

SRAM Memory Card 2MB through 16MB

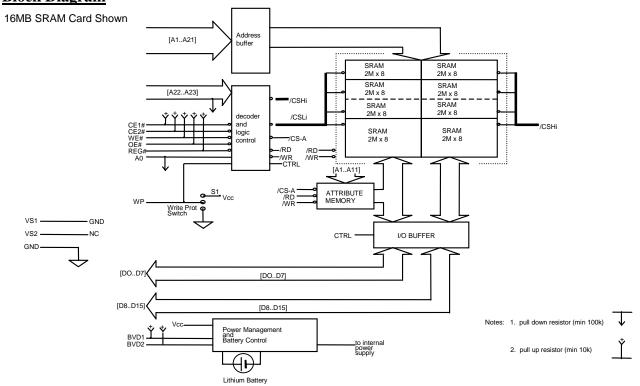
General Description

The WEDC SRAM Series (SRV30) memory cards offer a high performance nonvolatile storage solution for code and data storage, disk caching, and write intensive mobile and embedded applications.

Packaged in PCMCIA type I or type II housing (type II for cards with extended battery backup time), the WEDC SRAM SRV30 series is based on high density and super low power SRAM memory devices, providing densities from 2MBytes to 16MBytes.

The SRV30 series of SRAM memory cards has a universal wide power supply (3V to 5V) and operates at speeds as high as 150ns. The cards are based on advanced CMOS technology providing very low power and reliable data retention characteristics. WEDC's SRAM cards contain a rechargeable lithium battery and recharge circuitry, eliminating the need for replaceable batteries found in many SRAM cards.

WEDC's standard cards are shipped with WEDC's SRAM Logo. Cards are also available with blank housings (no Logo). The blank housings are available in both a recessed (for label) and flat housing. Please contact WEDC sales representative for further information on Custom artwork.


Features

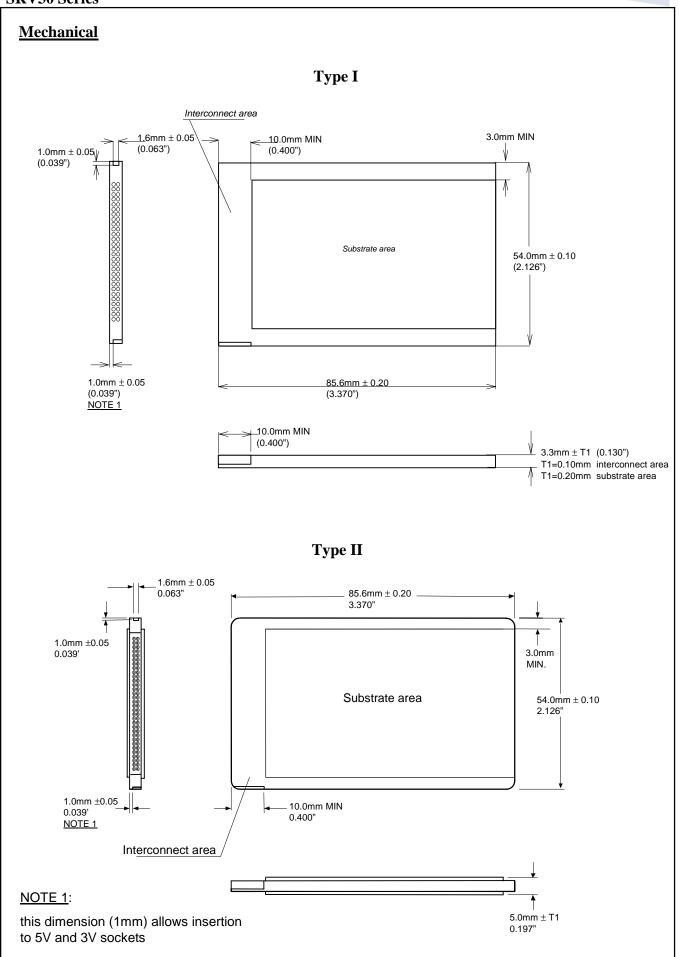
- High Performance SRAM memory Card
- Universal 3.3 to 5 Volt Supply allows for wider compatibility between systems.
- Fast Access times: 150ns @ 3.3V 5V
- x8/x16 PCMCIA standard interface
- Low Power CMOS technology provides very low power and reliable data retention characteristics
 standby current < 100μA typical
- Rechargeable Lithium battery with recharge circuitry
 - eliminates the need for replaceable batteries
 - standby current during recharge typically < 2mA
 - battery backup time
 - 18 months type I card
 - 40 months type II card

typical based on 4MB

- Unlimited write cycles, no endurance issues
- Optional Features:
 - 2KB EEPROM attribute memory containing CIS
 - Optional Hardware Write Protect switch
- PC Card Standard Type I or Type II Form Factor

Block Diagram

Pinout


Pin	Signal name	I/O	Function	Active
1	GND		Ground	
2	DQ3	I/O	Data bit 3	
3	DQ4	I/O	Data bit 4	
4	DQ5	I/O	Data bit 5	
5	DQ6	I/O	Data bit 6	
6	DQ7	I/O	Data bit 7	
7	CE1#	I	Card enable 1	LOW
8	A10	I	Address bit 10	
9	OE#	I	Output enable	LOW
10	A11	I	Address bit 11	
11	A9	I	Address bit 9	
12	A8	I	Address bit 8	
13	A13	I	Address bit 13	
14	A14	I	Address bit 14	
15	WE#	I	Write Enable	LOW
16	RDY/BSY#	О	Ready/Busy	N.C.
17	Vcc		Supply Voltage	
18	Vpp1		Prog. Voltage	N.C.
19	A16	I	Address bit 16	
20	A15	I	Address bit 15	
21	A12	I	Address bit 12	
22	A7	I	Address bit 7	
23	A6	I	Address bit 6	
24	A5	I	Address bit 5	
25	A4	I	Address bit 4	
26	A3	I	Address bit 3	
27	A2	I	Address bit 2	
28	A1	I	Address bit 1	
29	A0	I	Address bit 0	
30	DQ0	I/O	Data bit 0	
31	DQ1	I/O	Data bit 1	
32	DQ2	I/O	Data bit 2	
33	WP	0	Write Potect	HIGH
34	GND		Ground	

Pin	Signal name	I/O	Function	Active
35	GND		Ground	
36	CD1#	О	Card Detect 1	LOW
37	DQ11	I/O	Data bit 11	
38	DQ12	I/O	Data bit 12	
39	DQ13	I/O	Data bit 13	
40	DQ14	I/O	Data bit 14	
41	DQ15	I	Data bit 15	
42	CE2#	I	Card Enable 2	LOW
43	VS1	О	Voltage Sense 1	GND (4)
44	N.C.			
45	N.C.			
46	A17	I	Address bit 17	
47	A18	I	Address bit 18	
48	A19	I	Address bit 19	
49	A20	I	Address bit 20	2MB(2)
50	A21	I	Address bit 21	4MB(2)
51	Vcc		Supply Voltage	
52	Vpp2		Prog. Voltage	N.C.
53	A22		Address bit 22	8MB(2)
54	A23		Address bit 23	16MB(2,3)
55	A24		Address bit 24	N.C.
56	A25		Address bit 25	N.C.
57	VS2	О	Voltage Sense 2	N.C.
58	N.C.			
59	Wait#	О	Extended Bus Cycle	Low
60	N.C.			
61	REG#	I	Attrib Mem Select	Low
62	BVD2	О	Bat. Volt. Detect 2	(5)
63	BVD1	O	Bat. Volt. Detect 1	(5)
64	DQ8	I/O	Data bit 8	
65	DQ9	I/O	Data bit 9	
66	DQ10	О	Data bit 10	
67	CD2#	О	Card Detect 2	LOW
68	GND		Ground	

Notes

- 1. CD1# and CD2# are grounded internal to PC Card.
- 2. Shows density for which specified address bit is MSB. Higher order address bits are no connects (ie 1MB A19 is MSB, A20 A21 are NC).
- 3. The A23 Address line for 16MB capacities is also used for 12MB cards.
- 4. VS1 is grounded and VS2 is open to indicate a 3.3V/5V card, with a 5V key, has been inserted.
- 5. BVD1 and BVD2 are open drain outputs with a 10KOhm internal pull-up resistors

Card Signal Description

Symbol	Туре	Name and Function
A0 - A25	INPUT	ADDRESS INPUTS: A0 through A25 enable direct addressing of up
		to 64MB of memory on the card. Signal A0 is not used in word access
		mode. A 25 is the most significant bit. (address pins used are based on
		card density, see pinout for highest used address pin)
DQ0 - DQ15	INPUT/OUT	DATA INPUT/OUTPUT: DQ0 THROUGH DQ15 constitute the
	PUT	bi-directional databus. DQ0 - DQ7 constitute the lower (even) by te and
		DQ8 - DQ15 the upper (odd) byte. DQ15 is the MSB.
CE1#, CE2#	INPUT	CARD ENABLE 1 AND 2: CE1# enables even by te accesses, CE2#
		enables odd by te accesses. Multiplexing A0, CE1#and CE2#allows 8-
		bit hosts to access all data on DQ0 - DQ7.
OE#	INPUT	OUTPUT ENABLE: A ctive low signal enabling read data from the
		memory card.
WE#	INPUT	WRITE ENABLE: Active low signal gating write data to the memory
DDV/DGV/	O LUMBIUM	card.
RDY/BSY#	OUTPUT	READY/BUSY OUTPUT: Not used for SRAM cards
CD1#, CD2#	OUTPUT	CARD DETECT 1 and 2: Provide card insertion detection. These
		signals are connected to ground internally on the memory card. The
		host socket interface circuitry shall supply 10K-ohm or larger pull-up
WD	OUTPUT	resistors on these signal pins.
WP	OUTPUT	WRITE PROTECT: Follows hardware Write Protect Switch. When
		Switch is placed in on position, signal is pulled high (10K ohm). When switch is off signal is pulled low.
VPP1, VPP2	N.C.	PROGRAM/ERASE POWER SUPPLY: Not used for SRAM
V111, V112	11.0.	cards.
MOO		
VCC		CARD POWER SUPPLY: 3.3V / 5.0V for all internal circuitry.
GND REG#	INPUT	GROUND: for all internal circuitry.
KEG#	INPUI	ATTRIBUTE MEMORY SELECT: only used with cards built with
DCT	INIDIUT	optional attribute memory. RESET: Not used for SRAM cards
RST WAIT#	INPUT OUTPUT	WAIT: This signal is pulled high internally for compatibility. No wait
WAII#	OUTPUT	states are generated.
BVD1, BVD2	OUTPUT	BATTERY VOLTAGE DETECT: Provides status of Battery
	OUTFUT	voltage.
		BVD2 = BVD1 = Voh (battery voltage is guaranteed to retain data)
		BVD2 = Vol, BVD1 = Voh (data is valid, battery recharge required)
		BVD2 = BVD1 = Vol. (data is valid, battery rectaing required)
		extended recharge)
VS1, VS2	OUTPUT	VOLTAGE SENSE: Notifies the host socket of the card's VCC
		requirements. VS1 is grounded and VS2 is open to indicate a 3.3V/5V
		16 bit card, with a 5V key, has been inserted.
RFU		RESERVED FOR FUTURE USE
N.C.		NO INTERNAL CONNECTION TO CARD: pin may be driven
		or left floating

FUNCTIONAL TRUTH TABLE

READ function							Common	Memory	Α	ttribute M	emory
Function Mode	/CE2	/CE1	A0	/OE	/WE	/REG	D15-D8	D7-D0	/REG	D15-D8	D7-D0
Standby Mode	Н	Н	Χ	Х	Х	Х	High-Z	High-Z	Χ	High-Z	High-Z
Byte Access (8 bits)	Н	L	L	L	Н	Н	High-Z	Even-Byte	L	High-Z	Even-Byte
	Н	L	Н	L	Н	Н	High-Z	Odd-Byte	L	High-Z	Not Valid
Word Access (16 bits)	L	L	Х	L	Н	Н	Odd-Byte	Even-Byte	L	Not Valid	Even-Byte
Odd-Byte Only Access	L	Н	Χ	L	Н	Н	Odd-Byte	High-Z	L	Not Valid	High-Z
WRITE function											
Standby Mode	Н	Н	Χ	Х	X	Χ	Х	X	Χ	Χ	X
Byte Access (8 bits)	Н	L	L	Н	L	Н	Х	Even-Byte	L	Х	Even-Byte
	Н	L	Н	Н	L	Н	Х	Odd-Byte	L	Х	Х
Word Access (16 bits)	L	L	Χ	Н	L	Н	Odd-Byte	Even-Byte	L	Х	Even-Byte
Odd-Byte Only Access	L	Н	Χ	Н	L	Н	Odd-Byte	X	L	Х	Х

Absolute Maximum Ratings

Operating Temperature TA (ambient)

Commercial 0°C to +60 °C Industrial -40°C to +85 °C

Storage Temperature

Commercial 0°C to +60 °C Industrial -40°C to +85 °C Voltage on any pin relative to VSS -0.5V to +5.5V (1) VCC supply Voltage relative to VSS -0.5V to +7.0V

Notes:

Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Characteristics

CMOS Test Conditions: VIL = VSS ± 0.2V, VIH = 5V ± 0.2V VCC = 3.3V or 5V

Sym	Parameter	Density	Notes	Min	Typ ⁽³⁾	Max	Units	Test Conditions
ICC	VCC Active Current	All	1			25	mA	VCC = 5.25V tcycle = 150ns
ICCS	VCC Standby Current	All	2,4!		< 1	10	mA	VCC = 5.25V Control Signals = VCC
ILI	Input Leakage Current	All	5, 6			±20	μA	VCC = VCCMAX Vin = VCC or VSS
ILO	Output Leakage Current	All	6			±20	μA	VCC = VCCMAX Vout = VCC or VSS
VIL	Input Low Voltage	All	6			0.9 1.6	V	VCC= 3V VCC= 5.25V
VIH	Input High Voltage	All	6	2.1 3.8		Vcc+0.5 Vcc+0.5	V	VCC= 3V VCC= 5.25V
VOL	Output Low Voltage	All	6			0.4	V	IOL = 3.2mA
VOH	Output High Voltage	All	6	2.4	2.8		V	IOH = -2.0mA

Notes:

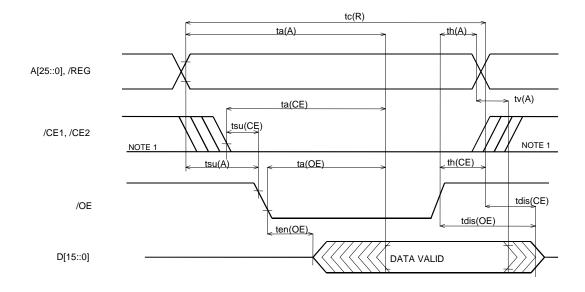
- 1. All currents are for x16 mode and are RMS values unless otherwise specified.
- 2. Control Signals: CE₁#, CE₂#, OE#, WE#, REG#.
- 3. Typical: VCC = 5V, T = +25C.
- 4. ICCS includes battery recharge current. Value depends on battery discharge level. ICCS min is specified for fully charged battery. ICCS typical value is specified for battery discharge to 2.7V. ICCS max is specified for a fully discharged battery (0V). Battery will recharge to 1.5V in 20 sec.
- 5. Values are the same for byte and word wide modes for all card densities.
- 6. Exceptions: Leakage currents on CE1#, CE2#, OE#, REG# and WE# will be < 500 μA when VIN = GND due to internal pull-up resistors.

Battery Characteristics

			S	RV31-34		
Parameter	Density	Notes	Type I	Type II	Units	Conditions
Battery Life	All	(1)	min 10	min 10	years	Normal operation, T=25C
Card	2MB	(2)	18	40		Battery backup time is a
capacity	4MB		18	40		calculated value and is not
	8MB		12	30	months (typical)	guaranteed. This should not be
	12MB		10	25	(typicai)	used to schedule battery
	16MB		9	20		recharging. (Temp 25C)

Notes:

- 1. Battery Life refers to functional lifetime of battery.
- 2. Battery backup time is density and temperature dependent.


AC Characteristics

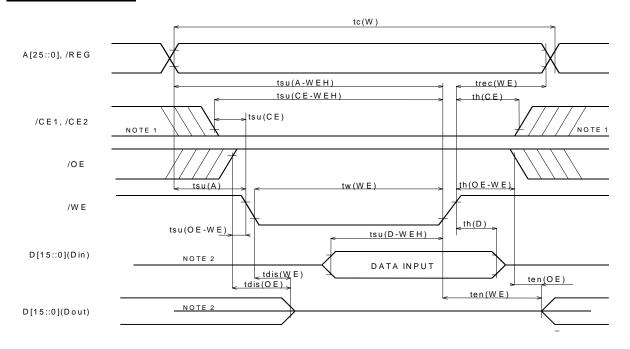
Read Timing Parameters

SYM (PCMCIA)	Parameter	Min	Max	Unit
t_{RC}	Read Cycle Time	150		ns
t _a (A)	Address Access Time		150	ns
t _a (CE)	Card Enable Access Time		150	ns
t _a (OE)	Output Enable Access Time		75	ns
t _{su} (A)	Address Setup Time	20		ns
t _{su} (CE)	Card Enable Setup Time	0		ns
t _h (A)	Address Hold Time	20		ns
t _h (CE)	Card Enable Hold Time	20		ns
t _v (A)	Output Hold from Address Change	0		ns
t _{dis} (CE)	Output Disable Time from CE#		75	ns
t _{dis} (OE)	Output Disable Time from OE#		75	ns
t _{dis} (CE)	Output Enable Time from CE#	5		ns
t _{dis} (CE)	Output Enable Time from OE#	5		ns

Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications.

Read Timing Diagram

Note: Signal may be high or low in this area.

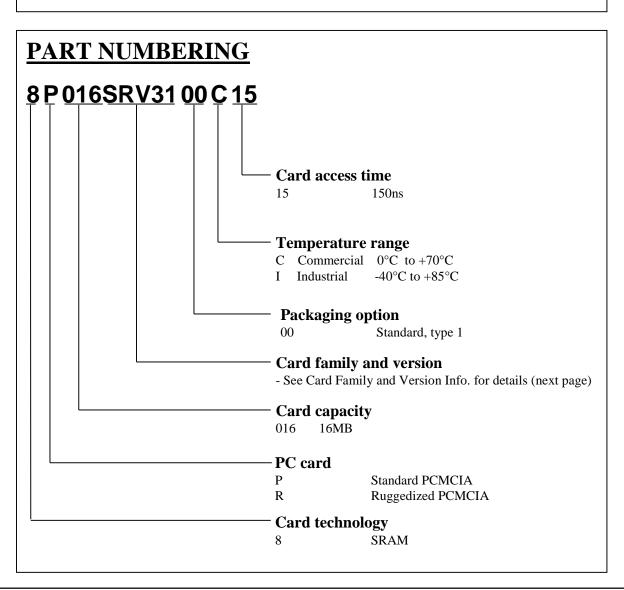


Write Timing Parameters

SYM (PCMCIA)	Parameter	Min	Max	Unit
t _C W	Write Cycle Time	150		ns
t _w (WE)	Write Pulse Width	80		ns
t _{su} (A)	Address Setup Time	20		ns
t _{su} (A-WEH)	Address Setup Time for WE#	100		ns
t _{su} (CE-WEH)	Card Enable Setup Time for WE#	100		ns
t _{su} (D-WEH)	Data Setup Time for WE#	50		ns
t _h (D)	Data Hold Time	20		ns
t _{rec} (WE)	Write Recover Time	20		ns
t _{dis} (WE)	Output Disable Time from WE#		75	ns
t _{dis} (OE)	Output Disable Time from OE#		75	ns
t _{en} (WE)	Output Enable Time from WE#	5		ns
t _{dis} (OE)	Output Enable Time from OE#	5		ns
t _{su} (OE-WE)	Output Enable Setup from WE#	10		ns
t _h (OE-WE)	Output Enable Hold from WE#	10		ns
t _{su} (CE)	Card Enable Setup Time from OE#	0		ns
t _h (CE)	Card Enable Hold Time	20		ns

Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications.

Write Timing Diagram



Notes:

- 1. Signal may be high or low in this area.
- 2. When the data I/O pins are in the output state, no signals shall be applied to the data pins (D15 D0) by the host system.

PRODUCT MARKING WED 8P016 SRV31 00C15 C995 9915 EDI Date code Lot code / trace number Part number Company Name Note: Some products are currently marked with our pre-merger company name/acronym (EDI). During our transition period, some products will also be marked with our new company name/acronym (WED). Starting October 2001 all PCMCIA products will be marked only with the WED prefix.

Ordering Information

8P XXX SRV YY SS T ZZ

where		
XXX:	002	2MB
	004	4MB
	006	6MB
	008	8MB
	012	12MB
	016	16MB
YY:	31	no attribute memory, no Write Protect Switch
	32	with attribute memory, no Write Protect Switch
	33	with Write Protect Switch, no attribute memory

34

SS:	00	WEDC SRAM Logo	Type I	
	01	Blank Housing,	Type I	
	02	Blank Housing,	Type I Recessed	
	03	WEDC SRAM Logo	, Type II	(extended battery backup time)
	04	Blank Housing,	Type II	(extended battery backup time)
	05	Blank Housing,	Type II Recessed	(extended battery backup time)

with attribute memory, with Write Protect Switch

T:	C	Commercial Industrial
	1	industriai

REVISION HISTORY					
Date of revision	Version	Description			
23-Jan-02	0	Initial release			

Filename: SRV30_Rev0.ppt

White Electronic Designs Corporation

One Research Drive, Westborough, MA 01581, USA

tel: (508) 366 5151 fax: (508) 836 4850 www.whiteedc.com

