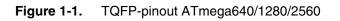
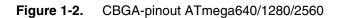
Features

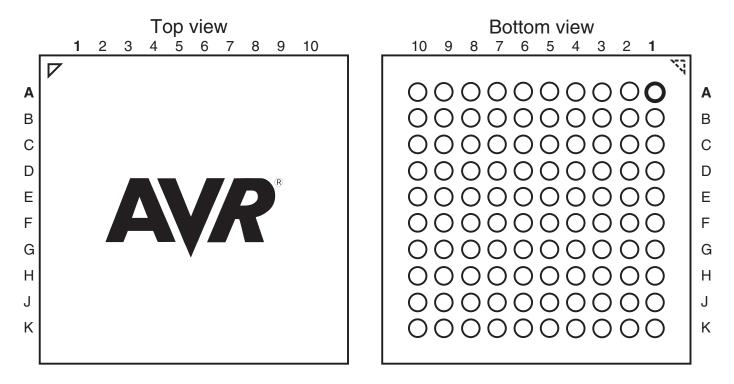
- High Performance, Low Power Atmel[®] AVR[®] 8-Bit Microcontroller
- Advanced RISC Architecture
 - 135 Powerful Instructions Most Single Clock Cycle Execution
 - 32 × 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 16 MIPS Throughput at 16MHz
 - On-Chip 2-cycle Multiplier
- High Endurance Non-volatile Memory Segments
 - 64K/128K/256KBytes of In-System Self-Programmable Flash
 - 4Kbytes EEPROM
 - 8Kbytes Internal SRAM
 - Write/Erase Cycles:10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/ 100 years at 25°C
 - Optional Boot Code Section with Independent Lock Bits
 In-System Programming by On-chip Boot Program
 - True Read-While-Write Operation
 - Programming Lock for Software Security
 - Endurance: Up to 64Kbytes Optional External Memory Space
- Atmel[®] QTouch[®] library support
 - Capacitive touch buttons, sliders and wheels
 - QTouch and QMatrix® acquisition
 - Up to 64 sense channels
- JTAG (IEEE std. 1149.1 compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - Four 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Four 8-bit PWM Channels
 - Six/Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits
 - (ATmega1281/2561, ATmega640/1280/2560)
 - Output Compare Modulator
 - 8/16-channel, 10-bit ADC (ATmega1281/2561, ATmega640/1280/2560)
 - Two/Four Programmable Serial USART (ATmega1281/2561, ATmega640/1280/2560)
 - Master/Slave SPI Serial Interface
 - Byte Oriented 2-wire Serial Interface
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
 - Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,
 - and Extended Standby
- I/O and Packages
 - 54/86 Programmable I/O Lines (ATmega1281/2561, ATmega640/1280/2560)
 - 64-pad QFN/MLF, 64-lead TQFP (ATmega1281/2561)
 - 100-lead TQFP, 100-ball CBGA (ATmega640/1280/2560)
 - RoHS/Fully Green
- Temperature Range:
 - -40°C to 85°C Industrial
- Ultra-Low Power Consumption
 - Active Mode: 1MHz, 1.8V: 500µA
 - Power-down Mode: 0.1µA at 1.8V
- Speed Grade:
 - ATmega640V/ATmega1280V/ATmega1281V:
 - 0 4MHz @ 1.8V 5.5V, 0 8MHz @ 2.7V 5.5V
 - ATmega2560V/ATmega2561V:
 - 0 2MHz @ 1.8V 5.5V, 0 8MHz @ 2.7V 5.5V - ATmega640/ATmega1280/ATmega1281:
 - 0 8MHz @ 2.7V 5.5V, 0 16MHz @ 4.5V 5.5V
 ATmega2560/ATmega2561:
 - 0 16MHz @ 4.5V 5.5V

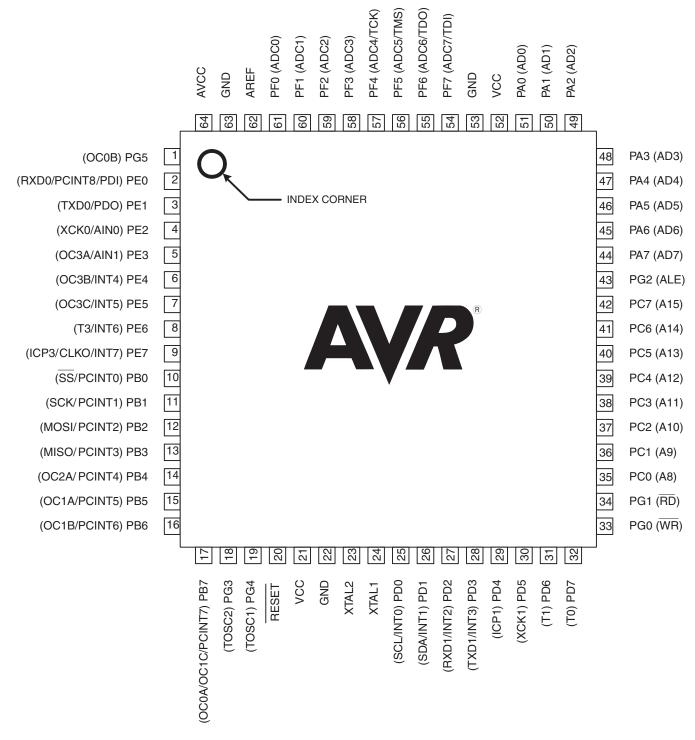

8-bit Atmel Microcontroller with 64K/128K/256K Bytes In-System Programmable Flash

ATmega640/V ATmega1280/V ATmega1281/V ATmega2560/V ATmega2561/V

Summary


2549PS-AVR-10/2012


1. Pin Configurations

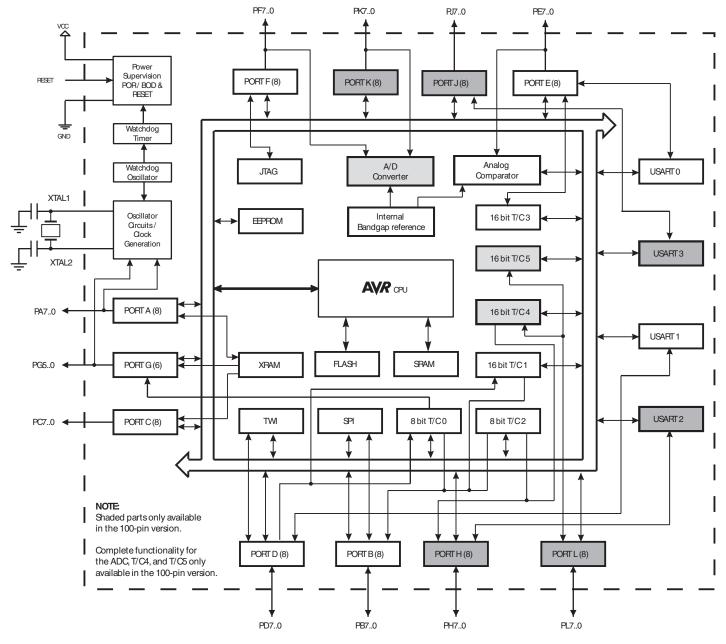

Table 1-1. CBGA-pinout ATmega640/1280

	1	2	3	4	5	6	7	8	9	10
Α	GND	AREF	PF0	PF2	PF5	PK0	PK3	PK6	GND	VCC
в	AVCC	PG5	PF1	PF3	PF6	PK1	PK4	PK7	PA0	PA2
С	PE2	PE0	PE1	PF4	PF7	PK2	PK5	PJ7	PA1	PA3
D	PE3	PE4	PE5	PE6	PH2	PA4	PA5	PA6	PA7	PG2
Е	PE7	PH0	PH1	PH3	PH5	PJ6	PJ5	PJ4	PJ3	PJ2
F	VCC	PH4	PH6	PB0	PL4	PD1	PJ1	PJ0	PC7	GND
G	GND	PB1	PB2	PB5	PL2	PD0	PD5	PC5	PC6	VCC
н	PB3	PB4	RESET	PL1	PL3	PL7	PD4	PC4	PC3	PC2
J	PH7	PG3	PB6	PL0	XTAL2	PL6	PD3	PC1	PC0	PG1
К	PB7	PG4	VCC	GND	XTAL1	PL5	PD2	PD6	PD7	PG0

Note: The functions for each pin is the same as for the 100 pin packages shown in Figure 1-1 on page 2.

Figure 1-3. Pinout ATmega1281/2561

Note: The large center pad underneath the QFN/MLF package is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.



2. Overview

The ATmega640/1280/1281/2560/2561 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega640/1280/1281/2560/2561 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

The Atmel[®] AVR[®] core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega640/1280/1281/2560/2561 provides the following features: 64K/128K/256K bytes of In-System Programmable Flash with Read-While-Write capabilities, 4Kbytes EEPROM, 8 Kbytes SRAM, 54/86 general purpose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), six flexible Timer/Counters with compare modes and PWM, 4 USARTs, a byte oriented 2-wire Serial Interface, a 16-channel, 10-bit ADC with optional differential input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE® std. 1149.1 compliant JTAG test interface, also used for accessing the Onchip Debug system and programming and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Powersave mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

Atmel offers the QTouch[®] library for embedding capacitive touch buttons, sliders and wheelsfunctionality into AVR microcontrollers. The patented charge-transfer signal acquisition offersrobust sensing and includes fully debounced reporting of touch keys and includes Adjacent KeySuppression[®] (AKS[™]) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.

The device is manufactured using Atmel's high-density nonvolatile memory technology. The Onchip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega640/1280/1281/2560/2561 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega640/1280/1281/2560/2561 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

2.2 Comparison Between ATmega1281/2561 and ATmega640/1280/2560

Each device in the ATmega640/1280/1281/2560/2561 family differs only in memory size and number of pins. Table 2-1 summarizes the different configurations for the six devices.

Device	Flash	EEPROM	RAM	General Purpose I/O pins	16 bits resolution PWM channels	Serial USARTs	ADC Channels
ATmega640	64KB	4KB	8KB	86	12	4	16
ATmega1280	128KB	4KB	8KB	86	12	4	16
ATmega1281	128KB	4KB	8KB	54	6	2	8
ATmega2560	256KB	4KB	8KB	86	12	4	16
ATmega2561	256KB	4KB	8KB	54	6	2	8

Table 2-1.Configuration Summary

2.3 Pin Descriptions

2.3.1 VCC

Digital supply voltage.

2.3.2 GND

Ground.

2.3.3 Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 78.

2.3.4 Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 79.

2.3.5 Port C (PC7..PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the ATmega640/1280/1281/2560/2561 as listed on page 82.

2.3.6 Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 83.

2.3.7 Port E (PE7..PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 86.

2.3.8 Port F (PF7..PF0)

Port F serves as analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface.

2.3.9 Port G (PG5..PG0)

Port G is a 6-bit I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 90.

2.3.10 Port H (PH7..PH0)

Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port H output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port H pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port H pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port H also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 92.

2.3.11 Port J (PJ7..PJ0)

Port J is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port J output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port J pins that are externally pulled low will source current if the pull-up resistors are activated. The Port J pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port J also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 94.

2.3.12 Port K (PK7..PK0)

Port K serves as analog inputs to the A/D Converter.

Port K is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port K output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port K pins that are externally pulled low will source current if the pull-up resistors are activated. The Port K pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port K also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 96.

2.3.13 Port L (PL7..PL0)

Port L is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port L output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port L pins that are externally pulled low will source current if the pull-up resistors are activated. The Port L pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port L also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 98.

2.3.14 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in "System and Reset Characteristics" on page 372. Shorter pulses are not guaranteed to generate a reset.

2.3.15 XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.3.16 XTAL2

Output from the inverting Oscillator amplifier.

2.3.17 AVCC

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter.

2.3.18 AREF

This is the analog reference pin for the A/D Converter.

3. Resources

A comprehensive set of development tools and application notes, and datasheets are available for download on http://www.atmel.com/avr.

4. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

These code examples assume that the part specific header file is included before compilation. For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

5. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 ppm over 20 years at 85°C or 100 years at 25°C.

6. Capacitive touch sensing

The Atmel[®]QTouch[®] Library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR[®] microcontrollers. The QTouch Library includes support for the QTouch and QMatrix[®] acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API's to retrieve the channel information and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location: www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch Library User Guide - also available for download from the Atmel website.

7. Register Summary

n nogi			,			ſ				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x1FF)	Reserved	-	-	-	-	-	-	-	-	
	Reserved	-	-	-	-	-	-	-	-	
(0x13F)	Reserved									
(0x13E)	Reserved									
(0x13D)	Reserved									
(0x13C)	Reserved									
(0x13B)	Reserved									
(0x13A)	Reserved									
(0x139)	Reserved									
(0x138)	Reserved									
(0x137)	Reserved									
(0x136)	UDR3					Data Register				222
(0x135)	UBRR3H	-	-	-		-	ISART3 Baud Rat	to Register High F	3vto	227
(0x133) (0x134)	UBRR3L	_	-		ISART2 Boud Pr	ate Register Low		te negister night	byte	227
(0x134) (0x133)	Reserved	-	-	-	JOANTO Daud Na		-	-	-	221
. ,	UCSR3C	- UMSEL31	- UMSEL30	- UPM31	UPM30	- USBS3	UCSZ31	UCSZ30	UCPOL3	239
(0x132)										
(0x131)	UCSR3B	RXCIE3	TXCIE3	UDRIE3	RXEN3	TXEN3	UCSZ32	RXB83	TXB83	238
(0x130)	UCSR3A	RXC3	TXC3	UDRE3	FE3	DOR3	UPE3	U2X3	MPCM3	238
(0x12F)	Reserved	-	-	-	-	-	-	-	-	
(0x12E)	Reserved	-	-	-	-	-	-	-	-	
(0x12D)	OCR5CH					ompare Register				165
(0x12C)	OCR5CL					Compare Register	-			165
(0x12B)	OCR5BH					compare Register				165
(0x12A)	OCR5BL					Compare Register	,			165
(0x129)	OCR5AH			Timer/Co	unter5 - Output C	ompare Register	A High Byte			164
(0x128)	OCR5AL			Timer/Co	unter5 - Output C	Compare Register	A Low Byte			164
(0x127)	ICR5H			Timer/	Counter5 - Input	Capture Register	High Byte			165
(0x126)	ICR5L			Timer/	Counter5 - Input	Capture Register	Low Byte			165
(0x125)	TCNT5H			Tim	er/Counter5 - Co	unter Register Hig	jh Byte			163
(0x124)	TCNT5L			Tim	er/Counter5 - Co	unter Register Lo	w Byte			163
(0x123)	Reserved	-	-	-	-	-	-	-	-	
(0x122)	TCCR5C	FOC5A	FOC5B	FOC5C	-	-	-	-	-	162
(0x121)	TCCR5B	ICNC5	ICES5	-	WGM53	WGM52	CS52	CS51	CS50	160
(0x120)	TCCR5A	COM5A1	COM5A0	COM5B1	COM5B0	COM5C1	COM5C0	WGM51	WGM50	158
(0x11F)	Reserved	-	-	-	-	-	-	-	-	
(0x11E)	Reserved	-	-	-	-	-	-	-	-	
(0x11D)	Reserved	-	-	-	-	-	-	-	-	
(0x11C)	Reserved	-	-	-	-	-	-	-	-	
(0x11B)	Reserved	-	-	-	-	-	-	-	-	
(0x11A)	Reserved	-	-	-	-	-	-	-	-	
(0x119)	Reserved	-	-	-	-	-	-	-	-	
(0x118)	Reserved	-	-	-	-	-	-	-	-	
(0x117)	Reserved	-	-	-	-	-	-	-	-	
(0x116)	Reserved	-	-	-	-	-	-	-	-	
(0x115)	Reserved	-	-	-	-	-	-	-	-	
(0x114)	Reserved	-	-	-	-	-	-	-	-	
(0x113)	Reserved	-	-	-	-	-	-	-	-	
(0x113) (0x112)	Reserved	-	-	-	-	-	-	-	-	
(0x112) (0x111)	Reserved	-	-	-	-	-	-	-	-	
(0x110)	Reserved	-		-	-	-	-	-	-	
(0x10F)	Reserved	-		-	-	-	-	-	-	
(0x10F) (0x10E)	Reserved	-		-	-	-	-	-	-	
(0x10E)	Reserved				-	-	-	-	-	
(0x10D) (0x10C)	Reserved				-	-	-	-	-	
(0x10C) (0x10B)	PORTL	PORTL7	PORTL6	PORTL5	- PORTL4	PORTL3	PORTL2	PORTL1	PORTL0	104
(0x10B) (0x10A)	DDRL	DDL7	DDL6	DDL5	DDL4	DDL3	DDL2	DDL1	DDL0	104
(0x10A) (0x109)	PINL	PINL7	PINL6	PINL5	PINL4	PINL3	PINL2	PINL1	PINLO	104
	PINL	PINL7 PORTK7	PINL6 PORTK6	PINL5 PORTK5	PINL4 PORTK4	PINL3 PORTK3	PINL2 PORTK2	PINL I PORTK1	PINL0 PORTK0	104
, ,	FURIN									
(0x108)	ייסס		DDK6	DDK5	DDK4	DDK3	DDK2 PINK2	DDK1 PINK1	DDK0 PINK0	103 103
(0x108) (0x107)	DDRK	DDK7		DINUKE						103
(0x108) (0x107) (0x106)	PINK	PINK7	PINK6	PINK5	PINK4	PINK3				
(0x108) (0x107) (0x106) (0x105)	PINK PORTJ	PINK7 PORTJ7	PINK6 PORTJ6	PORTJ5	PORTJ4	PORTJ3	PORTJ2	PORTJ1	PORTJ0	103
(0x108) (0x107) (0x106) (0x105) (0x104)	PINK PORTJ DDRJ	PINK7 PORTJ7 DDJ7	PINK6 PORTJ6 DDJ6	PORTJ5 DDJ5	PORTJ4 DDJ4	PORTJ3 DDJ3	PORTJ2 DDJ2	PORTJ1 DDJ1	PORTJ0 DDJ0	103 103
(0x108) (0x107) (0x106) (0x105)	PINK PORTJ	PINK7 PORTJ7	PINK6 PORTJ6	PORTJ5	PORTJ4	PORTJ3	PORTJ2	PORTJ1	PORTJ0	103

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x100)	PINH	PINH7	PINH6	PINH5	PINH4	PINH3	PINH2	PINH1	PINHO	103
(0xFF)	Reserved	-	-	-	-	-	-	-	-	100
(0xFE)	Reserved	-	-	-	-	-	-	-	-	
(0xFD)	Reserved	-	-	-	-	-	-	-	-	
(0xFC)	Reserved	-	-	-	-	-	-	-	-	
(0xFB)	Reserved	-	-	-	-	-	-	-	-	
(0xFA)	Reserved	-	-	-	-	-	-	-	-	
(0xF9)	Reserved	-	-	-	-	-	-	-	-	
(0xF8)	Reserved	-	-	-	-	-	-	-	-	
(0xF7)	Reserved	-	-	-	-	-	-	-	-	
(0xF6)	Reserved	-	-	-	-	-	-	-	-	
(0xF5)	Reserved	-	-	-	-	-	-	-	-	
(0xF4)	Reserved	-	-	-	-	-	-	-	-	
(0xF3)	Reserved	-	-	-	-	-	-	-	-	
(0xF2)	Reserved	-	-	-	-	-	-	-	-	
(0xF1)	Reserved	-	-	-	-	-	-	-	-	
(0xF0)	Reserved	-	-	-	-	-	-	-	-	
(0xEF)	Reserved	-	-	-	-	-	-	-	-	
(0xEE)	Reserved	-	-	-	-	-	-	-	-	
(0xED)	Reserved	-	-	-	-	-	-	-	-	
(0xEC)	Reserved	-	-	-	-	-	-	-	-	
(0xEB)	Reserved	-	-	-	-		-	-	-	
(0xEA)	Reserved	-	-	-	-	-	-	-	-	
(0xE9)	Reserved	-	-	-	-	-	-	-	-	
(0xE8)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0xE7)	Reserved	-	-	-	-	-	-	-	-	
(0xE6) (0xE5)	Reserved	-	-		-	-	-		-	
(0xE3) (0xE4)	Reserved	-	-	-	-	-	-	-	-	
(0xE3)	Reserved		-		-	-	-	-	-	
(0xE3) (0xE2)	Reserved	-	-	-	-	-	-	-	-	
(0xE2) (0xE1)	Reserved	-	-	-	-		-	-	-	
(0xE0)	Reserved	-	-	-	-		-	-	-	
(0xDF)	Reserved	-	-	-	-	-	-	-	-	
(0xDE)	Reserved	-	-	-	-	-	-	-	-	
(0xDD)	Reserved	-	-	-	-		-	-	-	
(0xDC)	Reserved	-	-	-	-	-	-	-	-	
(0xDB)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved	-	-	-	-	-	-	-	-	
(0xD9)	Reserved	-	-	-	-		-	-	-	
(0xD8)	Reserved	-	-	-	-	-	-	-	-	
(0xD7)	Reserved	-	-	-	-	-	-	-	-	
(0xD6)	UDR2				USART2 I/C	Data Register	-		-	222
(0xD5)	UBRR2H	-	-	-	-		ISART2 Baud Rat	e Register High E	Byte	227
(0xD4)	UBRR2L				USART2 Baud Ra	te Register Low I	Byte			227
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2)	UCSR2C	UMSEL21	UMSEL20	UPM21	UPM20	USBS2	UCSZ21	UCSZ20	UCPOL2	239
(0xD1)	UCSR2B	RXCIE2	TXCIE2	UDRIE2	RXEN2	TXEN2	UCSZ22	RXB82	TXB82	238
(0xD0)	UCSR2A	RXC2	TXC2	UDRE2	FE2	DOR2	UPE2	U2X2	MPCM2	238
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	UDR1				USART1 I/C	Data Register		- De et + 19 + 7	N. 4-	222
(0xCD)	UBRR1H	-	-	-	-		ISART1 Baud Rat	e Register High E	syte	227
(0xCC)	UBRR1L				USART1 Baud Ra		-			227
(0xCB)	Reserved	-	- LIMSEL 10	- LIDM11	- LIDM10	-	-	- UCSZ10	-	000
(0xCA) (0xC9)	UCSR1C UCSR1B	UMSEL11 RXCIE1	UMSEL10 TXCIE1	UPM11 UDRIE1	UPM10 RXEN1	USBS1 TXEN1	UCSZ11 UCSZ12	RXB81	UCPOL1 TXB81	239 238
					FE1					
(0xC8) (0xC7)	UCSR1A Reserved	RXC1	TXC1	UDRE1	FE1	DOR1	UPE1	U2X1 -	MPCM1 -	238
(0xC7) (0xC6)	UDR0	•	-	•		- Data Register	-	-	-	222
(0xC5)	UBRR0H	-	-	-	-		ISART0 Baud Rat	e Register High F	Svte	227
(0xC3) (0xC4)	UBRROL	-			- USART0 Baud Ra			io negisier might	<i></i>	227
(0xC3)	Reserved	-	-	-		-	-	-	-	
(0xC2)	UCSR0C	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01	UCSZ00	UCPOL0	239
	UCSR0B	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80	238
(0xC1) (0xC0)	UCSR0A	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0	238

	News	D:4 7	Dit C	Dia C	Dit 4	Dit 0	Dit o	Dia 4	Dit 0	Dama
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBE)	Reserved	-	-	-	-	-	-	-	-	
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	-	269
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	266
(0xBB)	TWDR	71//10	70/05	T 144		erface Data Regis		714/4.0	THOOF	268
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	269
(0xB9)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	268
(0xB8) (0xB7)	TWBR Reserved	-		2	-wire Serial Intern	ace Bit Rate Regi	ster			266
(0xB7) (0xB6)	ASSR	-	- EXCLK	- AS2	- TCN2UB	- OCR2AUB	- OCR2BUB	- TCR2AUB	- TCR2BUB	184
(0xB5)	Reserved	-	-	-	TCINZUB	UCHZAUB	OCH2B0B	TCH2AUB	TCH2BUB	104
(0xB4)	OCR2B				er/Counter2 Out	out Compare Reg	ister B	_	_	191
(0xB3)	OCR2A					out Compare Reg				191
(0xB2)	TCNT2					unter2 (8 Bit)				191
(0xB1)	TCCR2B	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20	190
(0xB0)	TCCR2A	COM2A1	COM2A0	COM2B1	COM2B0	-	-	WGM21	WGM20	191
(0xAF)	Reserved	-	-	-	-	-	-	-	-	
(0xAE)	Reserved	-	-	-	-	-	-	-	-	
(0xAD)	OCR4CH			Timer/Co	unter4 - Output C	ompare Register	C High Byte			164
(0xAC)	OCR4CL					ompare Register	* ;			164
(0xAB)	OCR4BH					ompare Register	,			164
(0xAA)	OCR4BL					compare Register	• •			164
(0xA9)	OCR4AH					ompare Register			I	164
(0xA8)	OCR4AL					ompare Register				164
(0xA7)	ICR4H			Timer/0	Counter4 - Input (Capture Register	High Byte		I	165
(0xA6)	ICR4L			Timer/	Counter4 - Input	Capture Register	Low Byte			165
(0xA5)	TCNT4H			Time	er/Counter4 - Cou	unter Register Hig	h Byte			163
(0xA4)	TCNT4L			Tim	er/Counter4 - Co	unter Register Lo	w Byte			163
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	TCCR4C	FOC4A	FOC4B	FOC4C	-	-	-	-	-	162
(0xA1)	TCCR4B	ICNC4	ICES4	-	WGM43	WGM42	CS42	CS41	CS40	160
(0xA0)	TCCR4A	COM4A1	COM4A0	COM4B1	COM4B0	COM4C1	COM4C0	WGM41	WGM40	158
(0x9F)	Reserved	-	-	-	-	-	-	-	-	
(0x9E)	Reserved	-	-	-	-	-	-	-	-	
(0x9D)	OCR3CH			Timer/Co	unter3 - Output C	ompare Register	C High Byte			164
(0x9C)	OCR3CL			Timer/Co	unter3 - Output C	ompare Register	C Low Byte			164
(0x9B)	OCR3BH					ompare Register				164
(0x9A)	OCR3BL				-	compare Register				164
(0x99)	OCR3AH					ompare Register	• •			163
(0x98)	OCR3AL					ompare Register	*			163
(0x97)	ICR3H					Capture Register	0,			165
(0x96)	ICR3L					Capture Register	-			165
(0x95)	TCNT3H					unter Register Hig				162
(0x94)	TCNT3L Reserved			i im	encounter3 - Co	unter Register Lo	w byte			162
(0x93)		EOC24	- FOC3B	FOC2C	-	-	-	-	-	160
(0x92)	TCCR3C TCCR3B	FOC3A ICNC3	ICES3	FOC3C	- WGM33	- WGM32	- CS32	- CS31	- CS30	162 160
(0x91) (0x90)	TCCR3B TCCR3A	COM3A1	COM3A0	COM3B1	COM3B0	COM3C1	COM3C0	WGM31	WGM30	158
(0x90) (0x8F)	Reserved	-		-	-	-	-			150
(0x8F) (0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	OCR1CH		-	Timer/Co	unter1 - Output C	ompare Register	C High Byte			163
(0x8C)	OCR1CL					ompare Register	• •			163
(0x8B)	OCR1BH					ompare Register				163
(0x8A)	OCR1BL					compare Register				163
(0x89)	OCR1AH	1				ompare Register				163
(0x88)	OCR1AL					compare Register	0,			163
(0x87)	ICR1H					Capture Register				165
(0x86)	ICR1L					Capture Register				165
(0x85)	TCNT1H					unter Register Hig				162
(0x84)	TCNT1L					unter Register Lo				162
(0x83)	Reserved	-	-	-	-	-	-	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	FOC1C	-	-	-	-	-	161
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	160
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	COM1C1	COM1C0	WGM11	WGM10	158
. /	DIDR1	-	-	-	-	-	-	AIN1D	AIN0D	274
(0x7F)	DIDITI				1					
(0x7F) (0x7E)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	295

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	289
(0x7B)	ADCSRB	-	ACME	-	-	MUX5	ADTS2	ADTS1	ADTS0	272, 290, 294
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	292
(0x79)	ADCH			Į	ADC Data Re	egister High byte				294
(0x78)	ADCL					egister Low byte				294
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	XMCRB	XMBK	-	-	-	-	XMM2	XMM1	XMM0	38
(0x74)	XMCRA	SRE	SRL2	SRL1	SRL0	SRW11	SRW10	SRW01	SRW00	37
(0x73)	TIMSK5	-	-	ICIE5	-	OCIE5C	OCIE5B	OCIE5A	TOIE5	166
(0x72)	TIMSK4	-	-	ICIE4	-	OCIE4C	OCIE4B	OCIE4A	TOIE4	166
(0x71)	TIMSK3	-	-	ICIE3	-	OCIE3C	OCIE3B	OCIE3A	TOIE3	166
(0x70)	TIMSK2	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2	193
(0x6F)	TIMSK1	-	-	ICIE1	-	OCIE1C	OCIE1B	OCIE1A	TOIE1	166
(0x6E)	TIMSK0	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0	134
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	116
(0x6C)	PCMSK1	PCINT15	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	116
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	117
(0x6A)	EICRB	ISC71	ISC70	ISC61	ISC60	ISC51	ISC50	ISC41	ISC40	114
(0x69)	EICRA	ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	113
(0x68)	PCICR	-	-	-	-	-	PCIE2	PCIE1	PCIE0	115
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	OSCCAL					ibration Register	1	-		50
(0x65)	PRR1	-	-	PRTIM5	PRTIM4	PRTIM3	PRUSART3	PRUSART2	PRUSART1	57
(0x64)	PRR0	PRTWI	PRTIM2	PRTIM0	-	PRTIM1	PRSPI	PRUSART0	PRADC	56
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	Reserved	-	-	-	-	-	-	-	-	
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	50
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	67
0x3F (0x5F)	SREG	I	Т	Н	S	V	N	Z	С	14
0x3E (0x5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	16
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	16
0x3C (0x5C)	EIND	-	-	-	-	-	-	-	EIND0	17
0x3B (0x5B)	RAMPZ	-	-	-	-	-	-	RAMPZ1	RAMPZ0	17
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58)	Reserved		-	-			-	-		000
0x37 (0x57)	SPMCSR Reserved	SPMIE	RWWSB	SIGRD	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	332
0x36 (0x56) 0x35 (0x55)	MCUCR	JTD	-	-	- PUD	-	-	- IVSEL	IVCE	67, 110, 100, 308
0x35 (0x55) 0x34 (0x54)	MCUCR	-	-	-	JTRF	- WDRF	BORF	EXTRF	PORF	308
0x34 (0x54) 0x33 (0x53)	SMCR	-	-	-	-	SM2	SM1	SM0	SE	52
0x33 (0x53) 0x32 (0x52)	Reserved	-	-	-	-	311/2	51011	31010	3E	52
0x32 (0x52) 0x31 (0x51)	OCDR	OCDR7	OCDR6	OCDR5	OCDR4	OCDR3	OCDR2	OCDR1	OCDR0	301
0x31 (0x51) 0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACISO	272
0x30 (0x50) 0x2F (0x4F)	Reserved	ACD -	ACBG	-	ACI	ACIE	ACIO	-	- ACISU	212
0x2F (0x4F) 0x2E (0x4E)	SPDR	-				ta Register				204
0x2D (0x4D)	SPSR	SPIF	WCOL	-		-	-	-	SPI2X	204
0x2D (0x4D) 0x2C (0x4C)	SPCR	SPIE	SPE	- DORD	- MSTR	- CPOL	- CPHA	- SPR1	SPR0	203
0x2C (0x4C) 0x2B (0x4B)	GPIOR2	0. IL	0.5	2010		se I/O Register 2		0.111	0.110	37
0x2B (0x4B) 0x2A (0x4A)	GPIOR1					se I/O Register 1				37
0x29 (0x49)	Reserved	-	-	-	-	-	-	-	-	
0x28 (0x48)	OCR0B				ner/Counter0 Out	out Compare Rec				133
0x27 (0x47)	OCR0A	1			ner/Counter0 Out					133
0x26 (0x46)	TCNT0					unter0 (8 Bit)				133
0x25 (0x45)	TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	132
0x24 (0x44)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	129
0x23 (0x43)	GTCCR	TSM	-	-	-	-	-	PSRASY	PSRSYNC	170, 194
0x22 (0x42)	EEARH	-	-	-	-		EPROM Address	Register High B		35
0x21 (0x41)	EEARL				EEPROM Addres				,	35
0x20 (0x40)	EEDR	1				Data Register	,			35
0x1F (0x3F)	EECR	-	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	35
0x1E (0x3E)	GPIOR0					se I/O Register 0				37
= (33L)		INT7	INT6	INT5	INT4	INT3	INT2	INT1	INT0	115
0x1D (0x3D)	EIMSK									
0x1D (0x3D) 0x1C (0x3C)	EIMSK EIFR	INTF7	INTF6	INTF5	INTF4	INTF3	INTF2	INTF1	INTF0	115

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1A (0x3A)	TIFR5	-	-	ICF5	-	OCF5C	OCF5B	OCF5A	TOV5	166
0x19 (0x39)	TIFR4	-	-	ICF4	-	OCF4C	OCF4B	OCF4A	TOV4	167
0x18 (0x38)	TIFR3	-	-	ICF3	-	OCF3C	OCF3B	OCF3A	TOV3	167
0x17 (0x37)	TIFR2	-	-	-	-	-	OCF2B	OCF2A	TOV2	193
0x16 (0x36)	TIFR1	-	-	ICF1	-	OCF1C	OCF1B	OCF1A	TOV1	167
0x15 (0x35)	TIFR0	-	-	-	-	-	OCF0B	OCF0A	TOV0	134
0x14 (0x34)	PORTG	-	-	PORTG5	PORTG4	PORTG3	PORTG2	PORTG1	PORTG0	102
0x13 (0x33)	DDRG	-	-	DDG5	DDG4	DDG3	DDG2	DDG1	DDG0	102
0x12 (0x32)	PING	-	-	PING5	PING4	PING3	PING2	PING1	PING0	102
0x11 (0x31)	PORTF	PORTF7	PORTF6	PORTF5	PORTF4	PORTF3	PORTF2	PORTF1	PORTF0	101
0x10 (0x30)	DDRF	DDF7	DDF6	DDF5	DDF4	DDF3	DDF2	DDF1	DDF0	102
0x0F (0x2F)	PINF	PINF7	PINF6	PINF5	PINF4	PINF3	PINF2	PINF1	PINF0	102
0x0E (0x2E)	PORTE	PORTE7	PORTE6	PORTE5	PORTE4	PORTE3	PORTE2	PORTE1	PORTE0	101
0x0D (0x2D)	DDRE	DDE7	DDE6	DDE5	DDE4	DDE3	DDE2	DDE1	DDE0	101
0x0C (0x2C)	PINE	PINE7	PINE6	PINE5	PINE4	PINE3	PINE2	PINE1	PINE0	102
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	101
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	101
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	101
0x08 (0x28)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	101
0x07 (0x27)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	101
0x06 (0x26)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	101
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	100
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	100
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	100
0x02 (0x22)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	100
0x01 (0x21)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	100
0x00 (0x20)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	100

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. I/O registers within the address range \$00 - \$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

- 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses \$00 \$3F must be used. When addressing I/O registers as data space using LD and ST instructions, \$20 must be added to these addresses. The ATmega640/1280/1281/2560/2561 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from \$60 \$1FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

8. Instruction Set Summary

Antherm UnderstandADDRd, Pr.Add ver BegintersRd \leftarrow Hd $+$ Hr.ADCRd, Pr.Add verb Carry two RegistersRd \leftarrow Hd $+$ Hr.ADWRd Hr.Subtract two RegistersRd \leftarrow Hd $+$ Hr.SUBRd, Hr.Subtract two RegistersRd \leftarrow Hd $+$ Hr.SUBRd, Hr.Subtract two RegistersRd \leftarrow Hd $+$ Kr.SUBRd, Hr.Subtract two RegistersRd \leftarrow Hd $+$ Kr.SUBRd, K.Subtract two RegistersRd \leftarrow Hd $+$ Kr.SUBRd, K.Subtract twin Carry two RegistersRd \leftarrow Hd $+$ Kr.SRCRd, K.Subtract twin Carry two RegistersRd \leftarrow Hd $+$ Kr.ANDRd, Hr.Logical AND RegistersRd \leftarrow Hd $+$ Kr.ANDRd, Hr.Logical AND RegistersRd \leftarrow Hd $+$ Kr.CRRd, Rr.Logical CR RegistersRd \leftarrow Hd $+$ Kr.COMRd, RdCarely No RegistersRd \leftarrow Hd $+$ Kr.COMRd, RdCarely No RegistersRd \leftarrow Hd $+$ Hd $+$ HdNSBRdTrois ComplementRd \leftarrow Hd $+$ Hd $+$ Hd $+$ HdNSGRdDores ComplementRd \leftarrow Hd $+$ Hd $+$ HdNSGRdTrois Carely No RegistersRd \leftarrow Hd $+$ Hd $+$ Hd $+$ HdNSBRdDores Carely Hd $+$ Hd $+$ Hd $+$ Hd $+$ Hd $+$ HdNSGRdTrois Carely Hd $+$		
ADCRef. Ir.Add tworld carry two RegistersRd $-$ Ha $+$ R $-$ CSUBRd ftrSubtanct two RegistersRd $+$ Ha $+$ Rd		
ADIWRdt.KAdd Immediate & WordRdt.htmlSUBRd, RTSubtract own BeginternRd + -Rd - RrSUBRd, KSubtract own BeginternRd + -Rd - RrSBCRd, RrSubtract own Carry town RegistersRd + -Rd - K - CSBWRd, KSubtract own Carry Constant non Reg.Rd + -Rd - K - CSBWRd, KSubtract immediate non WordRoh.html - Kn-RdSBWRd, KLogical AND RegistersRd + -Rd - RrANDRd, KLogical AND Register and ConstantRd + Rd + Rd - KORRd, KLogical AND Register and ConstantRd + Rd + Rd - KORRd, KLogical AND Register and ConstantRd + Rd + Rd - KCMRd, KLogical AND Register and ConstantRd + Rd + Rd - KCMRdOne's ComplementRd + Nd + Rd - MdCMRdOne's ComplementRd + Color - RdSBRRd, KGest Bit(s) in RegisterRd + Rd + Rd - MdCBRRdDecrementRd + Rd + RdCBRRdDecrementRd + Rd + RdCBRRdDecrementRd + Rd + RdCLRdCaur RegisterRd + Rd + Rd - RdCLRdCaur RegisterRd + Rd + Rd - RdCLRdSet RegisterRd + Rd + Rd + RdMULSRd, RrMultiply UnsignedR1:Rd - Rd x RrMULSRd, RrMultiply UnsignedR1:Rd - Rd x RrMULSRd, RrMultiply UnsignedR1:Rd - Rd x RrMULS	Z, C, N, V, H	1
SUBPd, Pr.Subtract two legistersPd - Pd - Pr.SUBPd, KSubtract from RegisterPd - Pd - KSUBRd, RSubtract with Carry two RegistersPd - Pd - KSBCRd, KSubtract with Carry two RegistersPd - Pd - KSBCRd, KSubtract with Carry two RegistersPd - Pd - KSBNRd, KSubtract with Carry two RegistersPd - Pd - KANDRd, RLogical AND Registers and ConstantPd - Pd - KANDRd, RLogical OR RegistersPd - Pd - KCRIRd, RrLogical OR RegistersPd - Pd - KCOMRdOne's ComplementPd - Dd - PdCOMRdOne's ComplementPd - Dd - PdCOMRdConcernentPd - Pd - KSBRRd/KSet Bt(s) in RegisterPd - Pd - VKCBRRd/KSet Bt(s) in RegisterPd - Pd - NCSBRRd/KSet Bt(s) in RegisterPd - Pd - NCNCRdIncrementPd - Pd - NCDECRdDecrementPd - Pd - NCSERPdSet RegisterPd - Pd + NCMULRd, RrMultiply UnsignedPt : Pd - Pd - RCMULRd, RrMultiply Signed with UnsignedPt : Pd - Rd × RMULSRd, RrMultiply Signed with UnsignedPt : Pd - Rd × RMULSRd, RrFractional Multiply Signed with UnsignedPt : Pd - Rd × RMULSRd, RrFractional Multiply Signed with UnsignedPt : Pd - K × 1<	Z, C, N, V, H	1
SUB: Pd, K Subtract domain from Register Pd + R4 - K SBC Pd, Rr Subtract with Carry two Registers Pd + R4 - K C SBC Pd, Kr Subtract minediate from Word Pd + R4 - K - C C SBW Pd, K Logical AND Registers Pd + R4 - K - K C SBM Pd, K Logical AND Registers Pd + R4 - K C AND Pd, K Logical AND Registers Pd + R4 - K C ORI Pd, K Logical OR Registers and Constant Pd + Pd + K C CM Pd, K Logical OR Registers Pd + Pd + K C CM Rd Ora's Complement Rd + Rd + K C SBR Rd, K Cear Bit(5) in Register Pd + Rd + Rd C CBR Pd, K Cear Bit(5) in Register Pd + Rd + Rd C SBR Rd Two's Complement Pd + Rd + Rd C C CBR Pd, K Cear Bit(5) in Register Pd + Rd + Rd C SBR Rd, K	Z, C, N, V, S	2
SBCPd, Pr. C.SBCPd, KSubtract with Carry Constant from Rag.Pd + Pd + K- C.SBCPd, KSubtract With Carry Constant from Rag.Pd + Pd + K- C.SBWPd, KSubtract With Carry Constant from Rag.Pd + Pd + K- C.ANDPd, Pr.Logical AND Pagister and ConstantPd + Pd + K-ANDPd, Pr.Logical AND Pagister and ConstantPd + Pd + RORPd, R.Logical OR RegistersPd + Pd + RORPd, R.Logical OR RegistersPd + Pd + RCOMPd, Pr.Exclusive OR PagistersPd + Pd + REORPd, Pr.Exclusive OR PagistersPd + Pd + RCOMRdOne's ComplementPd + Pd + RNEGPdThe's ComplementPd + Pd + RNEGPdIncrementPd + Pd + INEGRdIncrementPd + Pd + IDECRdDecrementPd + Pd + IDECRdCener RigisterPd + Pd + RNULPd, PrMultiply UnsignedPl + Pd + Pd + PdMULSPd, PrMultiply UnsignedPl + Pd + Pd + PdMULSPd, PrMultiply Unsigned with UnsignedPl + Pd + R + RMULSPd, PrFractional Multiply Signed with UnsignedPl + Pd + R + RMULSPd, PrFractional Multiply Signed with UnsignedPl + Pd + R + RMULSPd, PrFractional Multiply Signed with UnsignedPl + Pd + RMULSPd, PrFractional Multiply Signed with UnsignedPl + Pd	Z, C, N, V, H	1
SBCRd, KSubtract with Carry Constant from Reg.Rd - Rd + C. CSBWRdJ, KSubtract immediate from WordRdb:Rd + KANDRd, RLogical AND RegistersRd - Rd + RrANDRd, KLogical AND Register and ConstantRd - Rd + RrORRd, RLogical OR Register and ConstantRd - Rd v KORIRd, KLogical OR Register and ConstantRd - Rd v KORIRd, KLogical OR Register and ConstantRd - Rd v KCOMRdOnvis ComplementRd - Ox0 - RdNEGRdTwois ComplementRd - Ox0 - RdNEGRdTwois ComplementRd - Ad v KCBRRd/KClear Bit(s) in RegisterRd - Rd v R/NGRdIncorementRd - Rd v - Rd - Rd vDECRdDecrementRd - Rd v - Rd - Rd - RdTSTRdTestor or MinusRd + Rd v - Rd - Rd - RdCLRRd, RdSet RegisterRd + CoxFFMULSRd, RrMultiply Signed with UnsignedR1:R0 - Rd x RrMULSRd, RrFractional Multiply UnsignedR1:R0 - Rd x RrMULSRd, RrFractional Multiply Signed with UnsignedR1:R0 - Rd x RrMULSRd, RrFractional Multiply Signed with UnsignedR1:R0 - Rd x RrMULSRd, RrFractional Multiply Signed with UnsignedR1:R0 - Rd x RrMULSRd, RrFractional Multiply Signed with UnsignedR1:R0 - Rd x RrMULSRd, RrFractional Multiply Signed with Unsigned	Z, C, N, V, H	1
SBIWRd, KSubtract Immediate from WordRds-RdRds-RdANDRd, RrLogical AND RegistersRd - Rd + RdANDRd, RrLogical AND Register and ConstantRd - Rd + KORRd, RrLogical OR Register and ConstantRd + Rd + KORRd, RrLogical OR Register and ConstantRd + Rd + KEORRd, RrExclusive OR Register and ConstantRd + Rd + KEORRd, RrExclusive OR Register and ConstantRd + OxF - RdCOMRdOre's ComplementRd + OxF - RdNEGRdTwo's ComplementRd + OxF - RdSBRRd KClear RegisterRd + Rd + Nd + KDECRdIncrementRd + Rd + Rd + RdDECRdDecrementRd + Rd + Rd + RdCLRRdClear RegisterRd + Rd + Rd + RdCLRRdClear RegisterRd + Rd + Rd + RdMULSRd, RrMultiply UnsignedR1:R0 - Rd x RrMULSRd, RrFractional Multiply Signed with UnsignedR1:R0 - Rd x RrMULSRd, RrFractional Multiply Signed with UnsignedR1:R0 - (Rd x Rr) <	Z, C, N, V, H	1
ANDFid. RLogical AND RegistersFid Rd + FrANDIRd, KLogical OR Register and ConstantRd - Rd + KORRd, KLogical OR RegisterRd - Rd v KORIRd, KLogical OR RegisterRd - Rd v KCOMRdConclastic OR RegistersRd - Rd v KCOMRdOre's ComplementRd - Nd v KNEGRdTwo's ComplementRd - Ox0- RdSBRRd, KColer Bits) in RegisterRd - Rd v KCBRRd, KColer Bits) in RegisterRd - Rd v GCBRRd, KColer Bits) in RegisterRd - Rd v RCBRRd, KColer RegisterRd - Rd v RCLRRdDecrementRd - Rd v RCLRRdColer RegisterRd - Rd v RMULSRd, RrMultiply UnsignedR1:R0 - Rd x RMULSRd, RrMultiply Signed with UnsignedR1:R0 - Rd x RMULSRd, RrFractional Multiply Signed with UnsignedR1:R0 - Rd x RFMULSRd, RrFractional Multiply Signed with UnsignedR1:R0 - (Rd x R) <	Z, C, N, V, H	1
ANDIPit, KLogical AND Register and ConstantPit + Ri + R + MORRd, RrLogical OR Registers and ConstantRd + Rd v KEORRd, RrExclusive OR RegistersRd + A db RrCOMRdOn's ComplementRd + Oxf + Rd + RdNEGRdTwo's ComplementRd + Oxf + RdNEGRdTwo's ComplementRd + Oxf + RdSBRRd KSet Bit(s) in RegisterRd + Rd + Rd + RdNEGRdTwo's ComplementRd + Rd + Rd + Rd + RdNEGRdIncrementRd + Rd	Z, C, N, V, S	2
OR Rd, Fir Logical OR Registers Rd ~ Rd v Fr ORI Rd, K Logical OR Register and Constant Rd ~ Rd v Fr CM Rd, Fr Exclusive OR Registers Rd ~ Rd v Fr COM Rd One's Complement Rd ~ CovFF - Rd NEG Rd Twis Complement Rd ~ OxFF - Rd SBR Rd, K Set Bit(s) in Register Rd ~ Rd v K CRA Rd, K Clear Bit(s) in Register Rd ~ Rd v K CBR Rd, K Clear Bit(s) in Register Rd ~ Rd v K CBR Rd, K Clear Alt(s) in Register Rd ~ Rd v Rd + Rd DEC Rd Decrement Rd ~ Rd - Rd - Rd TST Rd Testor Zearo or Minus Rd + Rd v GR - Rd CLR Rd Clear Register Rd - OxFF MUL Rd, Rr Multiply Unsigned Rt:Ro - Rd x Rr MULS Rd, Rr Multiply Signed with Unsigned Rt:Ro - (Rd x Rr) <	Z, N, V	1
ORI Rd, K Logical OR Register and Constant Rd \leftarrow Rd \lor K EOR Rd, Rr Exclusive OR Register Rd \leftarrow Rd \boxdot Rd COM Rd One's Complement Rd \leftarrow AD \boxdot Rd NEG Rd Two's Complement Rd \leftarrow AD \lor Rd SBR Rd K Sate Bit(s) in Register Rd \leftarrow Rd \vee K CR Rd K Class Rd(s) in Register Rd \leftarrow Rd \vee K INC Rd Increment Rd \leftarrow Rd \cdot Rd DEC Rd Decrement Rd \leftarrow Rd \cdot Rd SER Rd State Register Rd \leftarrow Rd \cdot Rd \cdot Rd NUL Rd, Rr Multiply Unsigned R1:R0 \leftarrow Rd \times Rr MULS Rd, Rr Multiply Signed R1:R0 \leftarrow Rd \times Rr MULS Rd, Rr Fractional Multiply Signed R1:R0 \leftarrow Rd \times Rr MULS Rd, Rr Fractional Multiply Signed R1:R0 \leftarrow Rd \times Rr MULS Rd, Rr Fractional Multiply Signed R1:R0 \leftarrow Rd \times Rr MULS Rd, Rr Fractional Multiply Signed R1:R0 \leftarrow Rd \times Rr	Z, N, V	1
EORPd. Pd. Pr.Exclusive OR RegistersPd Ad \oplus Pr.COMRdOne's ComplementRd - 0xF - RdNEGRdTwo's ComplementRd - 0xV KSBRRd,KSet Bit(s) In RegisterRd - Rd v KCBRRd,KClear Bit(s) In RegisterRd - Rd v KINCRdIncrementRd - Rd v KDECRdDecrementRd - Rd - RdDECRdTest for Zero or MruisRd - Rd - RdCLRRdClear RegisterRd - Rd - RdSERRdSet RegisterRd - Cdo'FMULRd, RrMultiply UnsignedR1:R0 - Rd x RrMULSRd, RrMultiply UnsignedR1:R0 - Rd x RrMULSRd, RrFractional Multiply Signed with UnsignedR1:R0 - Rd x RrFMULRd, RrFractional Multiply Signed with UnsignedR1:R0 - (Rd x Rr) <<1	Z, N, V	1
COMRdOne's ComplementRd + 0xF - RdNEGRdTwo's ComplementRd - 0x0 - RdSBRRd,KSet Bills) in RegisterRd - Rd v KCBRRd,KClear Bills) in RegisterRd - Rd v (KCBRRd,KClear Bills) in RegisterRd - Rd v (XINCRdIncrementRd - Rd - 1DECRdDecomentRd - Rd - 1TSTRdTest for Zero or MinusRd - Rd + RdCLRRdClear RegisterRd + Rd - Rd - RdSERRdSet RegisterRd + Rd - Rd - RdMULSRd, RrMultiply UnsignedR1:R0 - Rd x RrMULSURd, RrMultiply Signed with UnsignedR1:R0 - Rd x RrMULSURd, RrFractional Multiply SignedR1:R0 - (Rd x Rr) <	Z, N, V	1
NEGRdTwo's ComplementRd + 0x00 - RdSBRRd,KSet Bit(s) in RegisterRd + Rd v KCBRRd,KClear Bit(s) in RegisterRd + Rd v KINCRdIncrementRd - Rd + 1DECRdDecrementRd - Rd + 0TSTRdTot for Zero or MinusRd + Rd • RdCLRRdClear RegisterRd + Ad • RdSERRdSet RegisterRd + Rd • RdMULSRd, RrMultiply UnsignedR1:R0 - Rd x RrMULSRd, RrMultiply Signed with UnsignedR1:R0 - Rd x RrFMULRd, RrFractional Multiply Signed with UnsignedR1:R0 - Rd x RrFMULSRd, RrFractional Multiply Signed with UnsignedR1:R0 - (Rd x Rr) <<11	Z, N, V	1
SBRRd.KSet Bit(s) in RegisterRd - Rd v (MCBRRd,KClear Bit(s) in RegisterRd - Rd v (MCF - K)CBRRdIncrementRd - Rd + 1DECRdDecrementRd - Rd + 1DECRdDecrementRd - Rd + 1TSTRdTest for Zero or MinusRd - Rd + RdCLRRdClear RegisterRd + Rd + RdSERRdSet RegisterRd + Rd + Rd + RdMULRd, RrMultiply UnsignedR1:R0 - Rd x RrMULSRd, RrMultiply Signed with UnsignedR1:R0 - Rd x RrMULSRd, RrFractional Multiply UnsignedR1:R0 - (Rd x Rr) <	Z, C, N, V	1
CBRRd,KClear Bit(s) in RegisterRd \leftarrow Rd + Rd + 1INCRdIncrementRd \leftarrow Rd + 1INCRdDecrementRd \leftarrow Rd - 1TSTRdTest for Zero or MinusRd \leftarrow Rd - Rd -CLRRdClear RegisterRd \leftarrow Rd \leftarrow Rd \leftarrow SERRdSte RegisterRd \leftarrow Rd \leftarrow Rd \leftarrow MULRd, RrMultply UnsignedR1:R0 \leftarrow Rd x RrMULSRd, RrMultply UnsignedR1:R0 \leftarrow Rd x RrMULSRd, RrMultply UnsignedR1:R0 \leftarrow Rd x RrFMULRd, RrFractional Multply UnsignedR1:R0 \leftarrow (Rd x Rr) <	Z, C, N, V, H	1
INCRdIncrementRd + Rd + 1DECRdDecrementRd + Rd + 1DECRdDecrementRd + Rd + Rd - 1TSTRdTest for Zero or MinusRd + Rd + Rd - RdCLRRdClear RegisterRd + Rd \oplus RdSERRdSet RegisterRd + OxFFMULRd, RrMultiply UsignedR1:B0 + Rd x RrMULSRd, RrMultiply UsignedR1:B0 + Rd x RrMULSRd, RrFractional Multiply UsignedR1:B0 + Rd x RrMULSRd, RrFractional Multiply UsignedR1:B0 + (Rd x Rr) < 1	Z, N, V	1
DECRdDecrementRd \leftarrow Rd - 1TSTRdTest for Zero or MinusRd \leftarrow Rd \leftrightarrow RdRdCLRRdClear RegisterRd \leftarrow Rd \leftarrow Rd \leftarrow RdRdSERRdSet RegisterRd \leftarrow Rd \leftarrow Rd \leftarrow RdSet RegisterMULRd, RrMultiply UnsignedR1:R0 \leftarrow Rd x RrMULSURd, RrMultiply SignedR1:R0 \leftarrow Rd x RrMULSURd, RrFractional Multiply UnsignedR1:R0 \leftarrow Rd x RrMULSURd, RrFractional Multiply SignedR1:R0 \leftarrow Rd x RrFMULRd, RrFractional Multiply SignedR1:R0 \leftarrow (Rd x Rr) <<1	Z, N, V	1
TSTRdTest for Zero or MinusRd \leftarrow Rd \bullet RdCLRRdClear RegisterRd \leftarrow OxFSERRdSet RegisterRd \leftarrow OxFMULRd, RrMultiply UnsignedR1:R0 \leftarrow Rd x RrMULSURd, RrMultiply Signed with UnsignedR1:R0 \leftarrow Rd x RrMULSURd, RrMultiply Signed with UnsignedR1:R0 \leftarrow Rd x RrMULSURd, RrFractional Multiply SignedR1:R0 \leftarrow (Rd x Rr) << 1	Z, N, V	1
CLRRdClear RegisterRd \leftarrow Rd \oplus RdSERRdSet RegisterRd \leftarrow OxFFMULRd, RrMultiply UnsignedR1:R0 \leftarrow Rd x RrMULSRd, RrMultiply Signed with UnsignedR1:R0 \leftarrow Rd x RrMULSURd, RrMultiply Signed with UnsignedR1:R0 \leftarrow Rd x RrFMULRd, RrFractional Multiply UnsignedR1:R0 \leftarrow (Rd x Rr) <	Z, N, V	1
SERRdSet RegisterRd \leftarrow DxFFMULRd, RrMultiply UnsignedR1:R0 \leftarrow Rd x RrMULSRd, RrMultiply Signed with UnsignedR1:R0 \leftarrow Rd x RrMULSURd, RrMultiply Signed with UnsignedR1:R0 \leftarrow Rd x RrFMULRd, RrFractional Multiply SignedR1:R0 \leftarrow Rd x RrFMULSRd, RrFractional Multiply Signed with UnsignedR1:R0 \leftarrow (Rd x Rr) <	Z, N, V	1
MULRd, RrMultiply UnsignedR1:R0 \leftarrow Rd x RrMULSRd, RrMultiply Signed with UnsignedR1:R0 \leftarrow Rd x RrMULSURd, RrMultiply Signed with UnsignedR1:R0 \leftarrow Rd x RrMULSURd, RrFractional Multiply UnsignedR1:R0 \leftarrow (Rd x Rr) << 1	Z, N, V	1
MULSRd, RrMultiply SignedR1:R0 \leftarrow Rd x RrMULSURd, RrMultiply Signed with UnsignedR1:R0 \leftarrow Rd x RrFMULRd, RrFractional Multiply SignedR1:R0 \leftarrow (Rd x Rr) << 1	None	1
MULSURd, RrMultiply Signed with UnsignedR1:R0 \leftarrow Rd x RrFMULRd, RrFractional Multiply UnsignedR1:R0 \leftarrow (Rd x Rr) << 1	Z, C	2
FMULRd, RrFractional Multiply Unsigned $R1:R0 \leftarrow (Rd \times Rr) << 1$ FMULSRd, RrFractional Multiply Signed $R1:R0 \leftarrow (Rd \times Rr) << 1$ FMULSURd, RrFractional Multiply Signed with Unsigned $R1:R0 \leftarrow (Rd \times Rr) << 1$ FMULSURd, RrFractional Multiply Signed with Unsigned $R1:R0 \leftarrow (Rd \times Rr) << 1$ FMULSURd, RrFractional Multiply Signed with Unsigned $R1:R0 \leftarrow (Rd \times Rr) << 1$ FMULSURd, RrRelative Jump $PC \leftarrow PC + k + 1$ JMPkRelative Jump to (Z) $PC \leftarrow Z$ EIJMPExtended Indirect Jump to (Z) $PC \leftarrow R + R$ GCALLkRelative Subroutine Call $PC \leftarrow PC + k + 1$ ICALLindirect Call to (Z) $PC \leftarrow R$ EICALLkDirect Jump $PC \leftarrow R$ CALLkDirect Subroutine Call $PC \leftarrow R$ CALLkDirect Subroutine Call $PC \leftarrow R$ RETSubroutine Return $PC \leftarrow STACK$ RETSubroutine Return $PC \leftarrow STACK$ CPSRd,RrCompare, Skip if Equalif (Rd = Rr) PC ← PC + 2 or 3CPRd,RrCompare with CarryRd - RrCPCRd,RrCompare Register with ImmediateRd - KSBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=1) PC \leftarrow PC + 2 or 3SBRSRr, bSkip if Bit in I/O Register is Setif (R(b)=1) PC ← PC + 2 or 3SBRSP, bSkip if Bit in I/O Register is Setif (P(b)=1) PC ← PC + 2 or 3SBRSP, bSkip if Bit in I/O Register is Set <td>Z, C</td> <td>2</td>	Z, C	2
FMULSRd, RrFractional Multiply SignedR1:R0 \leftarrow (Rd x Rr) << 1FMULSURd, RrFractional Multiply Signed with UnsignedR1:R0 \leftarrow (Rd x Rr) << 1	Z, C	2
FMULSURd, RrFractional Multiply Signed with UnsignedR1:R0 \leftarrow (Rd x Rr) << 1BRANCH INSTRUCTIONSRJMPkRelative Jump to (Z)PC \leftarrow PC + k + 1JMPIndirect Jump to (Z)PC \leftarrow ZEJMPLExtended Indirect Jump to (Z)PC \leftarrow (EIND:Z)JMPkDirect JumpPC \leftarrow kRCALLkRelative Subroutine CallPC \leftarrow PC + k + 1ICALLIndirect Call to (Z)PC \leftarrow CICALLkDirect Subroutine CallPC \leftarrow CCALLkDirect Subroutine Call to (Z)PC \leftarrow (EIND:Z)CALLkDirect Subroutine Call to (Z)PC \leftarrow (EIND:Z)CALLkDirect Subroutine Call to (Z)PC \leftarrow (C \leftarrow (C \leftarrow C)CALLkDirect Subroutine CallPC \leftarrow STACKRETSubroutine ReturnPC \leftarrow STACKRET1Interrupt ReturnPC \leftarrow STACKCPSERd,RrCompare, Skipi if Equalif (Rd = Rr) PC \leftarrow PC + 2 or 3CPRd,RrCompare, Skipi if Equalif (Rd = Rr) PC \leftarrow PC + 2 or 3SBRCRr, bSkipi if Bit in Register Clearedif (Rr(b)=1) PC \leftarrow PC + 2 or 3SBRSP, bSkipi if Bit in Register Setif (P(b)=0) PC \leftarrow PC + 2 or 3SBRSP, bSkipi if Bit in I/O Register Clearedif (P(b)=0) PC \leftarrow PC + 2 or 3SBRSP, bSkipi if Bit in I/O Register Clearedif (SREG(s) = 1) then PC \leftarrow PC + k + 1BRBCs, kBranch if Status Flag Clearedif (SREG(s) = 1) then PC \leftarrow PC + k + 1<	Z, C	2
BRANCH INSTRUCTIONSRJMPkRelative Jump $PC \leftarrow PC + k + 1$ JMPIndirect Jump to (Z) $PC \leftarrow Z$ EIJMPExtended Indirect Jump to (Z) $PC \leftarrow (EIND:Z)$ JMPkDirect Jump $PC \leftarrow k$ RCALLkRelative Subroutine Call $PC \leftarrow PC + k + 1$ ICALLkIndirect Call to (Z) $PC \leftarrow CZ$ EICALLkDirect Subroutine Call $PC \leftarrow CZ$ EICALLkDirect Subroutine Call $PC \leftarrow CZ$ EICALLkDirect Subroutine Call $PC \leftarrow RC + k + 1$ ICALLkDirect Subroutine Call $PC \leftarrow STACK$ RETSubroutine Return $PC \leftarrow STACK$ RETIInterrupt ReturnPC $\leftarrow STACK$ RETIInterrupt ReturnPC $\leftarrow STACK$ RETICPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC $\leftarrow PC + 2 \text{ or } 3$ CPRd,RrCompare with CarryRd - RrCPIRd,KCompare Register with ImmediateRd - KSBRCRr, bSkip if Bit in Register Iclearedif (Rr(b)=1) PC $\leftarrow PC + 2 \text{ or } 3$ SBRSRr, bSkip if Bit in I/O Register Iclearedif (P(b)=1) PC $\leftarrow PC + 2 \text{ or } 3$ SBISP, bSkip if Bit in I/O Register Iclearedif (P(b)=1) PC $\leftarrow PC + 2 \text{ or } 3$ SBRSRr, bSkip if Bit in I/O Register is Setif (P(b)=1) PC $\leftarrow PC + 2 \text{ or } 3$ SBISP, bSkip if Bit in I/O Register Iclearedif (P(b)=1) PC $\leftarrow PC + 2 \text{ or } 3$ SBRSRr, bSkip if Bit in I/O Registe	Z, C	2
RJMPkRelative Jump $PC \leftarrow PC + k + 1$ IJMPIndirect Jump to (Z) $PC \leftarrow Z$ ELMPExtended Indirect Jump to (Z) $PC \leftarrow (EIND:Z)$ JMPkDirect Jump $PC \leftarrow k$ RCALLkRelative Subroutine Call $PC \leftarrow PC + k + 1$ ICALLkRelative Subroutine Call $PC \leftarrow PC + k + 1$ ICALLkDirect Call to (Z) $PC \leftarrow CZ$ EICALLkDirect Subroutine Call $PC \leftarrow CL$ ICALLkDirect Subroutine Call $PC \leftarrow K$ RETSubroutine Return $PC \leftarrow STACK$ RET1Interrupt Return $PC \leftarrow STACK$ CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC \leftarrow PC + 2 or 3CPRd,RrCompare with CarryRd - Rr - CCPLRd,KCompare Register with ImmediateRd - KSBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC \leftarrow PC + 2 or 3SBRSRr, bSkip if Bit in NO Register is Setif (P(b)=1) PC ← PC + 2 or 3SBISP, bSkip if Bit in NO Register is Setif (P(b)=1) PC ← PC + 2 or 3SBRSRr, bSkip if Bit in NO Register is Setif (P(b)=1) PC ← PC + 2 or 3SBRSS, kBranch if Status Flag Clearedif (SREG(s) = 1) then PC ← PC + k + 1BRBSs, kBranch if Status Flag Clearedif (SREG(s) = 0) then PC ← PC + k + 1BRNEkBranch if Not Equalif (Z = 0) then PC ← PC + k + 1	Z, C	2
IJMPIndirect Jump to (Z) $PC \leftarrow Z$ EIJMPExtended Indirect Jump to (Z) $PC \leftarrow (EIND:Z)$ JMPkDirect Jump $PC \leftarrow k$ RCALLkRelative Subroutine Call $PC \leftarrow PC + k + 1$ ICALLIndirect Call to (Z) $PC \leftarrow Z$ EICALLExtended Indirect Call to (Z) $PC \leftarrow K$ CALLkDirect Subroutine Call $PC \leftarrow K$ RETSubroutine Return $PC \leftarrow STACK$ RETIInterrupt Return $PC \leftarrow STACK$ CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC ← PC + 2 or 3CPCRd,RrCompare, Skip if Equalif (Rd = Rr) PC ← PC + 2 or 3CPCRd,RrCompare Register with ImmediateRd - RrCPCRd,RrCompare Register Clearedif (Rr(b)=0) PC ← PC + 2 or 3SBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=1) PC ← PC + 2 or 3SBRSRr, bSkip if Bit in Register Clearedif (P(b)=0) PC ← PC + 2 or 3SBRSP, bSkip if Bit in Register Clearedif (P(b)=0) PC ← PC + 2 or 3SBRSRr, bSkip if Bit in Register Clearedif (P(b)=0) PC ← PC + 2 or 3SBRSP, bSkip if Bit in N/O Register Clearedif (P(b)=0) PC ← PC + 2 or 3SBRSP, bSkip if Bit in N/O Register Clearedif (P(b)=0) PC ← PC + 2 or 3SBRSP, bSkip if Bit in N/O Register is Setif (P(b)=0) PC ← PC + 2 or 3SBRSP, bSkip if Bit in N/O Register is Setif (P(b)=0) PC ← PC + 2 or 3SBRSP, bSkip i		
EJMPExtended Indirect Jump to (Z) $PC \leftarrow (EIND:Z)$ JMPkDirect Jump $PC \leftarrow k$ RCALLkRelative Subroutine Call $PC \leftarrow PC + k + 1$ ICALLIndirect Call to (Z) $PC \leftarrow Z$ EICALLExtended Indirect Call to (Z) $PC \leftarrow (EIND:Z)$ CALLkDirect Subroutine Call $PC \leftarrow k$ RETSubroutine Return $PC \leftarrow STACK$ RET1Interrupt Return $PC \leftarrow STACK$ CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC $\leftarrow PC + 2 \text{ or } 3$ CPRd,RrCompare Register with ImmediateRd - RrCPCRd,KCompare Register with ImmediateRd - KSBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC $\leftarrow PC + 2 \text{ or } 3$ SBRSRr, bSkip if Bit in Register Clearedif (P(b)=1) PC $\leftarrow PC + 2 \text{ or } 3$ SBRSP, bSkip if Bit in Register is Setif (P(b)=1) PC $\leftarrow PC + 2 \text{ or } 3$ SBRSP, bSkip if Bit in NO Register is Setif (P(b)=1) PC $\leftarrow PC + 2 \text{ or } 3$ SBRSS, kBranch if Status Flag Setif (SREG(s) = 1) then PC $\leftarrow PC + k + 1$ BRBSs, kBranch if Status Flag Setif (SREG(s) = 0) then PC $\leftarrow PC + k + 1$ BRPAkBranch if Not Equalif (Z = 0) then PC $\leftarrow PC + k + 1$	None	2
JMPkDirect Jump $PC \leftarrow k$ RCALLkRelative Subroutine Call $PC \leftarrow PC + k + 1$ ICALLIndirect Call to (Z) $PC \leftarrow Z$ EICALLExtended Indirect Call to (Z) $PC \leftarrow (EIND:Z)$ CALLkDirect Subroutine Call $PC \leftarrow k$ RETSubroutine Return $PC \leftarrow STACK$ RETIInterrupt Return $PC \leftarrow STACK$ CPSERd,RrCompare, Skip if EqualCPRd,RrCompareCPRd,RrCompare Nather CallCPRd,KCompare Register with ImmediateSBRCRr, bSkip if Bit in Register ClearedSBRSRr, bSkip if Bit in Register is SetSBISP, bSkip if Bit in I/O Register ClearedSBRSS, kBranch if Status Flag SetBRBSs, kBranch if Status Flag SetBRBSs, kBranch if Status Flag SetBREQkBranch if Katus Flag Clearedif (Z = 0) then PC $\leftarrow PC + k + 1$ BRNEkBranch if Not Equalif (Z = 0) then PC $\leftarrow PC + k + 1$	None	2
RCALLkRelative Subroutine Call $PC \leftarrow PC + k + 1$ ICALLIndirect Call to (Z) $PC \leftarrow Z$ EICALLExtended Indirect Call to (Z) $PC \leftarrow (EIND:Z)$ CALLkDirect Subroutine Call $PC \leftarrow k$ RETSubroutine Return $PC \leftarrow STACK$ RET1Interrupt Return $PC \leftarrow STACK$ CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC ← PC + 2 or 3CPRd,RrCompare with CarryRd - RrCPCRd,KCompare Register with ImmediateRd - KSBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC ← PC + 2 or 3SBRSRr, bSkip if Bit in Register is Setif (Rr(b)=1) PC ← PC + 2 or 3SBISP, bSkip if Bit in N/O Register Clearedif (P(b)=1) PC ← PC + 2 or 3SBRSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC ← PC + 2 or 3BRBSs, kBranch if Status Flag Clearedif (SREG(s) = 0) then PC ← PC + k + 1BREQkBranch if Status Flag Clearedif (Z = 0) then PC ← PC + k + 1	None	2
ICALLIndirect Call to (Z) $PC \leftarrow Z$ EICALLExtended Indirect Call to (Z) $PC \leftarrow (EIND:Z)$ CALLkDirect Subroutine Call $PC \leftarrow k$ RETSubroutine Return $PC \leftarrow STACK$ RETIInterrupt Return $PC \leftarrow STACK$ CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC $\leftarrow PC + 2 \text{ or } 3$ CPRd,RrCompare with CarryRd - RrCPCRd,RrCompare Register with ImmediateRd - KSBRCRr, bSkip if Bit in Register Clearedif (Rt(b)=0) PC $\leftarrow PC + 2 \text{ or } 3$ SBRSRr, bSkip if Bit in Negister Clearedif (Rt(b)=1) PC $\leftarrow PC + 2 \text{ or } 3$ SBISP, bSkip if Bit in I/O Register Setif (P(b)=1) PC $\leftarrow PC + 2 \text{ or } 3$ SBRSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC $\leftarrow PC + k + 1$ BRBCs, kBranch if Status Flag Clearedif (SREG(s) = 0) then PC $\leftarrow PC + k + 1$ BRRDkBranch if Status Flag Clearedif (Z = 1) then PC $\leftarrow PC + k + 1$	None	3
EICALLExtended Indirect Call to (Z) $PC \leftarrow (EIND:Z)$ CALLkDirect Subroutine Call $PC \leftarrow k$ RETSubroutine Return $PC \leftarrow STACK$ RETIInterrupt Return $PC \leftarrow STACK$ CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC \leftarrow PC + 2 or 3CPRd,RrCompare with CarryRd - RrCPCRd,RrCompare Register with ImmediateRd - KSBRCRr, bSkip if Bit in Register Clearedif (Rt(b)=0) PC \leftarrow PC + 2 or 3SBRSRr, bSkip if Bit in Register Clearedif (Rt(b)=1) PC \leftarrow PC + 2 or 3SBISP, bSkip if Bit in 1/O Register is Setif (Rt(b)=1) PC \leftarrow PC + 2 or 3SBISP, bSkip if Bit in 1/O Register is Setif (Rt(b)=0) PC \leftarrow PC + 2 or 3BRBSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC \leftarrow PC + k + 1BRBCs, kBranch if Status Flag Clearedif (SREG(s) = 0) then PC \leftarrow PC + k + 1BRRDkBranch if Not Equalif (Z = 0) then PC \leftarrow PC + k + 1	None	4
CALLkDirect Subroutine Call $PC \leftarrow k$ RETSubroutine Return $PC \leftarrow STACK$ RETIInterrupt Return $PC \leftarrow STACK$ CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC ← PC + 2 or 3CPRd,RrCompareRd - RrCPCRd,RrCompare Register with ImmediateRd - KSBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC ← PC + 2 or 3SBRSRr, bSkip if Bit in Register Clearedif (Rr(b)=1) PC ← PC + 2 or 3SBISP, bSkip if Bit in Register Clearedif (P(b)=0) PC ← PC + 2 or 3SBISP, bSkip if Bit in 1/O Register is Setif (P(b)=0) PC ← PC + 2 or 3BRBSs, kBranch if Status Flag Setif (P(b)=0) PC ← PC + 2 or 3BRBSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC ← PC + k + 1BREQkBranch if Status Flag Clearedif (Z = 1) then PC ← PC + k + 1BRNEkBranch if Not Equalif (Z = 0) then PC ← PC + k + 1	None	4
RETSubroutine Return $PC \leftarrow STACK$ RETIInterrupt Return $PC \leftarrow STACK$ CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC ← PC + 2 or 3CPRd,RrCompareRd - RrCPCRd,RrCompare with CarryRd - Rr - CCPIRd,KCompare Register with ImmediateRd - KSBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC ← PC + 2 or 3SBRSRr, bSkip if Bit in Register Clearedif (Rr(b)=1) PC ← PC + 2 or 3SBICP, bSkip if Bit in I/O Register Clearedif (P(b)=0) PC ← PC + 2 or 3SBISP, bSkip if Bit in I/O Register Setif (P(b)=1) PC ← PC + 2 or 3BRBSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC ← PC+k + 1BRBCs, kBranch if Status Flag Clearedif (SREG(s) = 0) then PC ← PC+k + 1BREQkBranch if Not Equalif (Z = 1) then PC ← PC + k + 1BRNEkBranch if Not Equalif (Z = 0) then PC ← PC + k + 1	None	4
RETIInterrupt Return $PC \leftarrow STACK$ CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC \leftarrow PC + 2 or 3CPRd,RrCompareRd - RrCPCRd,RrCompare with CarryRd - Rr - CCPIRd,KCompare Register with ImmediateRd - KSBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC \leftarrow PC + 2 or 3SBRSRr, bSkip if Bit in Register Clearedif (Rr(b)=1) PC \leftarrow PC + 2 or 3SBICP, bSkip if Bit in I/O Register Clearedif (P(b)=0) PC \leftarrow PC + 2 or 3SBISP, bSkip if Bit in 1/O Register Clearedif (P(b)=1) PC \leftarrow PC + 2 or 3BRBSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC \leftarrow PC + k + 1BREQkBranch if Status Flag Clearedif (Z = 1) then PC \leftarrow PC + k + 1BRNEkBranch if Not Equalif (Z = 0) then PC \leftarrow PC + k + 1	None	5
CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC \leftarrow PC + 2 or 3CPRd,RrCompareRd - RrCPCRd,RrCompare with CarryRd - Rr - CCP1Rd,KCompare Register with ImmediateRd - KSBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC \leftarrow PC + 2 or 3SBRSRr, bSkip if Bit in Register Clearedif (Rr(b)=1) PC \leftarrow PC + 2 or 3SBRSRr, bSkip if Bit in Negister Clearedif (P(b)=0) PC \leftarrow PC + 2 or 3SBICP, bSkip if Bit in I/O Register Clearedif (P(b)=1) PC \leftarrow PC + 2 or 3SBISP, bSkip if Bit in I/O Register Setif (P(b)=1) PC \leftarrow PC + 2 or 3BRBSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC \leftarrow PC+k + 1BRBCs, kBranch if Status Flag Clearedif (SREG(s) = 0) then PC \leftarrow PC+k + 1BREQkBranch if Not Equalif (Z = 1) then PC \leftarrow PC + k + 1BRNEkBranch if Not Equalif (Z = 0) then PC \leftarrow PC + k + 1	None	-
CPRd,RrCompareRd - RrCPCRd,RrCompare with CarryRd - Rr - CCPIRd,KCompare Register with ImmediateRd - KSBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC \leftarrow PC + 2 or 3SBRSRr, bSkip if Bit in Register is Setif (Rr(b)=1) PC \leftarrow PC + 2 or 3SBICP, bSkip if Bit in I/O Register Clearedif (P(b)=0) PC \leftarrow PC + 2 or 3SBISP, bSkip if Bit in I/O Register Clearedif (P(b)=1) PC \leftarrow PC + 2 or 3BRBSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC \leftarrow PC + k + 1BRBCs, kBranch if Status Flag Clearedif (SREG(s) = 0) then PC \leftarrow PC + k + 1BREQkBranch if Not Equalif (Z = 1) then PC \leftarrow PC + k + 1BRNEkBranch if Not Equalif (Z = 0) then PC \leftarrow PC + k + 1	l.	5
CPCRd, RrCompare with CarryRd - Rr - CCPIRd,KCompare Register with ImmediateRd - KSBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC \leftarrow PC + 2 or 3SBRSRr, bSkip if Bit in Register is Setif (Rr(b)=1) PC \leftarrow PC + 2 or 3SBICP, bSkip if Bit in I/O Register Clearedif (P(b)=0) PC \leftarrow PC + 2 or 3SBISP, bSkip if Bit in I/O Register Clearedif (P(b)=1) PC \leftarrow PC + 2 or 3BRBSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC \leftarrow PC + k + 1BREQkBranch if Equalif (Z = 1) then PC \leftarrow PC + k + 1BRNEkBranch if Not Equalif (Z = 0) then PC \leftarrow PC + k + 1	None	1/2/3
CPIRd,KCompare Register with ImmediateRd – KSBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC \leftarrow PC + 2 or 3SBRSRr, bSkip if Bit in Register is Setif (Rr(b)=1) PC \leftarrow PC + 2 or 3SBICP, bSkip if Bit in I/O Register Clearedif (P(b)=0) PC \leftarrow PC + 2 or 3SBISP, bSkip if Bit in I/O Register Setif (P(b)=1) PC \leftarrow PC + 2 or 3BRBSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC \leftarrow PC + k + 1BREQkBranch if Equalif (Z = 1) then PC \leftarrow PC + k + 1BRNEkBranch if Not Equalif (Z = 0) then PC \leftarrow PC + k + 1	Z, N, V, C, H	1
SBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC \leftarrow PC + 2 or 3SBRSRr, bSkip if Bit in Register is Setif (Rr(b)=1) PC \leftarrow PC + 2 or 3SBICP, bSkip if Bit in I/O Register Clearedif (P(b)=0) PC \leftarrow PC + 2 or 3SBISP, bSkip if Bit in I/O Register is Setif (P(b)=1) PC \leftarrow PC + 2 or 3BRBSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC \leftarrow PC + k + 1BRBCs, kBranch if Status Flag Clearedif (SREG(s) = 0) then PC \leftarrow PC + k + 1BREQkBranch if Equalif (Z = 1) then PC \leftarrow PC + k + 1BRNEkBranch if Not Equalif (Z = 0) then PC \leftarrow PC + k + 1	Z, N, V, C, H	1
SBRSRr, bSkip if Bit in Register is Setif $(Rr(b)=1) PC \leftarrow PC + 2 \text{ or } 3$ SBICP, bSkip if Bit in I/O Register Clearedif $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$ SBISP, bSkip if Bit in I/O Register is Setif $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$ BRBSs, kBranch if Status Flag Setif $(SREG(s) = 1) then PC \leftarrow PC + k + 1$ BRBCs, kBranch if Status Flag Clearedif $(SREG(s) = 0) then PC \leftarrow PC + k + 1$ BREQkBranch if Equalif $(Z = 1) then PC \leftarrow PC + k + 1$ BRNEkBranch if Not Equalif $(Z = 0) then PC \leftarrow PC + k + 1$	Z, N, V, C, H	1
SBICP, bSkip if Bit in I/O Register Clearedif $(P(b)=0) PC \leftarrow PC + 2 \text{ or } 3$ SBISP, bSkip if Bit in I/O Register is Setif $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$ BRBSs, kBranch if Status Flag Setif $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$ BRBCs, kBranch if Status Flag Clearedif $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$ BREQkBranch if Equalif $(Z = 1)$ then $PC \leftarrow PC + k + 1$ BRNEkBranch if Not Equalif $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2/3
SBISP, bSkip if Bit in I/O Register is Setif $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$ BRBSs, kBranch if Status Flag Setif $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$ BRBCs, kBranch if Status Flag Clearedif $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$ BREQkBranch if Equalif $(Z = 1)$ then $PC \leftarrow PC + k + 1$ BRNEkBranch if Not Equalif $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2/3
BRBSs, kBranch if Status Flag Setif $(SREG(s) = 1)$ then PC \leftarrow PC+k + 1BRBCs, kBranch if Status Flag Clearedif $(SREG(s) = 0)$ then PC \leftarrow PC+k + 1BREQkBranch if Equalif $(Z = 1)$ then PC \leftarrow PC + k + 1BRNEkBranch if Not Equalif $(Z = 0)$ then PC \leftarrow PC + k + 1	None	1/2/3
BRBCs, kBranch if Status Flag Clearedif $(SREG(s) = 0)$ then PC \leftarrow PC + k + 1BREQkBranch if Equalif $(Z = 1)$ then PC \leftarrow PC + k + 1BRNEkBranch if Not Equalif $(Z = 0)$ then PC \leftarrow PC + k + 1	None	1/2/3
BREQkBranch if Equalif $(Z = 1)$ then PC \leftarrow PC + k + 1BRNEkBranch if Not Equalif $(Z = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRNEkBranch if Not Equalif $(Z = 0)$ then PC \leftarrow PC + k + 1	None	1/2
	None	
broos k bianch i carry Set If $(U = I)$ then $PU \leftarrow PU + K + I$	None	1/2
	None	1/2
	None	
	None	1/2
	None	1/2
	None	
BRPL k Branch if Plus if $(N = 0)$ then $PC \leftarrow PC + k + 1$ DPCE k Branch if Creates as Excel Signed if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRGE k Branch if Greater or Equal, Signed if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ PPLT k Branch if Leep Then Zero Signed if $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRLT k Branch if Less Than Zero, Signed if $(N \oplus V=1)$ then PC \leftarrow PC + k + 1 DBUC k Branch if Less Than Zero, Signed if $(k + 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRHS k Branch if Half Carry Flag Set if (H = 1) then $PC \leftarrow PC + k + 1$ DBL/C k Branch if Half Carry Flag Set if (H = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC \leftarrow PC + k + 1 DDTO k Branch if T Flag Oct k(T = 4) then PO \leftarrow PC + k + 1	None	1/2
BRTS k Branch if T Flag Set if $(T = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRTCkBranch if T Flag Clearedif $(T = 0)$ then PC \leftarrow PC + k + 1	None	1/2

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
BIT AND BIT-TEST			I		
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z, C, N, V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z, C, N, V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z, C, N, V	1
ROR ASR	Rd Rd	Rotate Right Through Carry Arithmetic Shift Right	$\frac{Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)}{Rd(n)\leftarrow Rd(n+1), n=06}$	Z, C, N, V Z, C, N, V	1
SWAP	Rd	Swap Nibbles	$Rd(n) \leftarrow Rd(n+1), n=06$ $Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) \leftarrow 0	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	C	1
CLC		Clear Carry	C ← 0	C	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I ← 1	1	1
CLI		Global Interrupt Disable	l ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	T ← 1	т	1
CLT		Clear T in SREG	$T \leftarrow 0$	т	1
SEH		Set Half Carry Flag in SREG	H ← 1	н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER I	1	1		i	1 .
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW LDI	Rd, Rr Rd, K	Copy Register Word Load Immediate	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, X	Load Indirect	$Rd \leftarrow K$	None	2
LD		Load Indirect	$Rd \leftarrow (X)$	None	2
ID		Load Indirect and Post-Inc			2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, X+ Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None None	2
LD LD	Rd, X+ Rd, - X Rd, Y	Load Indirect and Pre-Dec. Load Indirect	$X \leftarrow X - 1, Rd \leftarrow (X)$ $Rd \leftarrow (Y)$	None None None	2 2
LD	Rd, X+ Rd, - X Rd, Y Rd, Y+	Load Indirect and Pre-Dec. Load Indirect Load Indirect and Post-Inc.	$\begin{array}{c} X \leftarrow X - 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \end{array}$	None None None None	2 2 2
LD LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y	Load Indirect and Pre-Dec. Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec.	$\begin{array}{c} X \leftarrow X - 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ Y \leftarrow Y - 1, Rd \leftarrow (Y) \end{array}$	None None None None None	2 2 2 2 2
LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+	Load Indirect and Pre-Dec. Load Indirect Load Indirect and Post-Inc.	$\begin{array}{c} X \leftarrow X - 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ Y \leftarrow Y - 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \end{array}$	None None None None	2 2 2
LD LD LD LD LDD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Y+q	Load Indirect and Pre-Dec. Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement	$\begin{array}{c} X \leftarrow X - 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ Y \leftarrow Y - 1, Rd \leftarrow (Y) \end{array}$	None None None None None None	2 2 2 2 2 2 2
LD LD LD LD LDD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Y+q Rd, Z	Load Indirect and Pre-Dec. Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect	$\begin{array}{c} X \leftarrow X - 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ Y \leftarrow Y - 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z) \end{array}$	None None None None None None None None	2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Y+q Rd, Z Rd, Z+	Load Indirect and Pre-Dec. Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect Load Indirect Load Indirect and Post-Inc.	$\begin{array}{c} X \leftarrow X - 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ Y \leftarrow Y - 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \end{array}$	None	2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Y+q Rd, Z Rd, Z+ Rd, Z+ Rd, -Z	Load Indirect and Pre-Dec. Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec.	$\begin{array}{c} X \leftarrow X - 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ Y \leftarrow Y - 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ Z \leftarrow Z - 1, Rd \leftarrow (Z) \end{array}$	None	2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD LD LDD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd,Y+q Rd, Z+ Rd, -Z Rd, Z+q	Load Indirect and Pre-Dec. Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement	$\begin{array}{c} X \leftarrow X - 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ Y \leftarrow Y - 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z) \end{array}$	None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD LD LDD LDS	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Z+ Rd, Z+ Rd, Z+q Rd, Z+q Rd, Z+q Rd, k	Load Indirect and Pre-Dec. Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Direct from SRAM	$\begin{array}{c c} X \leftarrow X - 1, Rd \leftarrow (X) \\ \hline Rd \leftarrow (Y) \\ \hline Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ \hline Y \leftarrow Y - 1, Rd \leftarrow (Y) \\ \hline Rd \leftarrow (Y + q) \\ \hline Rd \leftarrow (Z) \\ \hline Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ \hline Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ \hline Rd \leftarrow (Z + q) \\ \hline Rd \leftarrow (K) \end{array}$	None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LDD LDD LD LD LD LDD LDS ST	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Z+ Rd, Z+ Rd, Z+q Rd, Z+q Rd, Z+q Rd, K X, Rr	Load Indirect and Pre-Dec. Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Direct from SRAM Store Indirect	$\begin{array}{c} X \leftarrow X - 1, Rd \leftarrow (X) \\ \hline Rd \leftarrow (Y) \\ \hline Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ \hline Y \leftarrow Y - 1, Rd \leftarrow (Y) \\ \hline Rd \leftarrow (Y + q) \\ \hline Rd \leftarrow (Z) \\ \hline Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ \hline Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ \hline Rd \leftarrow (Z + q) \\ \hline Rd \leftarrow (K) \\ \hline (X) \leftarrow Rr \end{array}$	None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LDD LDD LD LD LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Z Rd, Z+ Rd, Z+ Rd, Z+, R Rd, Z+, R Rd, K X, Rr X+, Rr - X, Rr Y, Rr	Load Indirect and Pre-Dec. Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Direct from SRAM Store Indirect Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Pre-Dec.	$\begin{array}{c c} X \leftarrow X \cdot 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ Y \leftarrow Y \cdot 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ Z \leftarrow Z \cdot 1, Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ Z \leftarrow Z \cdot 1, Rd \leftarrow (Z) \\ Rd \leftarrow (X) \leftarrow Rr \\ (Y) \leftarrow Rr \\ (Y) \leftarrow Rr \\ (Y) \leftarrow Rr \\ (Y) \leftarrow Rr \end{array}$	None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Z Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, K X, Rr X+, Rr -X, Rr Y, Rr Y+, Rr	Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect from SRAM Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Post-Inc.	$\begin{array}{c} X \leftarrow X \cdot 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ \hline Y \leftarrow Y \cdot 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z), \ Z \leftarrow Z + 1 \\ \hline Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ Rd \leftarrow (Z), \ Z \leftarrow Z + 1 \\ \hline Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ Rd \leftarrow (K) \\ (X) \leftarrow Rr \\ (X) \leftarrow Rr \\ (X) \leftarrow Rr \\ (X) \leftarrow Rr \\ (Y) \leftarrow Rr \\ $	None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Z Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, K X, Rr X+, Rr -X, Rr Y, Rr Y+, Rr -Y, Rr	Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect from SRAM Store Indirect Store Indirect and Pre-Dec. Store Indirect and Post-Inc. Store Indirect and Post-Inc.	$\begin{array}{c} X \leftarrow X \cdot 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ \hline Y \leftarrow Y \cdot 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ \hline Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (X + Q) \\ Rd \leftarrow (X + Q) \\ Rd \leftarrow (R + Q) \\ \hline Rd \leftarrow (R + R) \\ \hline (X) \leftarrow Rr \\ \hline (X) \leftarrow Rr \\ (X) \leftarrow Rr \\ X \leftarrow X - 1, (X) \leftarrow Rr \\ \hline (Y) \leftarrow Rr \\ \hline (Y$	None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Y+q Rd, Z Rd, Z- Rd, Z+ Rd, Z+ Rd, Z+, Rr X, Rr X, Rr Y, Rr Y, Rr Y+, Rr - Y, Rr Y+q, Rr	Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect mode Pre-Dec. Load Indirect from SRAM Store Indirect and Post-Inc. Store Indirect with Displacement Store Indirect and Post-Inc. Store Indirect with Displacement	$\begin{array}{c} X \leftarrow X \cdot 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ \hline Y \leftarrow Y \cdot 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ \hline Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z + q) \\ \hline Rd \leftarrow (K) \\ (X) \leftarrow Rr \\ (X) \leftarrow Rr \\ (X) \leftarrow Rr \\ K \leftarrow X + 1 \\ \hline X \leftarrow X - 1, (X) \leftarrow Rr \\ (Y) \leftarrow Rr \\ (Y) \leftarrow Rr \\ Y \leftarrow Y + 1 \\ \hline Y \leftarrow Y - 1, (Y) \leftarrow Rr \\ Y \leftarrow Y + 1 \\ \hline Y \leftarrow Y - 1, (Y) \leftarrow Rr \\ Y \leftarrow Y + Q \leftarrow Rr \\ \end{array}$	None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Z Rd, Z- Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, R, Z- Rd, K X, Rr X+, Rr - X, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr Z, Rr	Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect with Displacement Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect mode Pre-Dec. Load Indirect mode Pre-Dec. Store Indirect from SRAM Store Indirect and Post-Inc. Store Indirect with Displacement Store Indirect and Post-Inc. Store Indirect with Displacement Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect with Displacement	$\begin{array}{c} X \leftarrow X \cdot 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ \hline Y \leftarrow Y \cdot 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ \hline Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ \hline Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ Rd \leftarrow (Z + q) \\ \hline Rd \leftarrow (k) \\ (X) \leftarrow Rr \\ (Y) \leftarrow Rr, X \leftarrow X + 1 \\ \hline X \leftarrow X - 1, (X) \leftarrow Rr \\ (Y) \leftarrow Rr \\ (Y + q) \leftarrow Rr \\ (Z) \leftarrow Rr \\ (Z) \leftarrow Rr \end{array}$	None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Z+ Rd, Z- Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, R, Z- Rd, R, R, Z- Y, Rr Y, Rr Y, Rr Y+, Rr - Y, Rr Y+q, Rr Z, Rr Z+, Rr	Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect with Displacement Load Indirect and Post-Inc. Load Indirect with Displacement Load Indirect and Pre-Dec. Load Indirect and Pre-Dec. Load Indirect from SRAM Store Indirect Store Indirect and Post-Inc.	$\begin{array}{c} X \leftarrow X \cdot 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ \hline Y \leftarrow Y \cdot 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ \hline Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ \hline Z \leftarrow Z - Z, Rd \leftarrow (Z) \\ Rd \leftarrow (X) \\ Rd \leftarrow (K) \\ \hline Rd \leftarrow (K) \\ \hline Kd \leftarrow (K) \\ \hline Kd \leftarrow Kr, X \leftarrow X + 1 \\ \hline X \leftarrow X - 1, (X) \leftarrow Rr \\ \hline (Y) \leftarrow Rr \\ \hline (Z) \leftarrow Rr , Z \leftarrow Z + 1 \\ \hline \end{array}$	None None </td <td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD LD LD LDD LDS ST ST ST ST ST ST ST ST ST S	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Z Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z, R Y, Rr Y+, Rr - X, Rr Y, Rr Y+, Rr - Y, Rr Y+q, Rr Z, Rr Z+, Rr Z+, Rr Z, Rr Z, Rr	Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect with Displacement Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Pre-Dec. Load Indirect and Pre-Dec. Store Indirect Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Pre-Dec. Store Indirect and Post-Inc.	$\begin{array}{c} X \leftarrow X \cdot 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ \hline Y \leftarrow Y \cdot 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ \hline Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ Rd \leftarrow (Z + q) \\ Rd \leftarrow (X + q) \\ Rd \leftarrow (K + q) \\ Rd \leftarrow Rr \\ Rd \leftarrow Rd \\ R$	None None </td <td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Z Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, R, Z Rd, R, R X+, Rr -X, Rr Y, Rr Y+, Rr -Y, Rr Y+q, Rr Z, Rr Z+, Rr -Z, Rr Z+q, Rr	Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Pre-Dec. Load Indirect with Displacement Load Direct from SRAM Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Post-Inc. Store Indirect and Post-Inc. Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect with Displacement Store Indirect and Post-Inc. Store Indirect and Post-Inc. Store Indirect with Displacement Store Indirect and Post-Inc. Store Indirect with Displacement Store Indirect and Pre-Dec. Store Indirect and Pre-Dec. Store Indirect with Displacement	$\begin{array}{c} X \leftarrow X \cdot 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ \hline Y \leftarrow Y \cdot 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z) \\ Rd \leftarrow $	None None </td <td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Z Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z, R Y, Rr Y+, Rr - X, Rr Y, Rr Y+, Rr - Y, Rr Y+q, Rr Z, Rr Z+, Rr Z+, Rr Z, Rr Z, Rr	Load Indirect and Pre-Dec. Load Indirect Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Direct from SRAM Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Post-Inc. Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Pre-Dec. Store Indirect and Pre-Dec. Store Indirect and Pre-Dec. Store Indirect and Post-Inc. Store Indirect and Post-Inc.	$\begin{array}{c} X \leftarrow X \cdot 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ Y \leftarrow Y \cdot 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z) \\$	None None </td <td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, K X, Rr Y, Rr Y, Rr Y, Rr Y+, Rr - Y, Rr Y+q.Rr Z+, Rr -Z, Rr Z+q.Rr k, Rr	Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect with Displacement Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Pre-Dec. Store Indirect from SRAM Store Indirect and Post-Inc. Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Pre-Dec. Store Indirect and Pre-Dec. Store Indire	$\begin{array}{c c} X \leftarrow X \cdot 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ Y \leftarrow Y \cdot 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ Rd \leftarrow (Z + q) \\ Rd \leftarrow (k) \\ (X) \leftarrow Rr \\ (X) \leftarrow Rr \\ (X) \leftarrow Rr \\ (X) \leftarrow Rr \\ (Y) \leftarrow Rr \\ (Z) \leftarrow Rr \\ (Z + q) \leftarrow Rr \\ (Z + q) \leftarrow Rr \\ (Z) \leftarrow Rr \\ (Z + q) \leftarrow Rr \\ (Z) \leftarrow Rr \\ Rn \\ R0 \leftarrow (Z) \\ \end{array}$	None None </td <td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LD LD LD LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, - Y Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, R X, Rr X+, Rr -X, Rr Y, Rr Y+, Rr -Y, Rr Z+, Rr -Z, Rr Z+q, Rr k, Rr Rr Rd, Z	Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect and Pre-Dec. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Pre-Dec. Store Indirect from SRAM Store Indirect and Post-Inc. Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Pre-Dec. Store Indirect and Pre-Dec. Store Indirect to SRAM Load Program Memory	$\begin{array}{c c} X \leftarrow X \cdot 1, Rd \leftarrow (X) \\ Rd \leftarrow (Y) \\ Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ Y \leftarrow Y \cdot 1, Rd \leftarrow (Y) \\ Rd \leftarrow (Y + q) \\ Rd \leftarrow (Z), Z \leftarrow Y + 1 \\ Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ Rd \leftarrow (Z + q) \\ Rd \leftarrow (X) \\ C + Rr \\ (X) \leftarrow Rr \\ (Y) \leftarrow Rr \\ (Y + q) \leftarrow Rr \\ (Z) \leftarrow Rr \\ (Z + q) \leftarrow Rr \\ (K) \leftarrow Rr \\ R0 \leftarrow (Z) \\ Rd \leftarrow (Z) \\ \end{array}$	None None </td <td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
LD LD LD LD LDD LD LD LD LD LD	Rd, X+ Rd, - X Rd, Y Rd, Y+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, Z+ Rd, K X, Rr Y, Rr Y, Rr Y, Rr Y+, Rr - Y, Rr Y+q,Rr Z+, Rr -Z, Rr Z+q,Rr k, Rr	Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Pre-Dec. Load Indirect and Post-Inc. Load Indirect and Post-Inc. Load Indirect with Displacement Load Indirect and Pre-Dec. Load Indirect with Displacement Load Indirect and Pre-Dec. Store Indirect from SRAM Store Indirect and Post-Inc. Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Post-Inc. Store Indirect and Pre-Dec. Store Indirect and Pre-Dec. Store Indirect and Pre-Dec. Store Indire	$\begin{array}{c c} X \leftarrow X \cdot 1, Rd \leftarrow (X) \\ & Rd \leftarrow (Y) \\ & Rd \leftarrow (Y), Y \leftarrow Y + 1 \\ & Y \leftarrow Y \cdot 1, Rd \leftarrow (Y) \\ & Rd \leftarrow (Y), Rd \leftarrow (Y) \\ & Rd \leftarrow (Z) \\ & Rd \leftarrow (Z) \\ & Rd \leftarrow (Z), Z \leftarrow Z + 1 \\ & Z \leftarrow Z - 1, Rd \leftarrow (Z) \\ & Rd \leftarrow (Z) \\ & Rd \leftarrow (Z + q) \\ & Rd \leftarrow (K) \\ & (X) \leftarrow Rr \\ & (X) \leftarrow Rr \\ & (X) \leftarrow Rr, X \leftarrow X + 1 \\ & X \leftarrow X \cdot 1, (X) \leftarrow Rr \\ & (Y) \leftarrow Rr, Y \leftarrow Y + 1 \\ & Y \leftarrow Y - 1, (Y) \leftarrow Rr \\ & (Y) \leftarrow Rr \\ & (Z) \leftarrow Rr \\ & Rr \\ & Ro \leftarrow (Z) \end{array}$	None None </td <td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ELPM	Rd, Z+	Extended Load Program Memory	$Rd \leftarrow (RAMPZ:Z), RAMPZ:Z \leftarrow RAMPZ:Z+1$	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	$STACK \leftarrow Rr$	None	2
POP	Rd	Pop Register from Stack	$Rd \leftarrow STACK$	None	2
MCU CONTROL INS	STRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

Note:

EICALL and EIJMP do not exist in ATmega640/1280/1281. ELPM does not exist in ATmega640.

9. Ordering Information

9.1 ATmega640

Speed (MHz) ⁽²⁾	Power Supply	Ordering Code	Package ⁽¹⁾⁽³⁾	Operation Range
8	1.8 - 5.5V	ATmega640V-8AU ATmega640V-8AUR ⁽⁴⁾ ATmega640V-8CU ATmega640V-8CUR ⁽⁴⁾	100A 100A 100C1 100C1	Industrial (-40°C to 85°C)
16	2.7 - 5.5V	ATmega640-16AU ATmega640-16AUR ⁽⁴⁾ ATmega640-16CU ATmega640-16CUR ⁽⁴⁾	100A 100A 100C1 100C1	

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. See "Speed Grades" on page 369.

3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type		
100A	100-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)	
100C1	100-ball, Chip Ball Grid Array (CBGA)	

9.2 ATmega1280

Speed (MHz) ⁽²⁾	Power Supply	Ordering Code	Package ⁽¹⁾⁽³⁾	Operation Range	
8	1.8V - 5.5V	ATmega1280V-8AU ATmega1280V-8AUR ⁽⁴⁾ ATmega1280V-8CU ATmega1280V-8CUR ⁽⁴⁾	100A 100A 100C1 100C1	Industrial (10°C to 85°C)	
16	2.7V - 5.5V	ATmega1280-16AU ATmega1280-16AUR ⁽⁴⁾ ATmega1280-16CU ATmega1280-16CUR ⁽⁴⁾	100A 100A 100C1 100C1	- Industrial (-40°C to 85°C)	

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. See "Speed Grades" on page 369.

3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type		
100A	100-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)	
100C1	100-ball, Chip Ball Grid Array (CBGA)	

9.3 ATmega1281

Speed (MHz) ⁽²⁾	Power Supply	Ordering Code	Package ⁽¹⁾⁽³⁾	Operation Range
8	1.8 - 5.5V	ATmega1281V-8AU ATmega1281V-8AUR ⁽⁴⁾ ATmega1281V-8MU ATmega1281V-8MUR ⁽⁴⁾	64A 64A 64M2 64M2	Industrial
16	2.7 - 5.5V	ATmega1281-16AU ATmega1281-16AUR ⁽⁴⁾ ATmega1281-16MU ATmega1281-16MUR ⁽⁴⁾	64A 64A 64M2 64M2	(-40°C to 85°C)

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. See "Speed Grades" on page 369.

3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type				
64A	64-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)			
64M2	64-pad, 9mm \times 9mm \times 1.0mm Body, Quad Flat No-lead/Micro Lead Frame Package (QFN/MLF)			

9.4 ATmega2560

Speed (MHz) ⁽²⁾	Power Supply	Ordering Code	Package ⁽¹⁾⁽³⁾	Operation Range	
8	1.8V - 5.5V	ATmega2560V-8AU ATmega2560V-8AUR ⁽⁴⁾ ATmega2560V-8CU ATmega2560V-8CUR ⁽⁴⁾	100A 100A 100C1 100C1	Industrial (10°C to 85°C)	
16	4.5V - 5.5V	ATmega2560-16AU ATmega2560-16AUR ⁽⁴⁾ ATmega2560-16CU ATmega2560-16CUR ⁽⁴⁾	100A 100A 100C1 100C1	 Industrial (-40°C to 85°C) 	

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. See "Speed Grades" on page 369.

3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

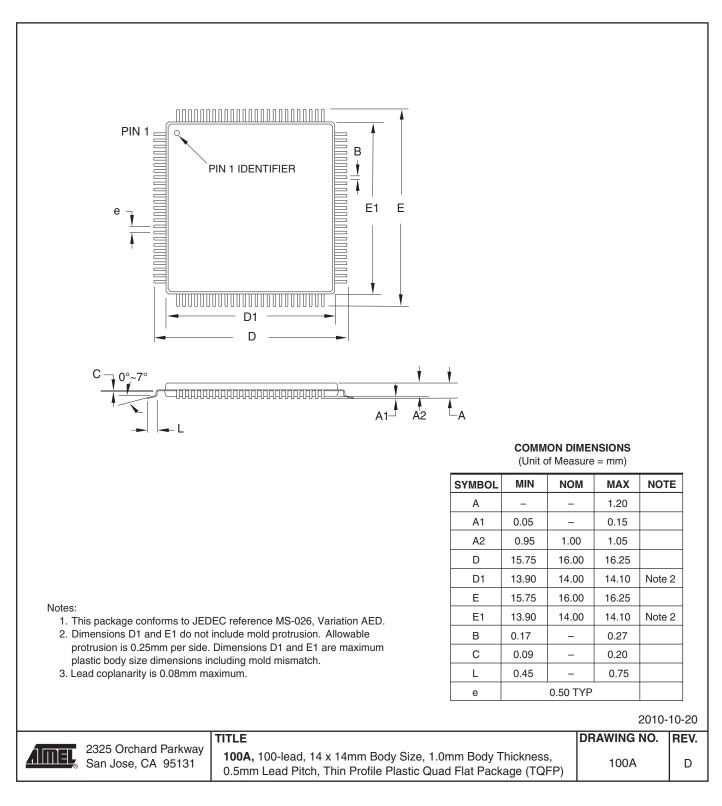
Package Type		
100A	100-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)	
100C1	100-ball, Chip Ball Grid Array (CBGA)	

9.5 ATmega2561

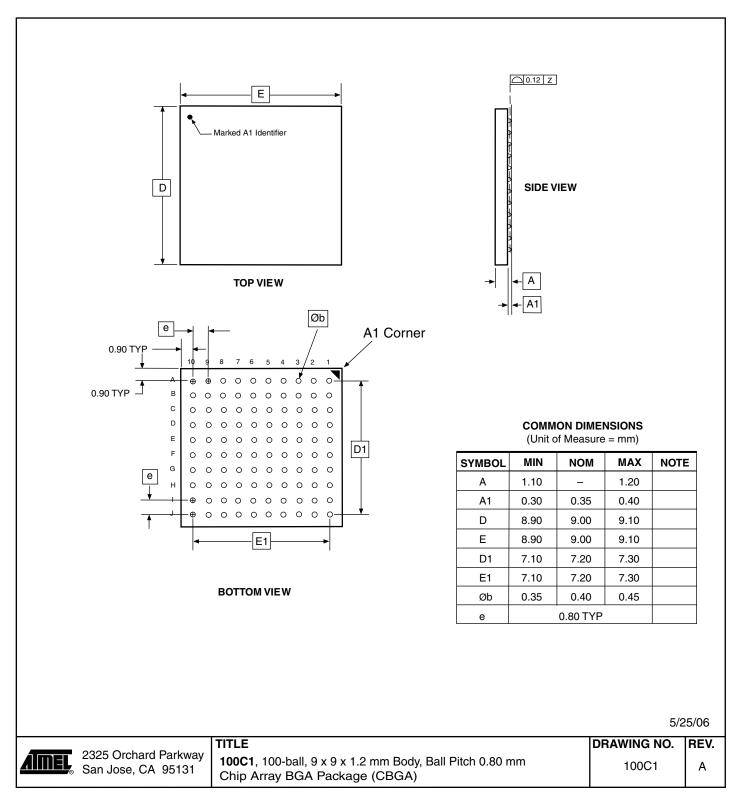
Speed (MHz) ⁽²⁾	Power Supply	Ordering Code	Package ⁽¹⁾⁽³⁾	Operation Range
8	1.8V - 5.5V	ATmega1281V-8AU 64A ATmega1281V-8AUR ⁽⁴⁾ 64A ATmega1281V-8AUR ⁽⁴⁾ 64A ATmega1281V-8MU 64M2 ATmega1281V-8MUR ⁽⁴⁾ 64M2	Industrial	
16	4.5V - 5.5V	ATmega1281-16AU ATmega1281-16AUR ⁽⁴⁾ ATmega1281-16MU ATmega1281-16MUR ⁽⁴⁾	64A 64A 64M2 64M2	(-40°C to 85°C)

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

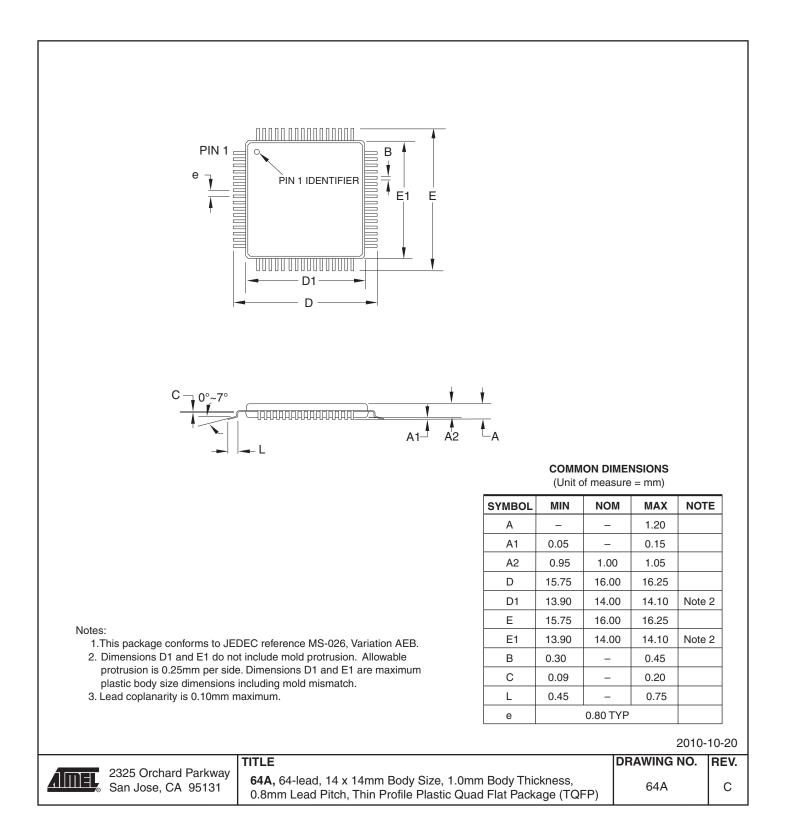
2. See "Speed Grades" on page 369.


3. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

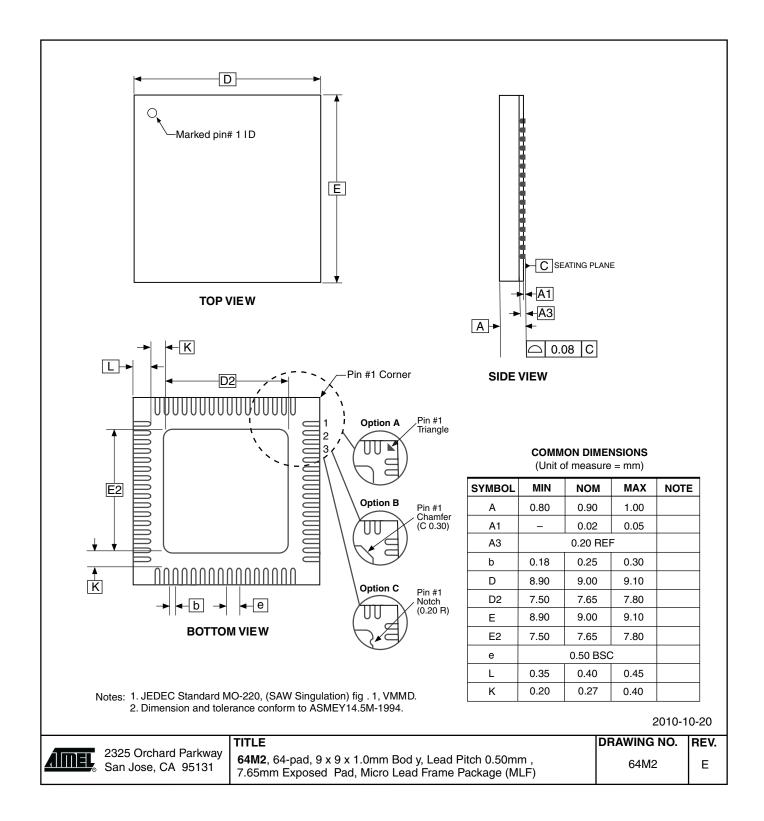
Package Type			
64 A	64-lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)		
64M2	64-pad, 9mm \times 9mm \times 1.0mm Body, Quad Flat No-lead/Micro Lead Frame Package (QFN/MLF)		


10. Packaging Information

10.1 100A



10.2 100C1



10.3 64A

10.4 64M2

11. Errata

11.1 ATmega640 rev. B

- Inaccurate ADC conversion in differential mode with 200x gain
- High current consumption in sleep mode

1. Inaccurate ADC conversion in differential mode with 200× gain

With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB.

Problem Fix/Workaround

None.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/Workaround

Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.

11.2 ATmega640 rev. A

- Inaccurate ADC conversion in differential mode with 200× gain
- High current consumption in sleep mode

1. Inaccurate ADC conversion in differential mode with 200× gain

With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB.

Problem Fix/Workaround

None.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/Workaround

Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.

11.3 ATmega1280 rev. B

- Inaccurate ADC conversion in differential mode with 200× gain
- High current consumption in sleep mode

1. Inaccurate ADC conversion in differential mode with 200× gain

With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB.

Problem Fix/Workaround

None.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/Workaround

Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.

11.4 ATmega1280 rev. A

Inaccurate ADC conversion in differential mode with 200× gain

High current consumption in sleep mode

1. Inaccurate ADC conversion in differential mode with 200× gain

With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB.

Problem Fix/Workaround

None.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/Workaround

Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.

11.5 ATmega1281 rev. B

- Inaccurate ADC conversion in differential mode with 200× gain
- High current consumption in sleep mode

1. Inaccurate ADC conversion in differential mode with 200× gain

With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB.

Problem Fix/Workaround

None.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/Workaround

Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.

11.6 ATmega1281 rev. A

- Inaccurate ADC conversion in differential mode with 200× gain
- High current consumption in sleep mode

1. Inaccurate ADC conversion in differential mode with 200× gain

With AVCC <3.6V, random conversions will be inaccurate. Typical absolute accuracy may reach 64 LSB.

Problem Fix/Workaround

None.

2. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/Workaround

Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.

11.7 ATmega2560 rev. F

Not sampled.

11.8 ATmega2560 rev. E

No known errata.

11.9 ATmega2560 rev. D

Not sampled.

11.10 ATmega2560 rev. C

High current consumption in sleep mode

1. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/Workaround

Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.

11.11 ATmega2560 rev. B

Not sampled.

11.12 ATmega2560 rev. A

- Non-Read-While-Write area of flash not functional
- Part does not work under 2.4 volts
- Incorrect ADC reading in differential mode
- Internal ADC reference has too low value
- IN/OUT instructions may be executed twice when Stack is in external RAM
- EEPROM read from application code does not work in Lock Bit Mode 3

1. Non-Read-While-Write area of flash not functional

The Non-Read-While-Write area of the flash is not working as expected. The problem is related to the speed of the part when reading the flash of this area.

Problem Fix/Workaround

- Only use the first 248K of the flash.

- If boot functionality is needed, run the code in the Non-Read-While-Write area at maximum 1/4th of the maximum frequency of the device at any given voltage. This is done by writing the CLKPR register before entering the boot section of the code.

2. Part does not work under 2.4 volts

The part does not execute code correctly below 2.4 volts.

Problem Fix/Workaround

Do not use the part at voltages below 2.4 volts.

3. Incorrect ADC reading in differential mode

The ADC has high noise in differential mode. It can give up to 7 LSB error.

Problem Fix/Workaround

Use only the 7 MSB of the result when using the ADC in differential mode.

4. Internal ADC reference has too low value

The internal ADC reference has a value lower than specified.

Problem Fix/Workaround

- Use AVCC or external reference.

- The actual value of the reference can be measured by applying a known voltage to the ADC when using the internal reference. The result when doing later conversions can then be calibrated.

5. IN/OUT instructions may be executed twice when Stack is in external RAM

If either an IN or an OUT instruction is executed directly before an interrupt occurs and the stack pointer is located in external ram, the instruction will be executed twice. In some cases this will cause a problem, for example:

- If reading SREG it will appear that the I-flag is cleared.
- If writing to the PIN registers, the port will toggle twice.
- If reading registers with interrupt flags, the flags will appear to be cleared.

Problem Fix/Workaround

There are two application work-arounds, where selecting one of them, will be omitting the issue:

- Replace IN and OUT with LD/LDS/LDD and ST/STS/STD instructions.
- Use internal RAM for stack pointer.

6. EEPROM read from application code does not work in Lock Bit Mode 3

When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code.

Problem Fix/Workaround

Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM.

11.13 ATmega2561 rev. F

Not sampled.

11.14 ATmega2561 rev. E

No known errata.

11.15 ATmega2561 rev. D

Not sampled.

11.16 ATmega2561 rev. C

• High current consumption in sleep mode.

1. High current consumption in sleep mode

If a pending interrupt cannot wake the part up from the selected sleep mode, the current consumption will increase during sleep when executing the SLEEP instruction directly after a SEI instruction.

Problem Fix/Workaround

Before entering sleep, interrupts not used to wake the part from the sleep mode should be disabled.

11.17 ATmega2561 rev. B

Not sampled.

11.18 ATmega2561 rev. A

- Non-Read-While-Write area of flash not functional
- Part does not work under 2.4 Volts
- Incorrect ADC reading in differential mode
- Internal ADC reference has too low value
- IN/OUT instructions may be executed twice when Stack is in external RAM
- EEPROM read from application code does not work in Lock Bit Mode 3

1. Non-Read-While-Write area of flash not functional

The Non-Read-While-Write area of the flash is not working as expected. The problem is related to the speed of the part when reading the flash of this area.

Problem Fix/Workaround

- Only use the first 248K of the flash.

- If boot functionality is needed, run the code in the Non-Read-While-Write area at maximum 1/4th of the maximum frequency of the device at any given voltage. This is done by writing the CLKPR register before entering the boot section of the code.

2. Part does not work under 2.4 volts

The part does not execute code correctly below 2.4 volts.

Problem Fix/Workaround

Do not use the part at voltages below 2.4 volts.

3. Incorrect ADC reading in differential mode

The ADC has high noise in differential mode. It can give up to 7 LSB error.

Problem Fix/Workaround

Use only the 7 MSB of the result when using the ADC in differential mode.

4. Internal ADC reference has too low value

The internal ADC reference has a value lower than specified.

Problem Fix/Workaround

- Use AVCC or external reference.

- The actual value of the reference can be measured by applying a known voltage to the ADC when using the internal reference. The result when doing later conversions can then be calibrated.

5. IN/OUT instructions may be executed twice when Stack is in external RAM

If either an IN or an OUT instruction is executed directly before an interrupt occurs and the stack pointer is located in external ram, the instruction will be executed twice. In some cases this will cause a problem, for example:

- If reading SREG it will appear that the I-flag is cleared.
- If writing to the PIN registers, the port will toggle twice.
- If reading registers with interrupt flags, the flags will appear to be cleared.

Problem Fix/Workaround

There are two application workarounds, where selecting one of them, will be omitting the issue:

- Replace IN and OUT with LD/LDS/LDD and ST/STS/STD instructions.
- Use internal RAM for stack pointer.

6. EEPROM read from application code does not work in Lock Bit Mode 3

When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code.

34

Problem Fix/Workaround

Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM.

12. Datasheet Revision History

Please note that the referring page numbers in this section are referring to this document. The referring revision in this section are referring to the document revision.

12.1 Rev. 2549P-10/2012

- 1. Replaced drawing in 10.4 "64M2" on page 28.
- 2. Former page 439 has been deleted as the content of this page did not belong there (same page as the last page).
- 3. Some small correction made in the setup.

12.2 Rev. 2549O-05/12

- 1. The datasheet changed status from Preliminary to Complete. Removed "Preliminary" from the front page.
- 2. Replaced Figure 10-3 on page 46 by a new one.
- 3. Updated the last page to include the new address for Atmel Japan site.

12.3 Rev. 2549N-05/11

- 1. Added Atmel QTouch Library Support and QTouch Sensing Capablity Features
- 2. Updated Cross-reference in "Bit 5, 2:0 WDP3:0: Watchdog Timer Prescaler 3, 2, 1 and 0" on page 68
- 3. Updated Assembly codes in section "USART Initialization" on page 210
- 4. Added "Standard Power-On Reset" on page 372.
- 5. Added "Enhanced Power-On Reset" on page 373.
- 6. Updated Figure 32-13 on page 393
- 7. Updated "Ordering Information" on page 20 to include Tape & Reel devices.

12.4 Rev. 2549M-09/10

- 1. Updated typos in Figure 26-9 on page 285 and in Figure 26-10 on page 285.
- 2. Note is added below Table 1-1 on page 3.
- 3. The values for "typical characteristics" in Table 31-9 on page 377 and Table 31-10 on page 378, has been rounded.
- 4. Units for tRST and tBOD in Table 31-3 on page 372 have been changed from "ns" to "µs".
- 5. The figure text for Table 31-2 on page 371 has been changed.
- 6. Text in first column in Table 30-3 on page 336 has been changed from "Fuse Low Byte" to "Extended Fuse Byte".
- 7. The text in "Power Reduction Register" on page 54 has been changed.
- 8. The value of the inductor in Figure 26-9 on page 285 and Figure 26-10 on page 285 has been changed to 10 $\mu H.$
- 9. "Port A" has been changed into "Port K" in the first paragraph of "Features" on page 275.
- 10. Minimum wait delay for tWD_EEPROM in Table 30-16 on page 351 has been changed from 9.0ms to 3.6ms
- 11. Dimension A3 is added in "64M2" on page 28.
- 12. Several cross-references are corrected.

- 13. "COM0A1:0" on page 130 is corrected to "COM0B1:0".
- 14. Corrected some Figure and Table numbering.
- 15. Updated Section 10.6 "Low Frequency Crystal Oscillator" on page 45.

12.5 Rev. 2549L-08/07

- 1. Updated note in Table 10-11 on page 47.
- 2. Updated Table 10-3 on page 43, Table 10-5 on page 44, Table 10-9 on page 47.
- 3. Updated typos in "DC Characteristics" on page 367
- 4. Updated "Clock Characteristics" on page 371
- 5. Updated "External Clock Drive" on page 371.
- 6. Added "System and Reset Characteristics" on page 372.
- 7. Updated "SPI Timing Characteristics" on page 375.
- 8. Updated "ADC Characteristics Preliminary Data" on page 377.
- 9. Updated ordering code in "ATmega640" on page 20.

12.6 Rev. 2549K-01/07

- 1. Updated Table 1-1 on page 3.
- 2. Updated "Pin Descriptions" on page 7.
- 3. Updated "Stack Pointer" on page 16.
- 4. Updated "Bit 1 EEPE: EEPROM Programming Enable" on page 36.
- 5. Updated Assembly code example in "Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user must always allow the reference to start up before the output from the Analog Comparator or ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three conditions above to ensure that the reference is turned off before entering Power-down mode." on page 63.
- 6: Updated "EIMSK External Interrupt Mask Register" on page 115.
- 7. Updated Bit description in "PCIFR Pin Change Interrupt Flag Register" on page 116.
- 8. Updated code example in "USART Initialization" on page 210.
- 9. Updated Figure 26-8 on page 284.
- 10. Updated "DC Characteristics" on page 367.

12.7 Rev. 2549J-09/06

- 1. Updated "" on page 46.
- 2. Updated code example in "Moving Interrupts Between Application and Boot Section" on page 109.
- 3. Updated "Timer/Counter Prescaler" on page 186.
- 4. Updated "Device Identification Register" on page 303.
- 5. Updated "Signature Bytes" on page 338.
- 6. Updated "Instruction Set Summary" on page 17.

12.8 Rev. 2549I-07/06

- 1. Added "Data Retention" on page 11.
- 2. Updated Table 16-3 on page 129, Table 16-6 on page 130, Table 16-8 on page 131, Table 17-2 on page 148, Table 17-4 on page 159, Table 17-5 on page 160, Table 20-3 on page 187, Table 20-6 on page 188 and Table 20-8 on page 189.
- 3. Updated "Fast PWM Mode" on page 150.

12.9 Rev. 2549H-06/06

- 1. Updated "" on page 46.
- 2. Updated "OSCCAL Oscillator Calibration Register" on page 50.
- 3. Added Table 31-1 on page 371.

12.10 Rev. 2549G-06/06

- 1. Updated "Features" on page 1.
- 2. Added Figure 1-2 on page 3, Table 1-1 on page 3.
- 3. Updated "" on page 46.
- 4. Updated "Power Management and Sleep Modes" on page 52.
- 5. Updated note for Table 12-1 on page 68.
- 6. Updated Figure 26-9 on page 285 and Figure 26-10 on page 285.
- 7. Updated "Setting the Boot Loader Lock Bits by SPM" on page 324.
- 8. Updated "Ordering Information" on page 20.
- 9. Added Package information "100C1" on page 26.
- 10. Updated "Errata" on page 29.

12.11 Rev. 2549F-04/06

- 1. Updated Figure 9-3 on page 31, Figure 9-4 on page 31 and Figure 9-5 on page 32.
- 2. Updated Table 20-2 on page 187 and Table 20-3 on page 187.
- 3. Updated Features in "ADC Analog to Digital Converter" on page 275.
- 4. Updated "Fuse Bits" on page 336.

12.12 Rev. 2549E-04/06

- 1. Updated "Features" on page 1.
- 2. Updated Table 12-1 on page 62.
- 3. Updated note for Table 12-1 on page 62.
- 4. Updated "Bit 6 ACBG: Analog Comparator Bandgap Select" on page 273.
- 5. Updated "Prescaling and Conversion Timing" on page 278.
- 5. Updated "Maximum speed vs. V_{CC} " on page 373.
- 6. Updated "Ordering Information" on page 20.

12.13 Rev. 2549D-12/05

- 1. Advanced Information Status changed to Preliminary.
- 2. Changed number of I/O Ports from 51 to 54.
- 3. Updatet typos in "TCCR0A Timer/Counter Control Register A" on page 129.
- 4. Updated Features in "ADC Analog to Digital Converter" on page 275.
- 5. Updated Operation in "ADC Analog to Digital Converter" on page 275
- 6. Updated Stabilizing Time in "Changing Channel or Reference Selection" on page 282.
- 7. Updated Figure 26-1 on page 276, Figure 26-9 on page 285, Figure 26-10 on page 285.
- 8. Updated Text in "ADCSRB ADC Control and Status Register B" on page 290.
- 9. Updated Note for Table 4 on page 43, Table 13-15 on page 86, Table 26-3 on page 289 and Table 26-6 on page 295.
- 10. Updated Table 31-9 on page 377 and Table 31-10 on page 378.
- 11. Updated "Filling the Temporary Buffer (Page Loading)" on page 323.
- 12. Updated "Typical Characteristics" on page 385.
- 13. Updated "Packaging Information" on page 25.
- 14. Updated "Errata" on page 29.

12.14 Rev. 2549C-09/05

- 1. Updated Speed Grade in section "Features" on page 1.
- 2. Added "Resources" on page 11.
- 3. Updated "SPI Serial Peripheral Interface" on page 195. In Slave mode, low and high period SPI clock must be larger than 2 CPU cycles.
- 4. Updated "Bit Rate Generator Unit" on page 247.
- 5. Updated "Maximum speed vs. V_{CC}" on page 373.
- 6. Updated "Ordering Information" on page 20.
- 7. Updated "Packaging Information" on page 25. Package 64M1 replaced by 64M2.
- 8. Updated "Errata" on page 29.

12.15 Rev. 2549B-05/05

- 1. JTAG ID/Signature for ATmega640 updated: 0x9608.
- 2. Updated Table 13-7 on page 81.
- 3. Updated "Serial Programming Instruction set" on page 352.
- 4. Updated "Errata" on page 29.

12.16 Rev. 2549A-03/05

1. Initial version.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1)(408) 441-0311 Fax: (+1)(408) 487-2600 www.atmel.com

Atmel Asia Limited Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369

Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621

Atmel Japan

16F, Shin-Osaki Kangyo Bldg. 1-6-8 Osaki Shinagawa-ku Tokyo 141-0032 JAPAN Tel: (+81)(3) 6417-0300 Fax: (+81)(3) 6417-0370

© 2012 Atmel Corporation. All rights reserved.

Atmel[®], Atmel logo and combinations thereof, AVR[®], QTouch[®], QMatrix[®], AVR Studio[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows[®] and others are registered trademarks of Microsoft Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIFCT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.