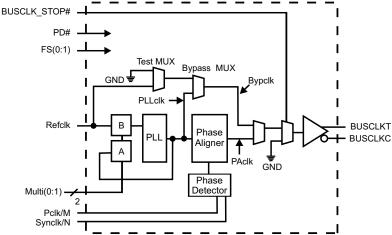


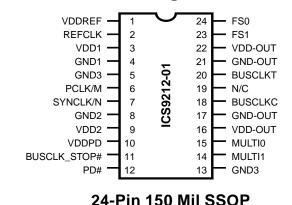
Direct Rambus[™] Clock Generator

General Description

The **ICS9212-01** is a High-speed clock generator providing 400 MHz differential clock source for direct RambusTM memory system. It includes DDLL (Distributed Delay locked loop) and phase detection mechanism to synchronize the direct RambusTM channel clock to an external system clock. **ICS9212-01** provides a solution for a broad range of Direct Rambus memory applications. The device works in conjunction with the ICS9250-09.


The **ICS9212-01** power management support system turns "off" the RambusTM channel clock to minimize power consumption for mobile and other power –sensitive applications. In "clock off" mode the device remains "on" while the output is disabled, allowing fast transitions between clock-off and clock –on states. In "power down" mode it completely powers down for minimum power dissipation.

The **ICS9212-01** meets the requirements for input frequency tracking when the input frequency clock is using Spread Spectrum clocking and also the optimum bandwidth is maintained while attenuating the jitter of the reference signal.


Features

- Compatible with all Direct RambusTM based IC s
- Up to 400 MHz differential clock source for direct Rambus[™] memory system
- Cycle to cycle jitter is less than 50ps
- $3.3 \pm 5\%$ supply
- Synchronization flexibility: Supports Systems that need clock domains of Rambus channel to synchronize with system or processor clock, or systems that do not require synchronization of the Rambus clock to another system clock
- Excellent power management support
- REFCLK input is from the ICS9250-09.

Block Diagram

Pin Configuration

Pin Descriptions

Pin #	Name	Туре	Description	
1	VDDREF	REFV	Reference voltage for refclk, to be connected to CK133	
2	REFCLK	IN	Reference clock, to be connected to CK133	
3	VDD1	PWR	3.3 V power supply used for PLL	
4	GND1	PWR	Ground for PLL	
5, 13	GND3	PWR	Ground for control inputs	
6,7	PCLK/M, SYNCLK/N	IN	Phase controller input, used to drive a phase aligner that adjusts the phase of the busclk.	
8	GND2	PWR	Ground for phase aligner	
9	VDD2	PWR	3.3 V power supply used for phase aligner	
10	VDDPD	REFV	Reference voltage for phase detector inputs connected to the controller	
11	BUSCLK_STOP#	IN	Active low output enable/disable	
12	PD#	IN	3.3V CMOS active low power down, the device is powered down when the "(PD#) =0"	
14,15	MULTI (0:1)	IN	3.3V CMOS PLL Multiplier select, logic for selecting th multiply ratio for the PLL from the input REFCLK	
16	VDD_OUT	PWR	3.3V supply for clock out puts	
17	GND_OUT	PWR	Ground for clock outputs	
18	BUSCLKC	OUT	Out put clock connected to the Rambus channel. This output is the complement of BUSCLK	
19	N/C	N/C	NOT USED	
20	BUSCLKT	OUT	Out put clock connected to the Rambus channel. This output is the true component of BUSCLK	
21	GND_OUT	PWR	Ground for clock outputs	
22	VDD_OUT	PWR	3.3V supply for clock out puts	
24, 23	FS(0:1)	IN	3.3V CMOS Mode control, used in selecting bypass, test, normal, and output test (OE)	

PLL DIVIDER SELECTION AND PLL VALUES (PLLCLK = REFCLK*A/B)

Mult0	Mult1	Α	В	PLLCLK for REFCLK=50MHz	PLLCLK for REFCLK=66.67MHz
0	0	4	1	200.00	266.68
0	1	6	1	300.00	400.02
1	1	8	1	400.00	533.36
1	0	8	3	133.33	177.79

BYPASS AND TEST MODE SELECTION

Mode	FS0	FS1	Bypclk (int.)	BusClk	BusClkB
Normal	0	0	Gnd	PAclk	PAclkB
Bypass	1	0	PLLclk	PLLclk	PLLclkB
Test	1	1	Refclk	Refclk	RefclkB

POWER MANAGEMENT MODES

State	PwrDnB	StopB
NORMAL	1	1
Clk Off	1	0
Powerdown	0	Х

Absolute Maximum Ratings

Out put duty cycle over 10k cycle

Output cycle -to-cycle duty cycle error

Output rise & fall times (measured at 20%-80% of output voltage)

Difference between rise and fall times on a single device(20%-80%)

Supply Voltage	4.0 V
Logic Inputs	GND –0.5 V to V_{DD} +0.5 V
Ambient Operating Temperature	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Parameters Symbol Min Max Unit VDD 3.45 Supply Voltage 3.15 V 10 40 Refclk Input cycle time ns t_{CYCLE.IN} Input cycle-to-cycle Jitter -250 ps t_{J,IN} Input Duty cycle over 10k cycles 40% 60% DCIN **t**CYCLE 30 Input frequency of modulation 33 F_{m,in} KHz Modulation index **R**_{M,IN} 0.25 0.5 % 30 100 ns Phase detector input cycle time at PDclk/M & Synclk/N t_{CYCLE,PD} -0.5 Initial phase error at phase detector inputs T_{err,init} 0.5 t_{CYCLE,PD} 25% 75% Phase detector input duty cycle over 10k cycles D_{CIN,PD} t_{CYCLE,PD} Input rise & fall times (measured at 20%-80% of input voltage) for \geq T_{IR}, T_{IF} 1 ns PDCLK/M & SYNCLK/N,&REfCLK Input capacitance at PDCLK/M,Synclk/N,&REFCLK 7 C_{IN,PD} pF Input Capacitance matching at PCLK/M & SYNCLK/N 0.5 pF $\Delta C_{IN,PD}$ _ Input capacitance at CMOS pins pF CIN,CMOS 10 Input (CMOS) signal low voltage 0.3 Vdd V_{IL} -0.7 Input (CMOS) signal high voltage Vdd VIH -REFCLK input low voltage -0.3 Vddi,R V_{IL,R} REFCLK input high voltage V_{IH,R} 0.7 Vddi,R Input signal low voltage for PD inputs and STOP 0.3 Vddi,PD V_{IL.PD} Input signal high voltage for PD inputs and STOP VIH.PD 0.7 -Vddi,PD Input supply referance for REFCLK 1.3 3.3 V V_{DD,IR} V Input supply referance vfor PD inputs V_{DDI,PD} 1.3 3.3 Phase detector phase error for distributed loop measured at -100 100 ps t_{ERR,PD} PDCLK/M & SYNCLK/N(rising Cycle cycle time 2.5 3.75 ns **t**CYCLE Cycle-to-cycle jitter at Busclk/BUSCLKB -50 ∫tj ps Total jitter over 2,3, or 4clock cycles tJ _ 100 ps Phase aligner, phase step size (BSCLK/BUSCLKB) 1 t_{STEP} ps PLL out put phase error when tracking SSC -100 100 ps t_{ERR.SSC} V Out put crossing-point voltage V_X 1.3 1.8 V Output voltage swing V_{cos} 0.4 0.6 V_H V Output high voltage 2 -

Electrical Characteristics-input/supply/Outputs

DC

t_{DC,ERR}

t_{CR},t_{CF}

t_{CR,CF}

40%

300

-

60%

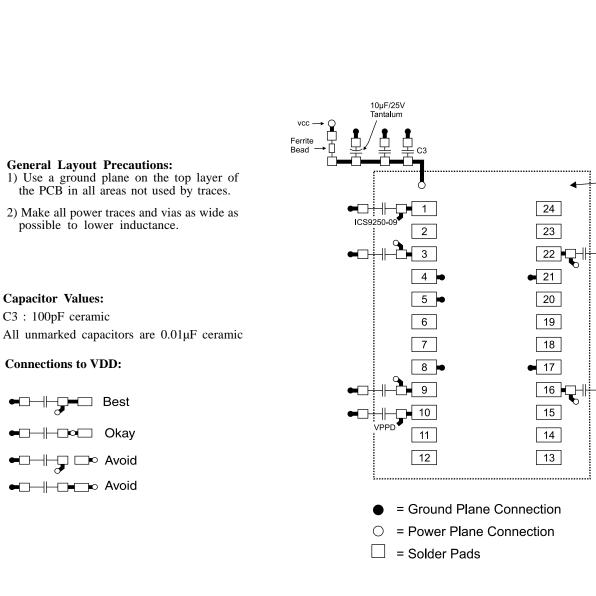
50

500

100

t_{CYCLE}

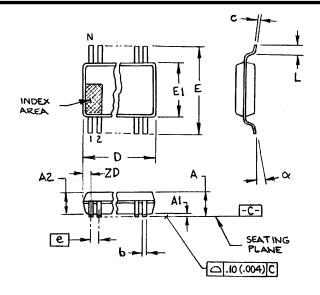
ps


psd

ps

3.3V Power Plane

Ground


Preliminary Product Preview

ICS9212-01

Preliminary Product Preview

150 mil SSOP

SYMBOL	In Millimeters COMMON DIMENSIONS		In Inches COMMON DIMENSIONS	
	MIN	MAX	MIN	MAX
A	1.35	1.75	.053	.069
· A1	0.10	0.25	.0040	.010
A2		1.50		.059
b	0.20	0.30	.008	.012
с	0.18	0.25	.007	.010
D	SEE VARIATIONS		SEE VARIATIONS	
E	5.80	6.20	.228	.244
E1	3.80	4.00	.150	.157
е	0.65 BASIC		0.025 BASIC	
L	0.40	1.27	.016	.050
N	SEE VARIATIONS		SEE VARIATIONS	
α	0°	8°	0°	8°
ZD	SEE VARIATIONS		SEE VARIATIONS	

ZD ZD D (inch) Ν D mm. (Ref) MIN MAX (Ref) MIN MAX 14 4.80 5.00 0.55 .189 197 .022 5.00 197 .009 4.80 0.23 189 16 **Ordering Information** 8.55 .344 .071 18 8.75 1.80 .337 20 8.55 8.75 1.47 .337 .344 .058 8.55 8.75 0.84 .337 .344 .033 24 ICS9212_⊻F-01-T 28 9.80 10.00 0.84 .386 .394 .033 Example: ICS XXXX y F - PPP - T Designation for tape and reel packaging Pattern Number (2 or 3 digit number for parts with ROM code patterns) Package Type F=SSOP Revision Designator (will not correlate with datasheet revision) Device Type (consists of 3 or 4 digit numbers) Prefix ICS, AV = Standard Device

VARIATIONS