

P-channel 60 V, 0.13 Ω typ., 3 A STripFETTM VI DeepGATETM Power MOSFET in a SOT-223 package

Datasheet - production data

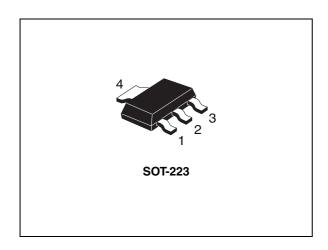
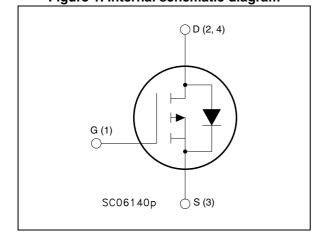



Figure 1. Internal schematic diagram

Features

Order code	V _{DSS}	R _{DS(on)max}	I _D
STN3P6F6	60 V	0.16 Ω @ 10 V	3 A

- R_{DS(on)} * Qg industry benchmark
- Extremely low on-resistance R_{DS(on)}
- · High avalanche ruggedness
- · Low gate drive power losses

Applications

· Switching applications

Description

This device is a P-channel Power MOSFET developed using the $\boldsymbol{\theta}^{th}$ generation of STripFETTM DeepGATETM technology, with a new gate structure. The resulting Power MOSFET exhibits the lowest R_{DS(on)} in all packages.

Table 1. Device summary

Order code	Marking	Package	Packaging
STN3P6F6	STN3P6F6	SOT-223	Tape and reel

Note: For the P-channel Power MOSFET the actual polarity of the voltages and the current must be reversed.

Contents STN3P6F6

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Revision history	11

STN3P6F6 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	60	V
V _{GS}	Gate-source voltage	± 20	V
I _D	Drain current (continuous) at T _{pcb} = 25 °C	3	Α
I _D	Drain current (continuous) at T _{pcb} = 100 °C	2	Α
I _{DM}	Drain current (pulsed)	12	Α
P _{TOT} (1)	Total dissipation at T _{pcb} = 25 °C	2.6	W
T _j P _{stg}	Operating junction temperature Storage temperature	-55 to 175	°C

^{1.} Pulse width is limited by safe operating area.

Table 3. Thermal data

Symbol	Parameter	Value	Unit	
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	57	°C/W	İ

^{1.} When mounted on FR-4 board of 15 mm², 2 Oz Cu, t<10 sec

Note:

For the P-channel Power MOSFET actual polarity of voltages and current has to be reversed.

Electrical characteristics STN3P6F6

2 Electrical characteristics

(Tcase = 25 °C unless otherwise specified).

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage (V _{GS} = 0)	I _D = 250 μA	60			V
I _{DSS}		V _{DS} = 60 V V _{DS} = 60 V, T _C =125 °C			1 10	μA μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 1.5 A		0.13	0.16	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 48 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	340 40 20	-	pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 48 \text{ V}, I_D = 3 \text{ A},$ $V_{GS} = 10 \text{ V}$ (see <i>Figure 14</i>)	-	6.4 1.7 1.7	-	nC nC nC

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$\begin{array}{c} t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \end{array}$	Turn-on delay time Rise time Turn-off delay time Fall time	$V_{DD} = 48 \text{ V}, I_{D} = 1.5 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 13</i>)	-	6.4 5.3 14 3.7	-	ns ns ns ns

Note: For the P-channel Power MOSFET actual polarity of voltages and current has to be reversed.

Unit **Symbol Parameter Test conditions** Min. Тур. Max. I_{SD} Source-drain current 3 Α I_{SDM} (1) Source-drain current (pulsed) 12 Α V_{SD} (2) $I_{SD} = 3 A$, $V_{GS} = 0$ 1.1 ٧ Forward on voltage Reverse recovery time $I_{SD} = 5 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ 20 t_{rr} ns $V_{DD} = 16 \text{ V}, T_j = 150 \text{ }^{\circ}\text{C}$ Q_{rr} Reverse recovery charge 17.8 nC (see Figure 15) Reverse recovery current 1.8 Α I_{RRM}

Table 7. Source drain diode

- 1. Pulse width limited by safe operating area.
- 2. Pulse duration = 300 μ s, duty cycle 1.5%

Note: For the P-channel Power MOSFET actual polarity of voltages and current has to be reversed.

Electrical characteristics STN3P6F6

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

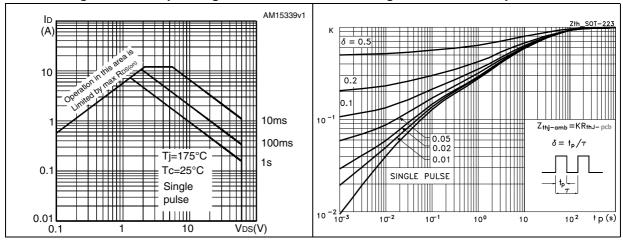


Figure 4. Output characteristics

Figure 5. Transfer characteristics

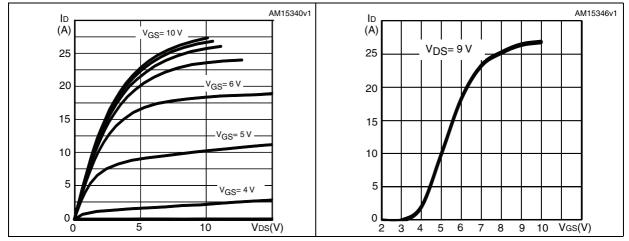


Figure 6. Gate charge vs gate-source voltage

Figure 7. Static drain-source on-resistance

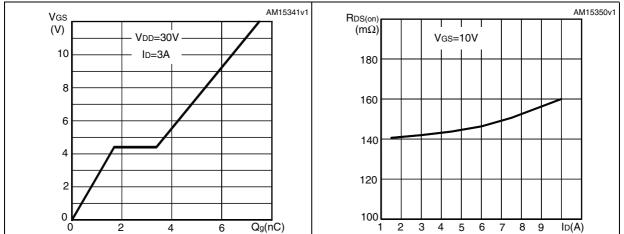
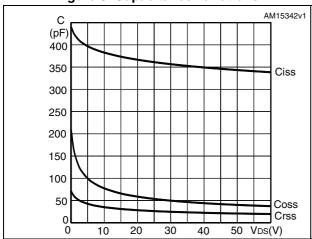



Figure 8. Capacitance variations

Figure 9. Normalized B_{VDSS} vs temperature

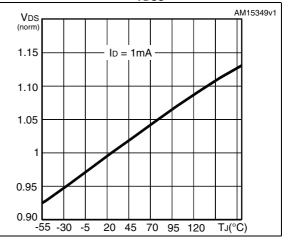
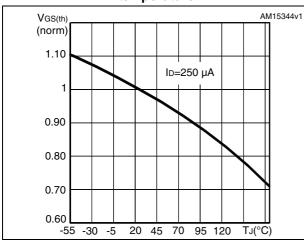



Figure 10. Normalized gate threshold voltage vs temperature

Figure 11. Normalized on-resistance vs temperature

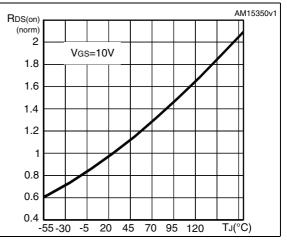
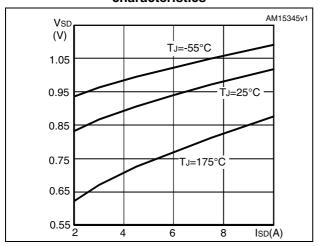



Figure 12. Source-drain diode forward characteristics

Test circuits STN3P6F6

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

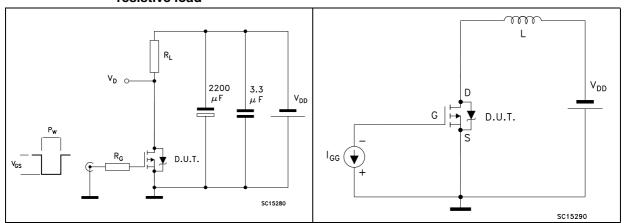
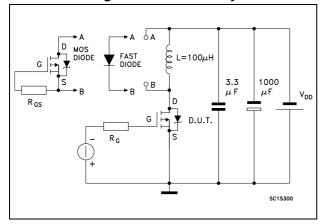



Figure 15. Test circuit for inductive load switching and diode recovery times

AT/

4 Package mechanical data

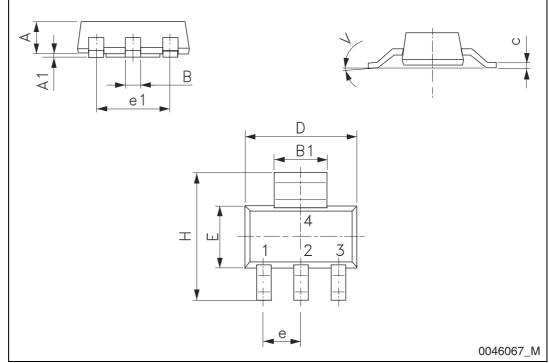

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Table 8. SOT-223 mechanical data

Dim.		mm				
Dilli.	Min.	Тур.	Max.			
А			1.80			
A1	0.02		0.1			
В	0.60	0.70	0.85			
B1	2.90	3.00	3.15			
С	0.24	0.26	0.35			
D	6.30	6.50	6.70			
е		2.30				
e1		4.60				
E	3.30	3.50	3.70			
Н	6.70	7.00	7.30			
V			10°			

Figure 16. SOT-223 mechanical data drawing

STN3P6F6 Revision history

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
31-Oct-2012	1	First release.
09-Nov-2012	2	Modified: note 1 in Table 3
16-Jan-2013	3	Document status promoted from preliminary data to production data
14-Mar-2013	4	Modified: Figure 1, 3, C _{iss} , C _{oss} , C _{rss} typical values in Table 5

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING. ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12 DocID023758 Rev 4

