GEC PLESSEY

[, V4 SEMICONDUCTORS

DS3578-2.4

MA2910

RADIATION HARD MICROPROGRAM CONTROLLER

The industry standard MA2910 Microprogram Controller
forms part of the MA2900 family of devices.

Offering a building block approach to microcomputer and
controller design, each device in the range is expandable
permitting efficient emulation of any microcode-controlled
machine. The family has been designed for operation in
savere environments such as space, and is qualified to the
highest levels of reliability.

The MA2910 Micro-program Controller is an address
sequencer intended for sequence control of microinstructions
stored in microprogram memory in high speed micro-
processor applications.

Allinternal elements are full 12 bits wide and address up to
40986 words with one chip. The device has an integral settable
12 bit internal loop counter for repeating instructions and
counting loop iterations.

The MA2910 has four address sources which allow
Microprogram Address to be selected from the microgram
counter, branch address bus, 9 level push/pop stack, or
internal holding register.

The MA2910 supports 100ns cycle times and has an
integral decoder function to enable external devices onto
branch address bus which eliminates the requirement for an
external decoder.

FEATURES

W Fully Compatible with Industry Standard 2810A
CMOS SOS Technology

Radiation Hard and High SEU Immunity

High Speed / Low Power

Fully TTL Compatible

OK11:0)
—_ REGISTER/
RO — COUNTER
ZERO
DETECTOR
¢ =]
CCEN —edi MULTIPLEXER
13:0) i A
VECT ~—] -~
F o MPC
map
e A

ouTPUT —
BUFFER o

Y

Y{11:0)

—_— STACK
v <1 pomTeR

|

STACK

P

COLNTREG

<

INCREMENTOR

Figure 1. Block Diagram

399

MA2910

OPERATION

The MA2910 is a SOS microprogram controller intended
for use in high speed microprocessor applications. Besides the
capability of sequential access, it provides conditional
branching to any microinstruction within its 4096-microword
range.

A last-in, first-out stack provides microsubroutine return
linkage and looping capability; there are nine nesting levels of
microsubroutines. Microinstruction ioop count control is
provided with a count capacity of 4096.

The device is controlled by 16, 4-bit microinstructions. The
PLA decodes the microinstructions on 1(3:P) and produces
select control codes for the multiplexer, register/counter,
microprogram counter register, and stack. The 4-bit
microinstructions also generate three active low enable
signals (PL, VECT, and MAP) for external use. The operation
of each device block is detailed below:

MULTIPLEXER

The MA2910 contains a four-input multiplexer that is used
to select either the register/counter, direct input, microprogram
counter, or stack as the source of the next microinstruction
address.

REGISTER/COUNTER

The register/counter consists of 12 D-type, edgetriggered
flip-flops, with a common clock enable. It is operated during
microinstructions (8,9,15) as a 12-bit down counter, with resut
= zero available as a microinstruction branch test criterion.
This provides efficient iteration of microinstructions.

The register/ counter is arranged such that if it is preloaded
with a number N and is then used as a loop termination
counter, the sequence will be executed exactly N+1 times.
During instruction 15, a three way branch under combined
control of the loop counter and the condition code is available.
When its load control, RLD, is LOW, new data is loaded on the
next positive control transition.

The output of the register/counter is available to the
multiplexer as a source for the next microinstruction address.
The direct input furnishes a source of data for loading the
register /counter.

MICROPROGRAM COUNTER-REGISTER

The Microprogram Counter Register (uPC) is composed of
a 12-bit incrementer followed by a 12-bit register. The (uPC)
can be used in one of two ways: When the carry-in to the
incrementer is HIGH, the microprogram register is loaded onto
the next clock cycle with the current Y output word plus one
(Y + 1 — uPC). Sequential microinstructions are thus
executed. When the carry-in is LOW, the incrementer passes
the Y output unmodified so that the pPC is reloaded with the
same Y word on the next clock cycle (Y — uPC). The same
microinstruction is thus executed any number of times.

STACK AND STACK POINTER

The third source available at the multiplexer input is a
9-word by 12-bit stack. The stack is used to provide return
address linkage when executing microsubroutines or loops.
The stack contains a built-in stack pointer (SP) which always

400

points to the last file word written. This allows stack reference
operations (looping) to be performed without a POP.

Explicit control of the stack pointer occurs during
instruction 0 (RESET), which makes the stack empty by
resetting the SP to zero. After a RESET, and whenever the
stack is empty, the contents of the top of the stack are
undefined until a push occurs. Any POPs performed while the
stack is empty put undefined data on the outputs and leave the
stack at zero.

The stack pointer operates as an up/down counter. During
microinstructions 1,4, and 5, the PUSH operation may occur.
This causes the stack pointer to increment and the file to be
written with the required return linkage. On the cycle following
the PUSH, the return data is at the new location pointed to by
the stack pointer.

During five microinstructions, a POP operation may occur.
The stack pointer decrements at the next rising clock edge
following a POP, effectively removing old information from the
top of the stack.

The stack pointer linkage is such that any sequence of
pushes, pops, or stack references can be achieved. At RESET
(instruction 0), the depth of nesting becomes zero. For sach
PUSH, the nesting depth increases by one; for each POP, the
depth decreases by one.

PIN DESCRIPTIONS

VDD and GND (Power and Ground)
The MA2310 operates from a single supply voltage of
5V + 10%

D (0 to 11) (Direct Input)

These connections provide direct input to the register/
counter, and the multiplexer. DO is the least significant bit and
D1 the most significant

1(0 to 3) (Instruction bus)

The data on these inputs is read on the rising edge of CP. It
determines the instruction to be executed in accordance with
table 1.

CC (Condition Code)
This active low input is used to determine the result of
conditional instruction. LOW indicates a TRUE condition.

CCEN (Condition code enable)

This active low input enables the CC input. When CCEN is
HIGH, CC is ignored and a conditional operation executed as
though CC were LOW (TRUE).

Cl (Carry input)

When HIGH this input causes the microprogramme
counter register to increment on the rising edge of CP. When
LOW the counter remains unchanged.

RLD (Register load)

This active low input loads the register/counter from the D
bus on the rising edge of CP. It will override any HOLD or DEC
instruction specified by data on the | bus.

Y (0 to 11) (Microcode address)

This is a 12 bit wide tristate output bus. It carries the
microcode address generated according to the instruction
read in from the | bus. OE can be used to put the bus in a high
impedance state. This allows another to take control of the
microcode address bus.

OE (Output enable)
This active low input is used to enable the 12 iines of the Y
bus.

CP (Clock Pulse)
A LOW-to-HIGH transition on this input is used to trigger alf
state changes within the device.

MA2910

FULL (stack full)
The active low output FULL indicates that 9 items have
been loaded onto the stack .

PL, MAP & VECT (pipeline, map and vector)

These active low outputs are set according to the
instruction being executed. At any time only one is active.

They may be used to select from one of three possible
external sources for microprogramme jumps, being used
directly as three-state enables for these sources.

Typically: PL enables the primary source of
microprogramme jumps, usually part of a pipeline register;
MAP enables a PROM which maps an instruction to a
microcode starting location; VECT enables an optional third
source, after a vector from DMA or interrupt source.

FAIL CCEN = PASS CCEN =
I; -1, | MNEMONIC| NAME REGISTER| LOW&CC = HIGH & CC = | REGISTER/ | ENABLE
/CONTROL| HIGH LOow CONTROL
Y STACK Y STACK
0 JZ JUMP ZERO X 0 CLEAR 0O CLEAR HOLD PL
1 GJS COND JS P PL X PC | HOLD D PUSH HOLD PL
2 JMAP JUMP MAP X D HOLD D HOLD HOLD MAP
3 CJP COND JUMP PL X PC | HOLD D HOLD HOLD PL
4 PUSH PUSH/COND LD X PC | PUSH PC | PUSH Note 1 PL
CNTR
5 JSRP COND JSB R/PL X R PUSH D PUSH HOLD PL
VECTOR
6 CJv COND JUMP X PC | HOLD D HOLD HOLD |[VECT
7 JRP COND JUMP R/PL X R HOLD D HOLD HOLD PL
8 RFCT REPEAT LOOP #0 |F HOLD F HOLD DEC PL
CNTR=0 =0 |PC| POP PC (POP HOLD PL
9 RPCT .REPEATPL, #0 |D HOLD D HOLD DEC PL
CNTR=0 =0 |[PC| HOLD PC | HOLD HOLD PL
10 | CRTN COND RTN X PC | HOLD F POP HOLD PL
11 | GJPP COND JUMP PL X PC | HOLD D POP HOLD PL
& POP
12 | LDCT LD CNTR & X PC { HOLD PC | HOLD LOAD PL
CONTINUE
13 | LOOP TEST END LOOP X F HOLD PC | POP HOLD PL
14) CONT CONTINUE X PC | HOLD PC | HOLD HOLD PL
15 | TWB THREE-WAY #0 |F HOLD PC | POP DEC PL
BRANCH =0 (D POP PC | POP HOLD PL

Note 1: It CCEN = LOW & CC = HIGH, hold, else load.

Figure 2. Table of Instructions

401

MA2910

INSTRUCTION SET

The MA2910 provides 16 instructions which select the
address of the next microinstruction to be executed. 4 of the
instructions are unconditional and their effect depends only on
the instruction. 10 of the instructions have an effect which is
partially controlled by external conditions. 3 of the instructions
have an effect which is partially controlled by the contents of
the internal register/counter. In this discussion it is assumed
the Cl is tied HIGH.

In the 10 conditional instructions, the result of the data-
dependent test is applied to TC. If the CC input is LOW, the
test is considered passed, and the action specified in the name
occurs; otherwise, the test has failed and an alternate (often
simply the execution of the next sequential microinstruction)
occurs. Testing of CC may be disabled for a specific
microinstruction by setting CCEN HIGH, which unconditionally
forces the action specified in the name; that is it forces a
pass.Other ways of using CCEN include; (1) tying it HIGH,
which is useful if no microinstruction is data-dependent; (2)
tying it LOW if data-dependent instructions are never forced
unconditionally; or (3) tying it to the source of MA2910
instruction bit |, which leaves instructions 4,6 and 10 as data-
dependent but leaves athers unconditional. All of these tricks
save one bit of microcode width

The effect of three instructions depend upon the contents
of the register/counter. Unless the counter holds a value of
zero, it is decremented; if it does hold zero, it is held and a
different microprogram next address is selected.These
instructions are useful for executing a microinstruction loop a
finite number of times. Instruction 15 is affected both by the
external condition code and the internal register/counter.

The most effective technique for understanding the
MA2910 is to simply take each instruction and review its
operation. In order to provide some feel for the actual
execution of these instructions, examples of all 16 instructions
are included.

The examples given should be interpreted in the following
manner: The intent is to show microprogram flow as various
microprogram memory words are executed.

For example, the CONTINUE instruction (number 14)
simply means that the contents of the microprogram memory
word 50 are executed, then the contents of word 51 are
executed. This is followed by the contents of 52 and 53 The
microprogram addresses used in the examples were arbitrarily
chosen and have no meaning other than to show instruction
flow. The exception to this is the first example, JUMP ZERO,
which forces the microprogram location counter to address
ZERO. Each dot refers to the time that the contents of the
microprogram memory word is in the pipeline register. While
no special symbology is used for the conditional instructions,
the following text will explain what the conditional choices are
in sach example.

Instruction 0: JZ (Jump to Zero, or Reset).

This instruction unconditionally specifies that the address
of the next microinstruction is zero. Many designs use this
feature for power-up sequences and provide the power-up
firmware beginning at microprogram memory word location O.

402

Figure 3: 0 JUMP ZERO (J2)

Instruction 1: Condltional Jump-to-Subroutine.

This instruction is a conditional Jump-to-Subroutine via the
address provided in the pipeline register. As shown in figure 4,
the machine might have executed words at address 50, 51,
and 52. When the contents of address 52 is in the pipeline
register the next address control function is the
CONDITIONAL JUMP-TO-SUBROUTINE. Here, if the test is
passed, the next instruction executed wili be the contents of
microprogram memory location 30. If the test has failed, the
JUMP-TO-SUBROUTINE will not be executed; the contents of
microprogram memory location 53 will be executed instead.

Thus, the Conditional Jump-to-Subroutine instruction at
location 52 will cause the instruction either in location 90 or in
location 53 to be executed next. If the test input is such that the
location 90 is selected, vaiue 53 will be pushed onto the
internal stack. This provides the return linkage for the machine
when the subroutine beginning at location 90 is completed. In
this example, the subroutine was compieted at location 93 and
a RETURN-FROM-SUBROUTINE would be found at location
93.

50 STACK
51

52 90

53 91

54 92

55 93

Figure 4: COND JSB PL (CJS)

Instruction 2: Jump-Map.

This is an unconditional instruction which causes the MAP
output to be enabled so that the next microinstruction location
is determined by the address supplied via the mapping
PROMs. Normally, the JUMP MAP instruction is used at the
end of the instruction fetch sequence for the machine.

50
51
52
s3 30
54 31

Figure 5: 2 JUMP MAP (JMAP)

In the example of Figure 5, microinstructions at locations
50,51, 52 and 53 might have been the fetch sequence and at
its completion at location 53, the jump map function would be
contained in the pipeline register. This example shows the
mapping PROM outputs to be 90; therefore, an unconditional
jump to microprogram memory address 90 is performed

Instruction 3: Conditional Jump Plpeline.

This instruction derives its branch address from the
pipsline register branch address value (BR,-BR,;). This
instruction provides a tachnique for branching to various
microprogram sequences depending upon the test condition
inputs. Quite often, state machines are designed which simply
exegcute tests on various inputs waiting for the condition to
come true. When the true condition is reached, the machine
then branches and executes a set of microinstructions to
perform some functions. This usually has the effect of resetting
the input under test until some point in the future.

The example shows the conditional jump via the pipeline
register address at location 52. When the contents of
microprogram memory word 52 are in the pipeline register, the
next address will be sither location 53 or 30, in this example. If
the test is passed, the value currently in the pipeline register
(30) will be selected. If the test fails, the next address selected
will be contained in the microprogram counter which, in this
oxample, is location 53.

50

51

52

53 90
9

Figure 6: 3 COND JUMP PL (CLP)

MA2910

Instruction 4: Push/Conditional, Load Counter.

This instruction is used primarily for setting up loops in
microprogram firmware. In this example, when instruction 52 is
in the pipeline register, a PUSH will be mads onto the stack
and the counter will be loaded based on the condition. When a
PUSH occurs, the value pushed is always the next sequential
instruction address. In this case, the address is 53. If the test
fails, the counter is not loaded; if it is passed, the counter is
loaded with the valus contained in the pipeline register branch
address field.

Thus, a single microinstruction can be used to set up a
loop to be executed a specific number of times. Instruction 8
will describe how to use the pushed value and the register/
counter for looping.

STACK
50
51
52
53 REGISTER/

@COUNTER

Figure 7: 4 PUSH/COND LD CNTR (PUSH)

Instruction 5: Conditional Jump-to-Subroutine.

This instruction is a Conditional Jump-to-Subroutine via the
register/counter of the contents of the PIPELINE register. A
PUSH is always performed and one of two subroutines
executed. In this example, either the subroutine beginning at
address 80 or the subroutine beginning at address 90 will be
performed. A RETURN-FROM-SUBROUTINE (instruction
number 10) returns the microprogram flow to address 55.

In order for this microinstruction control sequence to
operate correctly, both the next address fields of instruction 53
and the next address fields of instruction 54 would have to
contain the proper value. Lets assume that the branch address

Figure 8:5 COND JSB R/PL (JSRP)

403

MA2910

fields of instruction 53 contain the value 90 so that it will be in
the MA2910 register/counter when the contents of the address
54 are in the pipeline register.

This requires that the instruction at address 53 loads the
register/counter. Now,during the execution of instruction 5 (at
address 54), if the test failed, the contents of the register
(value=90) will select the address of the next microinstruction.
If the test input passes, the pipeline register contents
(value=80) will determine the address of the next
microinstruction. Therefors, this instruction provides the ability
to select one of two subroutines to be executed based on a test
condition.

Instruction 6: Conditional Jump Vector.

This instruction provides the capability to take the branch
address from a third source heretofore not discussed. In order
for this instruction to be useful, the MA2910 output VECT is
used to control a three-state control input of a register, buffer,
or PROM containing the next microprogram address. This
instruction provides one technique for performing interrupt
type branching at the microprogram fevel. Since this
instruction is conditional, a pass causes the next address to be
taken from the vector source, while failure causes the next
address to be taken from the microprogram counter.

In the example, if the Conditional Jump Vector instruction is
contained at location 52, execution will continue at vector
address 20 if the CC input is LOW and the microinstruction at
address 53 will be executed if the CC input is HIGH.

50
51
52
53 20
54 ”n

Figure 9: 6 COND JUMP VECTOR (CJV)

Instruction 7: Conditional Jump.

Conditional Jump via the contents of the MA2910 Register/
Counter or the contents of the Pipeline register. This
instruction is very similar to instruction 5; the Conditional
Jump-to-subroutine via R or PL. The major difference between
instruction 5 and instruction 7 is that no push onto the stack is
performed with 7.

The example depicts this instruction as a branch to one of
the two locations depending on the test condition. The
example assumes the pipeline register contains the value 70
when the contents of address 52 are being executed. As the
contents of address 53 are clocked into the pipeline register,
the value 70 is loaded into the register/counter in the MA2910.
The value 80 is available when the contents of the address 53
are in the pipeline register. Thus, control is transferred to either
address 70 or address 80 depending on the test condition.

404

50

51

52

53
70 80
71 81

Figure 10: 7 COND JUMP R/PL (JRP)

Instruction 8: Repeat Loop, Counter # Zero.

This microinstruction makes use of the decrementing
capability of the register/counter. To be useful, some previous
instruction, such as 4, must have loaded a count value into the
register/counter. This instruction checks to see whether the
register/counter contains a non-zero value. If so, the register/
counter is decremented, and the address of the next
microinstruction is taken from the top of the stack.

If the register/counter contains zero, the loop exit condition
is accurring; control falls through to the next sequential
microinstruction by selecting uPC; the stack is POP'd by
decrementing the stack pointer, but the contents of the top of
the stack are thrown away.

In this example, location 50 is most likely to have contained
a Push/Conditional Load Counter instruction which would
have caused address 51 to be PUSHed on the stack and the
counter to be loaded with the proper value for looping the
desired number of times.

In this example, since the loop test is made at the end of
the instructions to be repeated {microaddress 54), the proper
value to be loaded by the instructions at address 50 is one less
than the desired number of passes through the loop .

This method allows a loop to be executed 1 to 4096 times.
If it desired to execute the loop from 0 to 4095 times, the
firmware should be written to make the loop exit test
immediately after loop entry.

Single-microinstruction loops provide a highly efficient
capability for executing a specific microinstruction a fixed
number of times. Examples include fixed rotates, byte swap,
fixed point multiply, and fixed point divide.

STACK (PUSH)
50
51
52 @ REGISTER/
53 COUNTER
54
55

Figure 11: 8 ERPEAT LOOP, CNTR = 0 (RFCT)

instruction 9: Repeat Pipsline Register, Counter + Zero

This instruction is similar to instruction 8 except that the
branch address now comes from the pipeline register rather
than the file. In some cases, this instruction may be thought of
as a one-word file extension; that is, by using this instruction, a
loop with the counter can still be performed when subroutines
are nested nine deep. This instruction's operation is very
similar to that of instruction 8. The differences are that on this
instruction, a failed test condition causes the source of the next
microinstruction address to ba the D inputs; and, when the test
condition is passed, this instruction does not perform a POP
because the stack is not being used.

In this example, the REPEAT PIPELINE, COUNTER J
ZERQ instruction is instruction 52 and is shown as a single
microinstruction loop. The address in the pipeline register
would be 52. Instruction 51 in this example could be the LOAD
COUNTER AND CONTINUE instruction (number 12). While
the example shows a single microinstruction loop, by simply
changing the address in a pipeline register, multi-instruction
loops can be performed in this manner for a fixed number of
times as determined by the counter.

COUNTER
50 {LDCT)
S1
$2
S3

MA2910

STACK

so
51 I
52 .
53 92
s4 93
55 94
95
9
97

Figure 12: 9 REPEAT PL, CNTR # 0 (RPCT)

Instruction 10: Conditional return form Subroutine.

As the name implies, this instruction is used to branch from
the subroutine back to the next microinstruction address
following the subroutine call. Since this instruction is
conditional, the return is performed only if the test is passed.

If the test is failed, the next sequential microinstruction is
performed. This example depicts the use of the conditional
RETURN-FROM-SUBROUTINE instruction in both the
conditional and the unconditional modes.

This example first shows a JUMP-TO-ROUTINE at
instruction location 52 where control is transferred to location
90. At location 93, a conditional RETURN-FROM-
SUBROUTINE instruction is perfarmed. If the test is passed,
the stack is accessed and the program will transfer to the next
instruction at address 53. lf the test is failed, the next
microinstruction at address 94 will be executed, the program
will continue to address 97 where the subroutine is complete.
To perform an unconditional RETURN-FROM-SUBROUTINE,
the conditional RETURN-FROM-SUBROUTINE instruction is
executed unconditionally; the microinstruction at address 97 is
programmed to force CCEN HIGH, disabling the test and the
forced PASS causes an unconditional return.

Figure 13: 10 COND RETURN (CRTN)

Instruction 11: Conditional Jump Pipeline register
address and POP stack.

This instruction provides another technique for loop
termination and stack maintenance. The example shows a
loop being performed from address 55 back to address 51.
The instructions at locations 52,53, and 54 are all ‘conditional
JUMP and POP instructions. At address 52, if the CC input is
LOW, a branch will be made to address 70 and the stack will
be properly maintained via a POP, Should the test fail, the
instruction at location 53 (the next sequential instruction) will
be executed. Likewise, at address 53, either the instruction at
90 or 54 will be subsequently executed, respective to the test
being passed or failed. The instruction at 54 foliows the same
rules, going to either 80 or 55.

An instruction sequence as described here, using the
Conditional Jump Pipeline and POP instruction, is very useful
when several inputs are being tested and the microprogram is
looping waiting for any of the inputs being tested to occur
before proceeding to another sequence of instructions. This
provides the powerful jump-table programming technique at
the firmware level .

STACK
/@ (PUSH)
50

51 Qe
52 »9 70
53 > 90 n
54 80 91 72
55 ’1 81 92

82

56

Figure 12: 9 REPEAT PL, CNTR = 0 (RPCT)

405

MA2910

Instruction 12: Load Counter and Continue.

This instruction simply enables the counter to be loaded
with the value at its parallel inputs. These inputs are normally
connected to the pipeline branch address field which (in the
architecture being described here) serves to supply either a
branch address or a counter value depending upon the
microinstruction being executed.

Altogether there are three ways of loading the counter: the
explicit load by this instruction 12; the conditional load included
as part of instruction 4; and use of RLD input along with any
instructions.

The use of RLD with any instruction overrides any counting
or decrementation spegified in the instruction, calling for a load
instead. Its use provides additional microinstruction power, at
the expense of one bit of microinstruction width

Instruction 12 is exactly equivalent to the combination of
instruction 14 and RLD LOW. its purpose is to provide a simple
capability to load the register/counter in those implementations
which do not provide microprogrammed control for RLD.

COUNTER
50

51
52
53

Figure 15: 12 LD CNTR & CONTINUE (LDCT)

Instruction 13: Test End-of-Loop.

This instruction provides the capability of conditionally
exiting a loop at the bottom; that is, this is a conditional
instruction that will cause the microprogram to loop via the file
if the test is failed, else to continue to the next sequential
instruction.

STACK
{PUSH)

. /@
S1 4

52 . a—]
53 ¢

54
§5

57

Figure 16: 13 TEST END LOOP (LOOP)

406

The example shows the TEST END-OF-LOOP
microinstruction at address 56. If the test fails, the
microprogram will branch to address 52. Address 52 is on the
stack because a PUSH instruction had been executed at
address 51. if the test is passed at instruction 56, the loop is
terminated and the next sequential microinstruction at address
57 is executed which also causes the stack to be POP'd; thus
accomplishing the required stack maintenance.

Instruction 14: CONTINUE.

This simply causes the microprogram counter to increment
so that the next sequential microinstruction is executed. This is
the simplest microinstruction of all and should be the detault
instruction which the firmware requests whenever there is
nothing better to do.

S0
51
52
53

Figure 17: 14 CONTINUE (CONT)

Instruction 15: Three-Way-Branch.

This instruction is the most complex and provides for
testing of both a data-dependent condition and the counter
during one microinstruction and provides for selecting among
one of three microinstruction addresses as the next
microinstruction to be performed. Like instruction 8, a previous
instruction will have loaded a count into the register/counter
while pushing a microbranch address onto the stack.

Instruction 15 performs a decrement-and-branch-until-zero
function similar to instruction 8. The next address is taken from
the top of the stack until the count reaches zero. When the
counter reaches zero the next address comes from the
pipeline register. The above action continues as long as the
test condition fails. If at any exscution of instruction 15 the test
condition is passed, no branch is taken and the microprogram
counter register furnishes the next address. When the loop is
ended, either by a count becoming zero, or by passing the
conditional test, the stack is POP’d by decrementing the stack
painter, since interest in the value contained at the top of the
stack is then complete.

The application of instruction 15 can enhance
performance of a varisty of machine-level instructions. For
instance: (1) a memory search instruction to be terminated
sither by finding a desired memory content or by reaching the
search limit; (2) variable-field-length arithmetic terminated
early upon finding that the content of the portion of the field still
unprocessed is all zeroes; (3) key search in a disc controller
processing variable length records; (4) normalization of a
floating point number.

As one example, consider the case of a memory search
instruction. As shown, the instruction at microprogram address
63 can be instruction 4 (PUSH), which will push the value 64
onto the microprogram stack and load the number N, which is
one less than the number of memory locations to be searched
before ending the search. Location 64 contains a
microinstruction which fetches the next operand from the
memory area being searched and compares it with the search
key. Location 65 contains a microinstruction which tests the
result of the comparison and is a THREE-WAY BRANCH for
microprogram control. If no match is found, the test fails and
the microprogram goes back to location 64 for the next
operand address.

When the count becomes zero, the microprogram
branches to location 72, and carries out the instruction at
location 72, if no match is found. If a match occurs on any
execution of the THREE-WAY BRANCH at location 65, control
falls through to location 66 which handles the case. Whether
the instruction ends by finding a match or not, the stack will
have been POP'd once thus removing the value 64 from the
top of the stack.

STACK
@ {PUSH)

62
63 REGISTER
4 ICOUNTER
65 72

66 7

Figure 18: 15 THREE-WAY BRANCH (TWB)

MA2910

ARCHITECTURE
ONE LEVEL PIPELINE BASED (RECOMMENDED)

One level! pipeline provides better speed than most other
architectures as the Microprogram Memory and the MA2901
array are in parallel paths.

This is the recommended architecture for all MA2900
designs.

| MAF

¥« LLOCK
wux MAID ¢
—p Y
3 ‘(A ()]
MKRO-
PROGRAM
MEMORY
*ou 1)
4
APELINE | 1
REGISTER —$] MAS2901 ALY
l I HA} I
| 4
(&)

STAUS
REGISTER

$a-1)

Figure 19a: One level Pipeline Based

CLOCK

I 8 ns (Clock 1o Register Output) L’

PIPELINE REGISTER OUTPUT.
MA2910 INSTRUCTION INPUTS.

MuUX QUIPUT
MA2910 CCINPUL

MA2810 OUTPUTS.

MICROPROGRAM MEMORY
OuTPYTS.

14 ns {MUX Sefect to Output)

CCroY 36ns

PROM Accew [ime 36 ns

Register Setup lime 3 ns

47 ns Cycle Time

Figure 19b. Timing relationship in the CCU

407

MA2910

Instruction Based

A Register at the Microprogram Memotry output contains
the microinstruction being executed. The Microprogram
Memory and MA2901 delay are in series. Conditional
branches are executed on the same cycle as the ALU
operation generating the condition.

lMA P

MUK » |
* 1 4 910 " €10CK
Py
&
T
MICRQ-
PROGRAM
MEMORY

*I(A;U
J

MA2901

7 S(A)SIAIUS

"a

Figure 20: Instruction Based

Data Based

The Status Register provides conditional branch control
based on results of the previous ALU cycle. The Microprogram
mamory and the MA2901 are in series within the critical path.

MAP

«
Mux ﬂun’m]‘_ﬂ
1 Y
'S ; (a2
REGISTER | 4
A |
iu I
MICRO-
RAM
MEMORY
[Too
PIELINE | 4
- <
p wAs01 AL
l H{A) Y
14
g .
STAYS
REGISTER
5{A-1)

Figure 21: Data Based

408

Address Based

The Register at the MA2910 output contains the
microinstruction being executed. The Microprogram Memory
and MA2901 are in series within the critical path. This
architecture is of comparable speed to the Instruction Based
architecture, but requires fewer register bits, since only the
address (typically 10 to 12 bits) is stored instead of the
instruction.

lMAP
‘«

MA2910

1 Y
8
|
|

A

_’ MUX

CLOCK

¥

MICRO-
PROGRAM 3
MEMoRY MA2901
| l I "Al ' | ALU
SLA) STATUS T

Figure 22: Address Based

Two Level pipeline Based

This architecture provides the highest possible speed. It is,
however, more difficult to program as the selection of a
microinstruction occurs two instructions ahead of its execution.

anP

= €1ocKk
_4 MUX H Mazse e <O
1 Y
A .
NICRO-PROGRAM
MEMORY
aoy i KA
REGISTER | g
4
MA2961 ALU
L] -
I(A-n S(A)*
STAUS
REGISTER
sa-1)

Figure 23: Two Level Pipeline Based

DC CHARACTERISTICS AND RATINGS

MA2910

Note: Stresses above those listed may cause permanent
Parameter Min Max Unlts damage fo the device. This is a stress rating only and
Supply Voltage 0.5 7 v functional operation of the device at these conditions, or at
any other condition above those indicated in the operations
Input Voltage 0.3 | Vpp+0.3 v section of this specification, is not implied. Exposure to
: _ absolute maximum rating conditions for extended periods
Current Through Any Pin 20 *20 | MA | may affect device reliabiity.
Operating Temperature -55 125 °C
Storage Temperature -65 150 °C
Figure 24: Absolute Maximum Ratings
Subgroup Definition
1 Static characteristics specified in Figure 26 at +25°C
2 Static characteristics specified in Figure 26 at +125°C
3 Static characteristics specified in Figure 26 at -55°C
9 Switching characteristics specified in Figures 27 to 29 at +25°C
10 Switching characteristics specified in Figures 27 to 29 at +125°C
11 Switching characteristics specified in Figures 27 to 29 at -55°C
Figure 25: Definition of Subgroups
Total dose radiation not exceeding
3x10° Rad (Si)
Symbol | Parameter Conditions Units
Min. Typ. Max .
Voo Supply voltage - 45 50 55 %
Vi Input high voltage - 2.0 - - Y
Vi Input low voltage - - - 08 \
Vo Output high voltage oy = -2mA 24 - \
Vo Output low voltage lo, = SmA - -)
In Input leakage current (Note 1) Voo = 5.5V, - - + pA
Vin = Vss of Vpp
loz Tristate leakage current (Note 1) | Vpp = 5.5V, - - 50 nA
Vin = Vs Or Vpp
loo Power supply current Static, Vpp = 5.5V - 0.1 10 mA

Mil-Std-883, method 5005, subgroups 1, 2, 3

Voo = 5V £10%, over full operating temperature range.
Note 1: Worst case at T, = +125°C, guaranteed at T, = -55°C. 300K Rad(Si) values at higher radiation levels are available on

request.

Figure 26: Operating Electrical Characteristics

409

MA2910

AC ELECTRICAL PARAMETERS

1. Vpp = 5V £10%. C,, = 50pF

2. Operating temperature is specified when ordering (see ordering information section on last page).
3. Enable/Disable times measured to 0.5V change on output voltage level with C, = 50pF.

4. Time measurement Reference Level = 1.5 Volts.

5. Input Pulse = Vg5 to 3.0 Volts.

6. Set-up and hold times measured relative to CP.

Input t, ty Minimum Clock LOW Time 20ns Input Y PL, VECT, MAP
Minimum Clock HIGH Time 35ns
Di-»R 16 5 Minimum Clock Period 55ns Do-Dyy 30 -
DioPC | 20 | 5 ly-ls 45 30
loly 30 | 5 Figure 28: Clock Requirements cC 45 -
CC 35 0 CCEN 45 -
CCEN 35 0 cP 60 -
Cl 15 5 OE Enable 25 -
RLD 15 5 {(Note 1)
OE Disable | 25 -
Figure 27: Set-up and (Note 1)
Hold Times

Figure 29: Combinational Delays
Mil-Std-883, method 5008, subgroups 9, 10, 11

30v
INPUTS
ov
30v
CLOCK 15v
ov
INPUT to
CLOCK to o OUTPUT -
— QUTPUT DELAY
DELAY
QUTPUTS

Figure 30: AC Timings

410

MA2910

OUTLINES & PIN ASSIGNMENTS

Rof Millimetres Inches
Min. Nom. Max. Min. Nom. Max.
A - - 5715 - - 0.225 va [~ %3] 05
Al 0.38 - 153 0.015 - 0.060 b4 [Z 38] Y3
0.35 - 0.59 0.014 - 0.023 vs 3] [38] 02
c 0.20 - 0.36 0.008 - 0.014 s [7] [57] vz
- - 51.31 - - 2.020 veeT [3] [55] D1
e - 2.54 Typ. - - 0.100 Typ. - " & E Y1
el - 15.24 Typ. - - 0.600 Typ. - wAr [7] [34] o
H 471 - 5.38 0.185 - 0.212 s [3] 5] vo
w: - - 15.970 - - ggzz 2 [3] el
: . 12 . - - voo [f wr 57] cp
w - - 153 - - 0.060
1t [} [30] GND
XG405 w3 E3fed
TCEN [13] [28] Y11
tc [14] [77] D11t
D R0 [15] [26] Y10
FULL (16} [25] 1o
s [17] [74] vo
l;l 3 M 1_1'1 v @ 7] o
o7 (38 23] Y8
v7 [20 [21] De
21 40
LITTTLTT LI T JT0TI1TT
W——‘ t—
Seating Plane —— Me >
1
? A 2
A
L f \
: 3 i \
: T 1] \m
/] \)
y U i\
| H le—c
| e
e b - e 7 e |
15°

Figure 31: 40-Lead Ceramic DIL (Solder Seal) - Package Style C

411

MA2910

RADIATION TOLERANCE

Total Dose Radiation Testing

For product procured to guaranteed total dose radiation

levels, each wafter lot will be approved when all sample
devices from each lot pass the total dose radiation test.

The sample devices will be subjected to the total dose
radiation level (Cobalt-60 Source), defined by the ordering

Total Dose (Function) 1x10° Rad(Si)
Transient Upset >1x10" Rad(Si)/sec
Neutron Hardness (Function to specification) | 1x10'® neutrons/cm?

code, and must continue to meet the elactrical parameters

Single Event Upset (GSO 10% worst case)

<10 errorshitday

specified in the data sheet. Electrical tests, pre and post
irradiation, will be read and recorded.

Latch-up

Not possible

GEC Plessey Semiconductors can provids radiation
testing compliant with Mil-Std-883 method 1019 lonizing
Radiation (total dose) test.

ORDERING INFORMATION

Figure 32: Radiation Hardness Parameters

Radlation Tolerance

S Radiation Hard Processing
R 100 kRads (Si) Guaranteed
Q 300 kRads (Si) Guaranteed

Package Type

C Ceramic DIL (Solder Seal)
N Naked Die

Unique Cireult Designator I _[_
MAX2910xxxxx

QA/QCI Process

(See Section 9 Part 4)

Test Process
(See Section 9 Part 3)

For details of reliability, QA/QC, test and assembly
options, see ‘Manufacturing Capability and Quality
Assurance Standards’ Section 9.

Assembly Process
(See Section 9 Part 2)

Reliabllity Level

Rel 0
Rel 1
Rel 2

Class B
Class S

cwmoor

Rel 3/4/5/STACK

412

