Rx random data	_	135	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Tx/Rx random data	_	163	_	mA

Table 55. ET1011N0 and ET1011R0 Current Consumption GMII 100Base-TX

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Tx/Rx random data	_	20	_	mA
Supply Voltage (1.0 V analog)	lavddl	Tx/Rx random data	_	69	_	mA
Supply Voltage (3.3 V digital)	Idvddio	Tx/Rx random data	_	27	_	mA
Supply Voltage (1.0 V digital)	IVDD	Tx/Rx random data	_	26	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Tx/Rx random data	_	41	_	mA

Table 56. ET1011N0 and ET1011R0 Current Consumption GMII 10Base-T

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Tx/Rx random data	_	26	_	mA
Supply Voltage (1.0 V analog)	lavddl	Tx/Rx random data	_	69	_	mA
Supply Voltage (3.3 V digital)	IDVDDIO	Tx/Rx random data	_	19	_	mA
Supply Voltage (1.0 V digital)	IVDD	Tx/Rx random data	_	14	_	mA
Center Tap Voltage (1.8 V analog)	ICTAP	Tx/Rx random data	_	57	_	mA

Device Electrical Characteristics (continued)

Table 57. ET1011N0 and ET1011R0 Current Consumption GMII 10BASE-T Idle

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Idle		26	_	mA
Supply Voltage (1.0 V analog)	lavddl	Idle	_	69	_	mA
Supply Voltage (3.3 V digital)	IDVDDIO	Idle		15	_	mA
Supply Voltage (1.0 V digital)	Ivdd	Idle		12	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Idle		1		mA

Table 58. ET1011N0 and ET1011R0 Current Consumption RGMII 1000BASE-T

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Tx/Rx random data	_	59	_	mA
Supply Voltage (1.0 V analog)	IAVDDL	Tx/Rx random data	_	175	_	mA
Supply Voltage (2.5 V digital)	Idvddio	Tx/Rx random data	_	24	_	mA
Supply Voltage (1.0 V digital)	IVDD	Tx/Rx random data	_	135	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Tx/Rx random data	_	163	_	mA

Table 59. ET1011N0 and ET1011R0 Current Consumption RGMII 100BASE-TX

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Tx/Rx random data	_	20	_	mA
Supply Voltage (1.0 V analog)	lavddl	Tx/Rx random data	_	69	_	mA
Supply Voltage (2.5 V digital)	Idvddio	Tx/Rx random data	_	10	_	mA
Supply Voltage (1.0 V digital)	IVDD	Tx/Rx random data	_	26	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Tx/Rx random data	_	41	_	mA

Device Electrical Characteristics (continued)

Table 60. ET1011N0 and ET1011R0 Current Consumption RGMII 10BASE-T

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Tx/Rx random data		26		mA
Supply Voltage (1.0 V analog)	lavddl	Tx/Rx random data	_	69	_	mA
Supply Voltage (2.5 V digital)	IDVDDIO	Tx/Rx random data	_	7	_	mA
Supply Voltage (1.0 V digital)	IVDD	Tx/Rx random data	_	14	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Tx/Rx random data	_	57	_	mA

Table 61. ET1011N0 and ET1011R0 Current Consumption RGMII 10BASE-T Idle

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Idle	_	26	_	mA
Supply Voltage (1.0 V analog)	lavddl	ldle	_	69	_	mA
Supply Voltage (2.5 V digital)	IDVDDIO	ldle	_	7	_	mA
Supply Voltage (1.0 V digital)	Ivdd	ldle	_	12	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Idle	_	1	_	mA

Device Electrical Characteristics (continued)

Table 62. ET1011N1 and ET1011R1 Current Consumption GMII 1000Base-T

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Tx/Rx random data	_	59	_	mA
Supply Voltage (1.0 V analog)	lavddl	Tx/Rx random data	_	192	_	mA
Supply Voltage (3.3 V digital)	IDVDDIO	Tx/Rx random data	_	42	_	mA
Supply Voltage (1.0 V digital)	IVDD	Tx/Rx random data	_	148	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Tx/Rx random data	_	163	_	mA

Table 63. ET1011N1 and ET1011R1 Current Consumption GMII 100Base-TX

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Tx/Rx random data	_	20	_	mA
Supply Voltage (1.0 V analog)	lavddl	Tx/Rx random data	_	76	_	mA
Supply Voltage (3.3 V digital)	IDVDDIO	Tx/Rx random data	_	27	_	mA
Supply Voltage (1.0 V digital)	IVDD	Tx/Rx random data	_	29	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Tx/Rx random data	_	41	_	mA

Table 64. ET1011N1 and ET1011R1 Current Consumption GMII 10Base-T

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Tx/Rx random data	_	26	_	mA
Supply Voltage (1.0 V analog)	lavddl	Tx/Rx random data	_	76	_	mA
Supply Voltage (3.3 V digital)	Idvddio	Tx/Rx random data	_	19	_	mA
Supply Voltage (1.0 V digital)	IVDD	Tx/Rx random data	_	15	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Tx/Rx random data	_	57	_	mA

Device Electrical Characteristics (continued)

Table 65. ET1011N1 and ET1011R1 Current Consumption GMII 10BASE-T Idle

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Idle	_	26	_	mA
Supply Voltage (1.0 V analog)	lavddl	Idle	_	76	_	mA
Supply Voltage (3.3 V digital)	IDVDDIO	Idle	_	15	_	mA
Supply Voltage (1.0 V digital)	Ivdd	Idle	_	13	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Idle	_	1		mA

Table 66. ET1011N1 and ET1011R1 Current Consumption RGMII 1000BASE-T

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Tx/Rx random data	_	59	_	mA
Supply Voltage (1.0 V analog)	lavddl	Tx/Rx random data	_	192	_	mA
Supply Voltage (2.5 V digital)	Idvddio	Tx/Rx random data	_	24	_	mA
Supply Voltage (1.0 V digital)	IVDD	Tx/Rx random data	_	148	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Tx/Rx random data	_	163	_	mA

Table 67. ET1011N1 and ET1011R1 Current Consumption RGMII 100BASE-TX

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Tx/Rx random data	_	20	_	mA
Supply Voltage (1.0 V analog)	lavddl	Tx/Rx random data	_	76	_	mA
Supply Voltage (2.5 V digital)	Idvddio	Tx/Rx random data		10	_	mA
Supply Voltage (1.0 V digital)	IVDD	Tx/Rx random data	_	29	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Tx/Rx random data	_	41	_	mA

Device Electrical Characteristics (continued)

Table 68. ET1011N1 and ET1011R1 Current Consumption RGMII 10BASE-T

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	Tx/Rx random data	_	26	_	mA
Supply Voltage (1.0 V analog)	IAVDDL	Tx/Rx random data	_	76	_	mA
Supply Voltage (2.5 V digital)	Idvddio	Tx/Rx random data	_	7	_	mA
Supply Voltage (1.0 V digital)	IVDD	Tx/Rx random data	_	15	_	mA
Center Tap Voltage (1.8 V analog)	Істар	Tx/Rx random data		57		mA

Table 69. ET1011N1 and ET1011R1 Current Consumption RGMII 10BASE-T Idle

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage (2.5 V analog)	lavddh	ldle	_	26	_	mA
Supply Voltage (1.0 V analog)	lavddl	ldle	_	76	_	mA
Supply Voltage (2.5 V digital)	IDVDDIO	ldle	_	7	_	mA
Supply Voltage (1.0 V digital)	Ivdd	ldle	_	13	_	mA
Center Tap Voltage (1.8 V analog)	Істар	ldle	_	1	_	mA

Timing Specification

GMII 1000Base-T Transmit Timing (128-pin TQFP only)

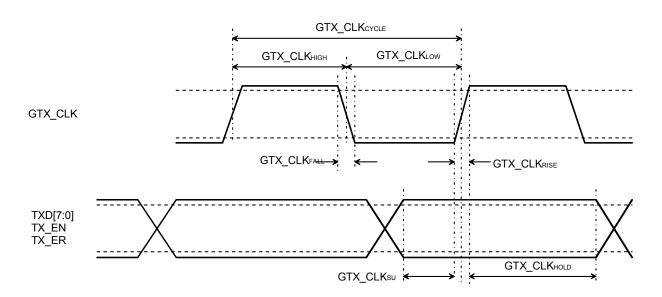


Figure 15. GMII 1000Base-T Transmit Timing

Table 70. GMII 1000Base-T Transmit Timing

Parameter	Symbol	Min	Тур	Max	Unit
GTX_CLK Cycle Time	GTX_CLKcycle	7.5	_	8.5	ns
GTX_CLK High Time	GTX_CLKніgh	2.5	_	_	ns
GTX_CLK Low Time	GTX_CLKLow	2.5	_	_	ns
GTX_CLK Rise Time	GTX_CLKrise	_	_	1.0	ns
GTX_CLK Fall Time	GTX_CLKFALL	_	_	1.0	ns
GMII Input Signal Setup Time to GTX_CLK	GTX_CLKsu	2.0	_	_	ns
GMII Input Signal Hold Time to GTX_CLK	GTX_CLKHOLD	0.0	_	_	ns

GMII 1000Base-T Receive Timing (128-pin TQFP only)

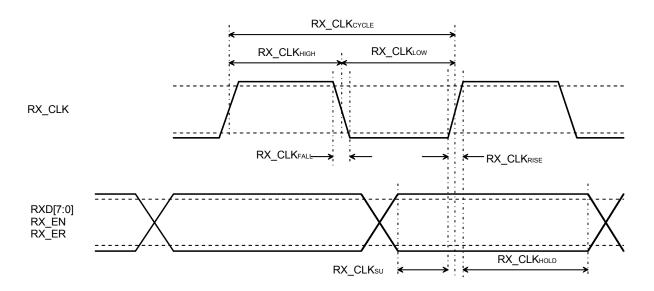


Figure 16. GMII 1000Base-T Receive Timing

Table 71. GMII 1000Base-T Receive Timing

Parameter	Symbol	Min	Тур	Max	Unit
RX_CLK Cycle Time	RX_CLKcycle	7.5	8.0	_	ns
RX_CLK High Time	RX_CLKніgh	2.5	_	_	ns
RX_CLK Low Time	RX_CLKLOW	2.5	_	_	ns
RX_CLK Rise Time	RTX_CLKrise	_	_	1.0	ns
RX_CLK Fall Time	RX_CLKFALL	_	_	1.0	ns
GMII Output Signal Setup Time to RX_CLK	RX_CLKsu	2.5	_	_	ns
GMII Output Signal Hold Time to RX_CLK	RX_CLKHOLD	0.5	_	_	ns

RGMII 1000Base-T Transmit Timing

Trace Delay

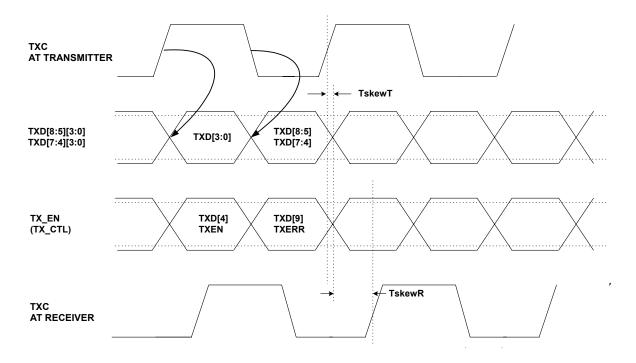


Figure 17. RGMII 1000Base-T Transmit Timing—Trace Delay

Table 72. RGMII 1000Base-T Transmit Timing

Parameter	Symbol	Min	Тур	Max	Unit
Data to Clock Output Skew (at transmitter)—Trace Delay ¹	TskewT	-500	0	500	ps
Data to Clock Input Skew (at receiver)—Trace Delay ¹	TskewR	1	1.8	2.6	ns
Clock Cycle Duration ²	Тсус	7.2	8	8.8	ns
Duty Cycle for Gigabit ³	Duty_G	45	50	55	%
Duty Cycle for 10Base-T/100Base-TX ³	Duty_T	40	50	60	%
Rise/Fall Time (20%—80%)	Tr/Tf	_		0.75	ns

^{1.} This implies that PCB design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. To enable internal delay, see MII register 22 bits 2:0.

^{2.} For 10Base-T and 100Base-TX, Tcyc scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.

^{3.} Duty cycle may be shrunk/stretched during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.

Internal Delay

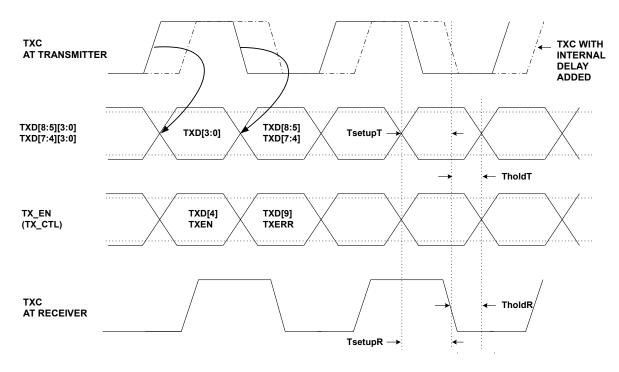


Figure 18. RGMII 1000Base-T Transmit Timing—Internal Delay

Table 73. RGMII 1000Base-T Transmit Timing

Parameter	Symbol	Min	Тур	Max	Unit
Data to Clock Output Setup (at transmitter—integrated delay) ¹	TsetupT	1.2	2.0	_	ns
Clock to Data Output Hold (at transmitter—integrated delay) ¹	TholdT	1.2	2.0	_	ns
Data to Clock Input Setup (at receiver—integrated delay) ¹	TsetupR	1.0	2.0	_	ns
Data to Clock Input Setup (at receiver—integrated delay) ¹	TholdR	1.0	2.0	_	ns
Clock Cycle Duration ²	Тсус	7.2	8	8.8	ns
Duty Cycle for Gigabit ³	Duty_G	45	50	55	%
Duty Cycle for 10Base-T/100Base-TX ³	Duty_T	40	50	60	%
Rise/Fall Time (20%—80%)	Tr/Tf			0.75	ns

^{1.} The PHY uses internal delay to compensate by delaying both incoming and outgoing clocks by ~2.0 ns.

^{2.} For 10Base-T and 100Base-TX, Tcyc scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.

^{3.} Duty cycle may be shrunk/stretched during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.

RGMII 1000Base-T Receive Timing

Trace Delay

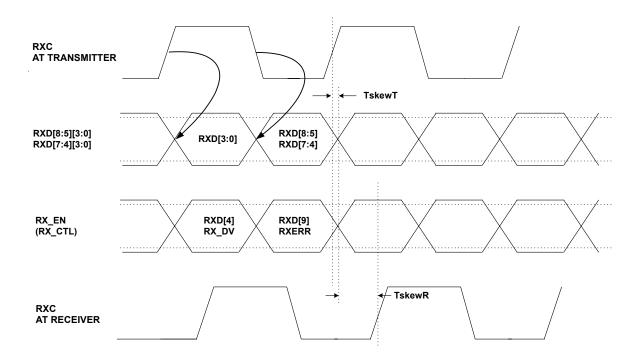


Figure 19. RGMII 1000Base-T Receive Timing—Trace Delay

Table 74. RGMII 1000Base-T Receive Timing

Parameter	Symbol	Min	Тур	Max	Unit
Data to Clock Output Skew (at transmitter)—Trace Delay ¹	TskewT	-500	0	500	ps
Data to Clock Input Skew (at receiver)—Trace Delay ¹	TskewR	1	1.8	2.6	ns
Clock Cycle Duration ²	Тсус	7.2	8	8.8	ns
Duty Cycle for Gigabit ³	Duty_G	45	50	55	%
Duty Cycle for 10Base-T/100Base-TX ³	Duty_T	40	50	60	%
Rise/Fall Time (20%—80%)	Tr/Tf			0.75	ns

^{1.} This implies that PCB design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. To enable internal delay, see MII register 22 bits 2:0.

^{2.} For 10Base-T and 100Base-TX, Tcyc scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.

^{3.} Duty cycle may be shrunk/stretched during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.

Internal Delay

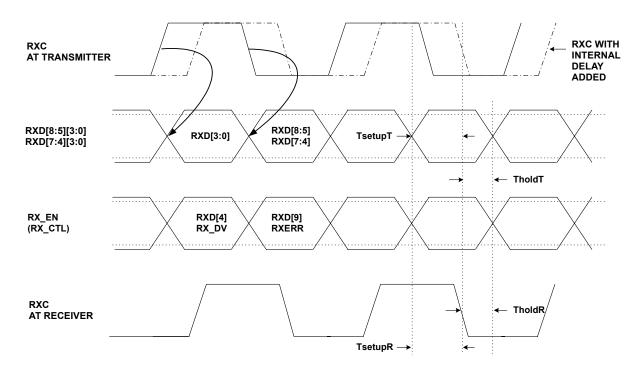
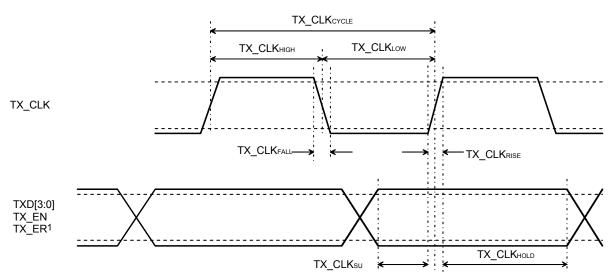


Figure 20. RGMII 1000Base-T Receive Timing—Internal Delay

Table 75. RGMII 1000Base-T Receive Timing


Parameter	Symbol	Min	Тур	Max	Unit
Data to Clock Output Setup (at transmitter—integrated delay) ¹	TsetupT	1.2	2.0	_	ns
Clock to Data Output Hold (at transmitter—integrated delay) ¹	TholdT	1.2	2.0	_	ns
Data to Clock Input Setup (at receiver—integrated delay) ¹	TsetupR	1.0	2.0	_	ns
Data to Clock Input Setup (at receiver—integrated delay) ¹	TholdR	1.0	2.0	_	ns
Clock Cycle Duration ²	Tcyc	7.2	8	8.8	ns
Duty Cycle for Gigabit ³	Duty_G	45	50	55	%
Duty Cycle for 10Base-T/100Base-TX ³	Duty_T	40	50	60	%
Rise/Fall Time (20%—80%)	Tr/Tf	_	_	0.75	ns

^{1.} The PHY uses internal delay to compensate by delaying both incoming and outgoing clocks by ~2.0 ns.

^{2.} For 10Base-T and 100Base-TX, Tcyc scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.

^{3.} Duty cycle may be shrunk/stretched during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between.

MII 100Base-TX Transmit Timing

1. TX_ER is not available on the 68-pin MLCC.

Figure 21. MII 100Base-TX Transmit Timing

Table 76. MII 100Base-TX Transmit Timing

Parameter	Symbol	Min	Тур	Max	Unit
TX_CLK Cycle Time	TX_CLKcycle		40		ns
TX_CLK High Time	TX_CLKніgh	_	20	_	ns
TX_CLK Low Time	TX_CLKLOW	_	20	_	ns
TX_CLK Rise Time	TX_CLKrise	_	_	5	ns
TX_CLK Fall Time	TX_CLKFALL	_	_	5	ns
MII Input Signal Setup Time to TX_CLK	TX_CLKsu	15	_	_	ns
MII Input Signal Hold Time to TX_CLK	TX_CLKHOLD	0	_	_	ns

MII 100Base-TX Receive Timing

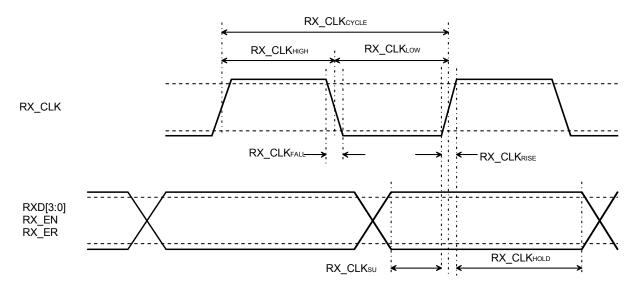


Figure 22. MII 100Base-TX Receive Timing

Table 77. MII 100Base-TX Receive Timing

Parameter	Symbol	Min	Тур	Max	Unit
RX_CLK Cycle Time	RX_CLKcycle	_	40	_	ns
RX_CLK High Time	RX_CLKніgh	_	20	_	ns
RX_CLK Low Time	RX_CLKLOW	_	20	_	ns
RX_CLK Rise Time	RTX_CLKrise	_	1	_	ns
RX_CLK Fall Time	RX_CLKfall	_	1	_	ns
MII Output Signal Setup Time to RX_CLK	RX_CLKsu	10	_	_	ns
MII Output Signal Hold Time to RX_CLK	RX_CLKHOLD	10	_	_	ns

MII 10Base-T Transmit Timing

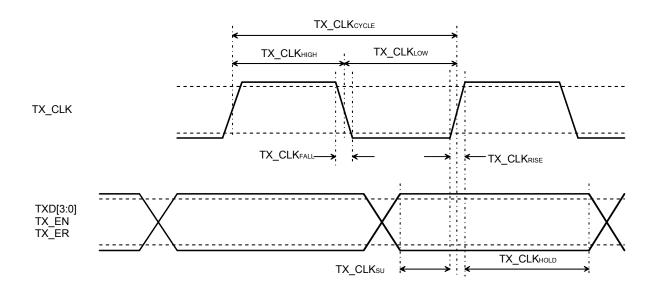


Figure 23. MII 10Base-T Transmit Timing

Table 78. MII 10Base-T Transmit Timing

Parameter	Symbol	Min	Тур	Max	Unit
TX_CLK Cycle Time	TX_CLKcycle		400	_	ns
TX_CLK High Time	TX_CLKніgh	_	200	_	ns
TX_CLK Low Time	TX_CLKLow	_	200	_	ns
TX_CLK Rise Time	TX_CLKrise	_	1	_	ns
TX_CLK Fall Time	TX_CLKFALL	_	1	_	ns
MII Input Signal Setup Time to TX_CLK	TX_CLKsu	15	_	_	ns
MII Input Signal Hold Time to TX_CLK	TX_CLKHOLD	0	_	_	ns

MII 10Base-T Receive Timing

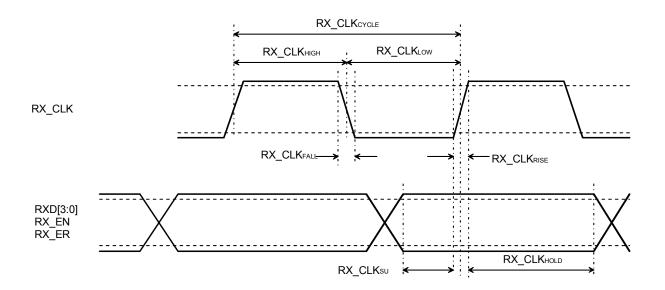


Figure 24. MII 10Base-T Receive Timing

Table 79. MII 10Base-T Receive Timing

Parameter	Symbol	Min	Тур	Max	Unit
RX_CLK Cycle Time	RX_CLKcycle	_	400	_	ns
RX_CLK High Time	RX_CLKніgh		200		ns
RX_CLK Low Time	RX_CLKLow		200		ns
RX_CLK Rise Time	RTX_CLKrise	_	1	_	ns
RX_CLK Fall Time	RX_CLKFALL	_	1	_	ns
MII Output Signal Setup Time to RX_CLK	RX_CLKsu	10	_	_	ns
MII Output Signal Hold Time to RX_CLK	RX_CLKHOLD	10	_	_	ns

Serial Management Interface Timing

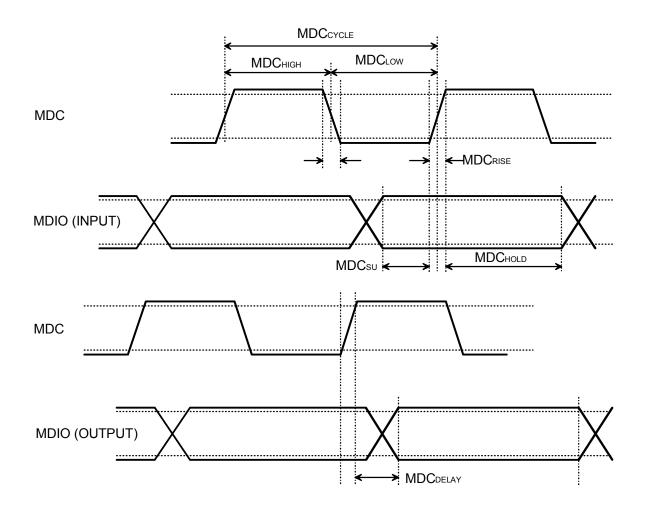


Figure 25. Serial Management Interface Timing

Table 80. Serial Management Interface Timing

Parameter	Symbol	Min	Тур	Max	Unit
MDC Cycle Time	MDCcycle	100	_	_	ns
MDC High Time	MDCHIGH	40	_	_	ns
MDC Low Time	MDCLow	40	_	_	ns
MDC Rise Time	MDCrise	_	_	5	ns
MDC Fall Time	MDCFALL	_	_	5	ns
MDIO Signal Setup Time to MDC	MDCsu	10	_	_	ns
MDIO Signal Hold Time to MDC	MDChold	10	_	_	ns
MDIO Delay Time from MDC	MDCdelay	_	_	80	ns

Reset Timing

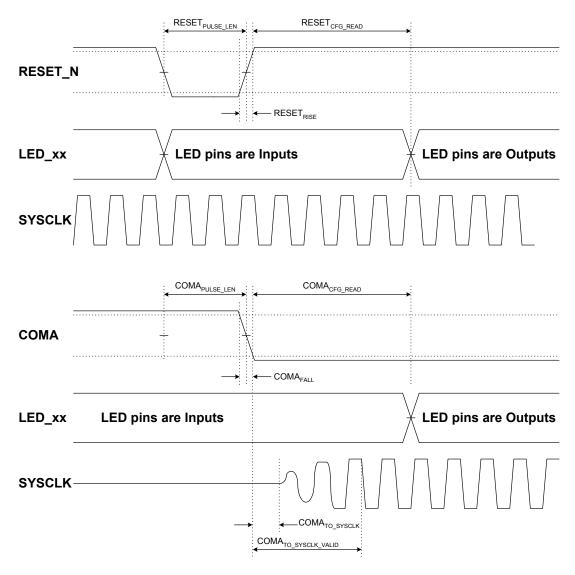


Figure 26. Reset Timing

Table 81. Reset Timing

Parameter	Symbol	Min	Тур	Max	Unit
RESET_N Pulse Length	RESETpulse_len	20	_	_	μS
RESET_N Rise Time	RESETRISE	_	1.0	_	ns
RESET_N Deassertion to Configuration Read	RESETcfg_read	_	_	5.0	ms
COMA Pulse Length	COMApulse_len	20	_	_	μS
COMA Fall Time	COMAFALL	_	1.0	_	ns
COMA Deassertion to SYS_CLK	COMATO_SYSCLK	_	1.0	_	μS
COMA Deassertion to SYS_CLK Valid	COMATO_SYSCLK_VALID	_	_	4.2	ms
COMA Deassertion to Configuration Read	COMAcfg_read	_	_	5.0	ms

Clock Timing

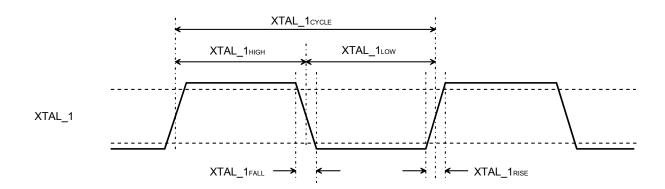


Figure 27. Clock Timing

Table 82. Clock Timing

Parameter	Symbol	Min	Тур	Max	Unit
XTAL_1 Cycle Time	XTAL_1cycle	39.998	40	40.002	ns
XTAL_1 High Time	XTAL_1ніgн	15	20	25	ns
XTAL_1 Low Time	XTAL_1LOW	15	20	25	ns
XTAL_1 Rise Time	XTAL_1rise	_	_	3	ns
XTAL_1 Fall Time	XTAL_1FALL	_	_	3	ns
XTAL_1 Input Clock Jitter (RMS)	_	_	_	20	ps
XTAL_1 Input Clock Frequency	_	_	25	_	MHz
XTAL_1 Input Clock Accuracy	_	_		50	ppm

JTAG Timing

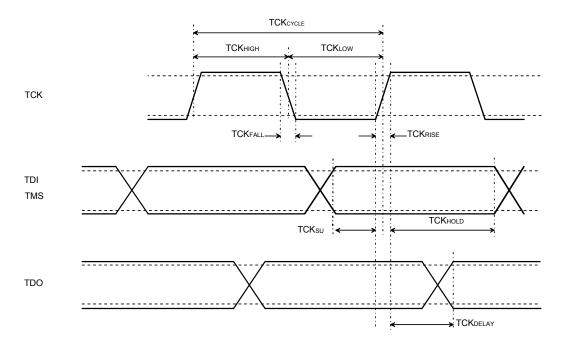
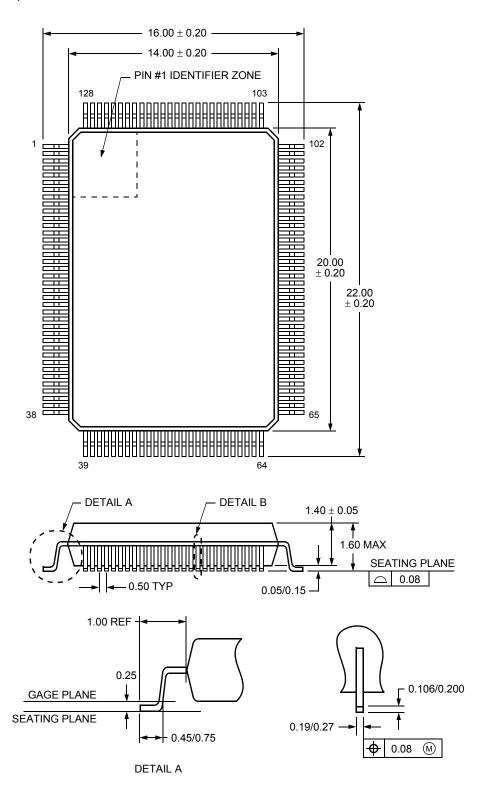
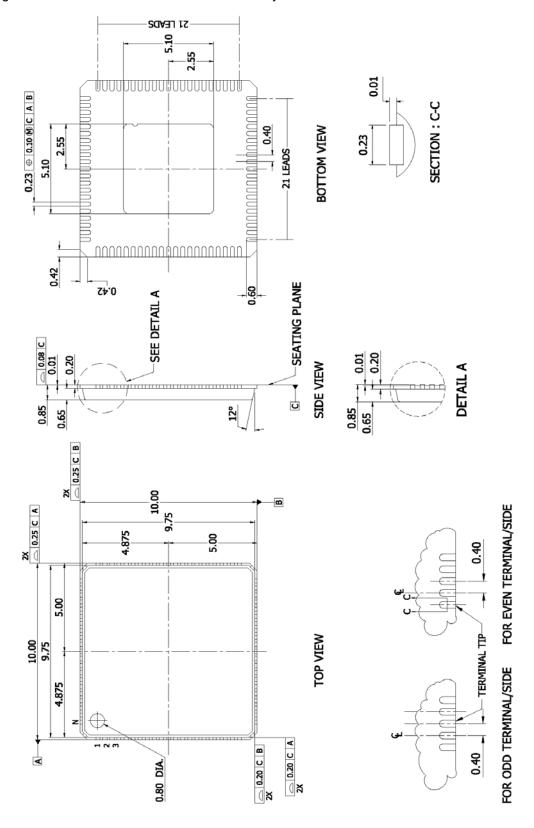
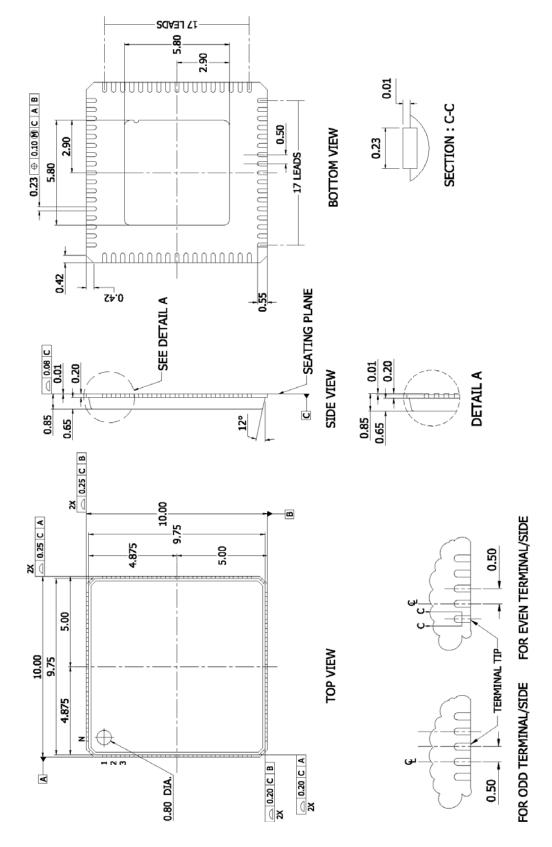



Figure 28. JTAG Timing

Table 83. JTAG Timing


Parameter	Symbol	Min	Тур	Max	Unit
TCK Cycle Time	TCKcycle	20	_		ns
TCK High Time	TCKHIGH	10		_	ns
TCK Low Time	TCKLOW	10	_	_	ns
TCK Rise Time	TCKrise	_	1	_	ns
TCK Fall Time	TCKFALL	_	1	_	ns
TDI, TMS Setup Time to TCK	TCKsu	2.7	_	_	ns
TDI, TMS Hold Time to TCK	TCKHOLD	0.8	_	_	ns
TDO Delay Time from TCK	TCKDELAY		_	8.1	ns

Package Diagram, 128-Pin TQFP


Package Diagram, 84-Pin MLCC (Dimensions are in millimeters.)

Note: Package outlines are unofficial and for reference only.

Package Diagram, 68-Pin MLCC (Dimensions are in millimeters.)

Note: Package outlines are unofficial and for reference only.

Ordering Information

Table 84. Chip Set Names and Part Numbers

Device	Description	Part Number	Comcode
ET1011-128	Gigabit Transceiver, 1.1 V Internal Regulator, Lead	ET1011R1B-T-DB	700079700
ET1011-128	Gigabit Transceiver, 1.1 V Internal Regulator, Lead Free	L-ET1011R1B-T-DB	700079850
ET1011-68	Gigabit Transceiver, 1.1 V Internal Regulator, Lead	ET1011R1B-M-D	700079699
ET1011-68	Gigabit Transceiver, 1.1 V Internal Regulator, Lead Free	L-ET1011R1B-M-D	700079849
ET1011-84	Gigabit Transceiver, 1.1 V Internal Regulator, Lead	ET1011R1B-C-D	700083637
ET1011-84	Gigabit Transceiver, 1.1 V Internal Regulator, Lead Free	L-ET1011R1B-C-D	700083636
ET1011-84_I	Gigabit Transceiver, 1.1 V Internal Regulator, Lead	ET1011R1B-CI-D	700081204
ET1011-84_I	Gigabit Transceiver, 1.1 V Internal Regulator, Lead Free	L-ET1011R1B-CI-D	700083138
ET1011	84-MLCC Customer Evaluation Board	ET1011-EVB	700085008
ET1011	68-MLCC <i>GigEasy</i> ™ Customer Evaluation Board	ET1011-USB	700079694

Related Product Documentation

Table 85. Related Product Documentation

Device	Description	Document Type
ET1011	Gigabit Ethernet Transceiver	Product Brief Application Note
ET1310	Gigabit Ethernet Controller	Product Brief
ET1081	Gigabit Ethernet Octal PHY	Data Sheet
ET4028-50	Single-Chip 28 x 1 Gbit/s Layer 2+ Ethernet Switch	- Application Note
ET4048-50	Single-Chip 48 x 1 Gbit/s Layer 2+ Ethernet Switch	
ET4128-50	Single-Chip 28 x 1 Gbit/s + 2 x 10 Gbits/s Layer 2+ Ethernet Switch	
ET4148-50	Single-Chip 48 x 1 Gbit/s + 2 x 10 Gbits/s Layer 2+ Ethernet Switch	
ET3028-50	Single-Chip 28 x 1 Gbit/s Layer 2 Ethernet Switch	
ET3048-50	Single-Chip 48 x 1 Gbit/s Layer 2 Ethernet Switch	

IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc. *Magic Packet* is a registered trademark of Advanced Micro Devices, Inc.

For additional information, contact your Agere Systems Account Manager or the following: INTERNET: Home: http://www.agere.com/sales: http://www.agere.com/sales

E-MAIL: docmaster@agere.com

N. AMERICA: Agere Systems Inc., Lehigh Valley Central Campus, Room 10A-301C, 1110 American Parkway NE, Allentown, PA 18109-9138

1-800-372-2447, FAX 610-712-4106 (In CANADA: **1-800-553-2448**, FAX 610-712-4106)

ASIA: CHINA: (86) 21-54614688 (Shanghai), (86) 755-25881122 (Shenzhen), (86) 10-65391096 (Beijing)

JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6741-9855, TAIWAN: (886) 2-2725-5858 (Taipei)

EUROPE: Tel. (44) 1344 296 400

Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. Agere, Agere Systems, and the Agere logo are registered trademarks of Agere Systems Inc. GigEasy is a trademark of Agere Systems Inc.

Copyright © 2005 Agere Systems Inc. All Rights Reserved

