ULTRA PRECISION 4×4 CML SWITCH WITH INTERNAL I/O TERMINATION Precision Edge[®] SY58040U #### **FEATURES** - Provides crosspoint switching between any input pair to any output pair - Guaranteed AC performance over temperature and voltage: - DC to >5Gbps throughput - <350ps propagation delay - <60ps t_r/t_f times - <25ps skew (output-to-output) - Unique, patent-pending, channel-to-channel isolation design provides superior crosstalk performance - Ultra-low jitter design: - <1ps_{RMS} random jitter - <10ps_{pp} deterministic jitter - <10ps_{pp} total jitter (clock) - <0.7ps_{RMS} crosstalk-induced jitter - Unique, patent-pending, 50Ω input termination extended CMVR, and VT pin accepts DC- and ACcoupled differential inputs - 400mV CML output swing - 50Ω source terminated outputs minimize round-trip reflections - Power supply 2.5V ±5% or 3.3V ±10% - -40°C to +85°C temperature range - Available in 44-pin (7mm × 7mm) MLF® package - Pb-Free green package Precision Edge® #### DESCRIPTION The SY58040U is a low jitter, low skew, high-speed 4×4 crosspoint switch optimized for precision telecom and enterprise server/storage distribution applications. The SY58040U distributes clock frequencies from DC to 4GHz, and data rates to 5Gbps guaranteed over temperature and voltage. The SY58040U differential input includes Micrel's unique, 3-pin input termination architecture that directly interfaces to any differential signal (AC- or DC-coupled) as small as 100mV (200mV_{pp}) without any level shifting or termination resistor networks in the signal path. The outputs are 50Ω source-terminated CML with extremely fast rise/fall times guaranteed to be less than 60ps. The SY58040U features a patent-pending isolation design that significantly improves on channel-to-channel crosstalk performance. The SY58040U operates from a 2.5V \pm 5% or 3.3V \pm 10% supply and is guaranteed over the full industrial temperature range of -40° C to $+85^{\circ}$ C. The SY58040U is part of Micrel's high-speed, Precision Edge® product line. Datasheets and support documentation can be found on Micrel's web site at: www.micrel.com. #### **APPLICATIONS** - Data communication systems - All SONET/SDH data/clock applications - All Fibre Channel applications - All Gigabit Ethernet applications Micrel, Inc. SY58040U ### **FUNCTIONAL BLOCK DIAGRAM** ### **TRUTH TABLES** | Input Select Address Table | | | | | | | |----------------------------|------|-------|--|--|--|--| | SIN1 | SIN0 | INPUT | | | | | | 0 | 0 | IN0 | | | | | | 0 | 1 | IN1 | | | | | | 1 | 0 | IN2 | | | | | | 1 | 1 | IN3 | | | | | | | | | | | | | | Output Select Address Table | | | | | | | |-----------------------------|---|----|--|--|--|--| | SOUT1 SOUT0 OUTPUT | | | | | | | | 0 | 0 | Q0 | | | | | | 0 | 1 | Q1 | | | | | | 1 | 0 | Q2 | | | | | | 1 | 1 | Q3 | | | | | SY58040U ### PACKAGE/ORDERING INFORMATION Ordering Information⁽¹⁾ | Part Number | Package
Type | Operating
Range | Package
Marking | Lead
Finish | |--------------------------------|-----------------|--------------------|-------------------------------------|---------------------| | SY58040UMI | MLF-44 | Industrial | SY58040U | Sn-Pb | | SY58040UMITR ⁽²⁾ | MLF-44 | Industrial | SY58040U | Sn-Pb | | SY58040UMY ⁽³⁾ | MLF-44 | Industrial | SY58040U Pb-Free bar-line indicator | Pb-Free
Matte-Sn | | SY58040UMYTR ^(2, 3) | MLF-44 | Industrial | SY58040U Pb-Free bar-line indicator | Pb-Free
Matte-Sn | #### Notes: - 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC electricals only. - 2. Tape and Reel. - 3. Pb-Free package recommended for new designs. 44-Pin MLF® (MLF-44) ### PIN DESCRIPTION | Pin Number | Pin Name | Pin Function | |--|--|---| | 17, 15,
10, 8,
4, 2,
41, 39 | IN0, /IN0
IN1, /IN1
IN2, /IN2
IN3, /IN3 | Differential Inputs: These input pairs are the differential signal inputs to the device. Inputs accept AC or DC-coupled signals as small as 100mV. Each pin of a pair internally terminates to a VT pin through 50Ω . Note that these inputs will default to an indeterminate state if left open. Please refer to the "Input Interface Applications" section for more details. | | 16, 9,
3, 40 | VT0, VT1
VT2, VT3 | Input Termination Center-Tap: Each side of the differential input pair terminates to a VT pin. The VT pins provide a center-tap to a termination network for maximum interface flexibility. See "Input Interface Applications" section for more details. | | 14,
11,
1,
42 | VRef_AC0
VRef_AC1
VRef_AC2
VRef_AC3 | Reference Voltage: This output biases to V_{CC} –1.2V. It is used when AC coupling the inputs. Connect VRef-AC output pin to the VT input pin. Bypass each VRef-AC pin with a 0.01µF low ESR capacitor to V_{CC} . See "Input Interface Applications" section for more details. | | 18
19 | SIN0
SIN1 | These single-ended TTL/CMOS-compatible inputs address the data inputs. Note that these inputs are internally connected to a $25k\Omega$ pull-up resistor and will default to a logic HIGH state if left open. | | 38
37 | SOUT0
SOUT1 | These single-ended TTL/CMOS-compatible inputs address the data outputs. Note that these inputs are internally connected to a $25k\Omega$ pullup resistor and will default to a logic HIGH state if left open. | | 5
7 | CONF,
LOAD | These single-ended TTL/CMOS compatible inputs control the transfer of the addresses to the internal multiplexers. See "Address Tables" and "Timing Diagram" sections for more details. Note that these inputs are internally connected to a $25k\Omega$ pull-up resistor and will default to a logic HIGH state if left open. | | | | Configuration Sequence | | | | Load: Loads configuration into buffer, while Configuration Buffer holds existing switch configuration. Configuration: Loads new configuration into the Configuration Buffer and updates switch configuration. | | | | Buffer Mode | | | | The SY58040U defaults to buffer mode (IN-to-Q) if the load and configuration control signals are floating. | | 23, 24,
26, 27,
29, 30
32, 33 | Q0, /Q0,
Q1, /Q1,
Q2, /Q2,
Q3, /Q3, | Differential Outputs: These CML output pairs are the outputs of the device. Please refer to the truth table below for details. Unused output pairs may be left open. Each output is designed to drive 400mV into 100Ω across the pair, or 50Ω to V_{CC} . | | 6, 22, 25,
28, 31, 34 | VCC | Positive power supply. Bypass with $0.1\mu F//0.01\mu F$ low ESR capacitors and place as close to each V_{CC} pin. | | 12, 13, 20, 21,
35, 36, 43, 44 | GND,
Exposed pad | Ground. GND and EPad must both be connected to most negative potential of chip ground. | ## **Absolute Maximum Ratings**(1) | Power Supply Voltage (V _{CC})–0.5V to +4.0V | |--| | Input Voltage (V _{IN})–0.5V to V _{CC} | | CML Output Voltage (V $_{\rm OUT}$)V $_{\rm CC}$ –0.5V to V $_{\rm CC}$ +5.0V | | Termination Current ⁽³⁾ | | Source or sink current on VT pin ±100mA | | Input Current ⁽³⁾ | | Source or sink current on IN, /IN ±50mA | | V _{REF-AC} Current ⁽³⁾ | | Source or sink current on IN, /IN±2mA | | Lead Temperature (soldering, 20 sec.) 260°C | | Storage Temperature Range (T $_{\!S}$)–65 $^{\circ}$ C to +150 $^{\circ}$ C | | | ### Operating Ratings⁽²⁾ | Power Supply Voltage (V _{CC}) | . +2.375V to +3.60\ | |--|---------------------| | Ambient Temperature Range (T _A) | –40°C to +85°C | | Package Thermal Resistance ⁽⁴⁾ | | | $MLF^{ ext{ ilde{R}}}\left(heta_{JA} ight)$ | | | Still-Air | 23°C/V | | MLF [®] (Ψ _{JB}) | | | Junction-to-board | 12°C/V | #### DC ELECTRICAL CHARACTERISTICS⁽⁵⁾ $T_A = -40$ °C to +85°C, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |----------------------|--|--|----------------------|----------------------|----------------------|-------| | V_{CC} | Power Supply Voltage | V _{CC} = 2.5V. | 2.375 | 2.5 | 2.625 | V | | | | V _{CC} = 3.3V. | 3.0 | 3.3 | 3.6 | V | | I _{CC} | Power Supply Current | No load, max. V_{CC} . Includes current from internal 50Ω pull-up on each output. | | 225 | 300 | mA | | R_{IN} | Input Resistance (IN-to- V_{T_i} /IN-to- V_{T}) | | 45 | 50 | 55 | Ω | | R _{DIFF_IN} | Differential Input Resistance (IN-to-/IN) | | 90 | 100 | 110 | Ω | | V_{IH} | Input HIGH Voltage
(IN-to-/IN) | Note 6 | V _{CC} -1.6 | | V _{CC} | V | | V _{IL} | Input LOW Voltage
(IN-to-/IN) | | 0 | | V _{IH} –0.1 | V | | V _{IN} | Input Voltage Swing (IN-to-/IN) | See Figure 1a. | 0.1 | | 1.7 | V | | V _{DIFF_IN} | Differential Input Voltage Swing IN – /IN | See Figure 1b. | 0.2 | | | V | | V_{T_IN} | IN to V _T (IN-to-/IN) | | | | 1.28 | V | | V _{REF-AC} | Output Reference Voltage | | V _{CC} -1.3 | V _{CC} -1.2 | V _{CC} -1.1 | V | #### Notes: - 1. Permanent device damage may occur if ratings in the "Absolute Maximum Ratings" section are exceeded. This is a stress rating only and functional operation is not implied for conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability. - 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings. - 3. Due to the limited drive capability, use for input of the same package only. - Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. θ_{JA} uses 4-layer in still-air number, unless otherwise stated. - 5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. - 6. V_{IH} (min) not lower than 1.2V. # CML OUTPUT DC ELECTRICAL CHARACTERISTICS⁽⁷⁾ V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to +85°C; R_L = 100 Ω across each output pair, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-----------------------|---|----------------|------------------------|------------------------|-----------------|-------| | V_{OH} | Output HIGH Voltage
Q, /Q | | V _{CC} -0.040 | V _{CC} -0.010 | V _{CC} | V | | V _{OUT} | Output Differential Swing Q, /Q | See Figure 1a. | 325 | 400 | | mV | | V _{DIFF_OUT} | Differential Output Voltage Swing Q, /Q | See Figure 1b. | 650 | 800 | | mV | | R _{OUT} | Output Source Impedance | | 45 | 50 | 55 | Ω | ### LVTTL/CMOS DC ELECTRICAL CHARACTERISTICS⁽⁷⁾ V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to +85°C, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-----------------|--------------------|-----------------------|------|-----|-----------------|-------| | V_{IH} | Input HIGH Voltage | | 2.0 | | V _{CC} | V | | V_{IL} | Input LOW Voltage | | | | 0.8 | V | | I _{IH} | Input HIGH Current | | -125 | | 30 | μA | | I _{IL} | Input LOW Current | V _{IL} = 0V. | -300 | | | μA | #### Note: 7. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. ### AC ELECTRICAL CHARACTERISTICS(8) V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to +85°C, R_L = 100 Ω across each output pair, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |---------------------------------|---|-----------------------------------|------|-----|-----|-------------------| | f_{MAX} | Maximum Operating Frequency | NRZ data | 5 | | | Gbps | | | | V _{OUT} ≥ 200mV Clock | | 3 | | GHz | | $\overline{t_{pd}}$ | Differential Propagation Delay | IN-to-Q | 150 | 225 | 350 | ps | | • | | CONFIG-to-Q | | | 500 | ps | | t _{pw} | Pulse Width of LOAD/CONFIG signal | | 1500 | | | ps | | ∆t _{pd} Tempco | Differential Propagation Delay
Temperature Coefficient | | | 225 | | fs/°C | | $\overline{t_S}$ | Set-Up Time SIN-to-LOAD | | 800 | | | ps | | | SOUT-to-LOAD | | 800 | | | ps | | | LOAD-to-CONFIG | | 800 | | | ps | | | CONFIG-to-LOAD | | 950 | | | ps | | t _H | Hold Time
LOAD-to-SIN, LOAD-to-SOUT | | 800 | | | ps | | t _{SKEW} | Output-to-Output Skew | Note 9 | | | 25 | ps | | | Part-to-Part Skew | Note 10 | | | 150 | ps | | t _{JITTER} | Data Random Jitter (RJ) | Note 11 | | | 1 | ps _{RMS} | | | Deterministic Jitter (DJ) | Note 12 | | | 10 | ps _{PP} | | | Clock Cycle-to-Cycle Jitter | Note 13 | | | 1 | ps _{RMS} | | | Total Jitter (TJ) | Note 14 | | | 10 | ps _{PP} | | | Crosstalk-induced Jitter | Note 15 | | | 0.7 | ps _{RMS} | | t _r , t _f | Output Rise/Fall Time | At full output swing, 20% to 80%. | 20 | 40 | 60 | ps | #### Notes: - 8. High-frequency AC-parameters are guaranteed by design and characterization. - 9. Output-to-output skew is measured between two different outputs under identical input transitions. - 10. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs - 11. Random jitter is measured with a K28.7 character pattern, measured at <f $_{MAX}$. - 12. Deterministic jitter is measured at 2.5Gbps/3.2Gbps, with both K28.5 and 2²³–1 PRBS pattern. - 13. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, T_n T_{n-1} where T is the time between rising edges of the output signal. - 14. Total jitter definition: with an ideal clock input of frequency <f_{MAX}, no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value. - 15. Crosstalk induced jitter is defined as the added jitter that results from signals applied to two adjacent channels. It is measured at the output while applying two similar differential clock frequencies that are asynchronous with respect to each other at the inputs. ### TYPICAL OPERATING CHARACTERISTICS V_{CC} = 3.3V, GND = 0, V_{IN} = 100mV, T_A = 25°C, unless otherwise stated. ### **FUNCTIONAL CHARACTERISTICS** V_{CC} = 3.3V, GND = 0, V_{IN} = 100mV, T_A = 25°C, unless otherwise stated. ### SINGLE-ENDED AND DIFFERENTIAL SWINGS Figure 1a. Single-Ended Voltage Swing Figure 1b. Differential Voltage Swing #### TIMING DIAGRAM #### Note: 1. Invalid and Valid refers to onfiguration being changed. All outputs with unchanged configuration remain valid. Micrel, Inc. SY58040U ### **INPUT AND OUTPUT STAGES** Figure 2a. Simplified Differential Input Stage Figure 2b. CML DC-Coupled (100Ω Termination) Figure 2c. CML AC-Coupled (50 Ω Termination) Micrel, Inc. SY58040U ### **INPUT INTERFACE APPLICATIONS** Figure 3a. LVPECL Interface (DC-Coupled) Figure 3d. CML Interface (AC-Coupled) Figure 3b. LVPECL Interface (AC-Coupled) Option: May connect V_T to V_{CC} . Figure 3c. CML Interface (DC-Coupled) Figure 3e. LVDS Interface ### RELATED MICREL PRODUCTS AND SUPPORT DOCUMENTATION | Part Number | Function | Data Sheet Link | |---------------|--|--| | SY58040U | Ultra Precision 4×4 CML Crosspoint Switch with Internal Input/Output Termination | http://www.micrel.com/product-info/products/sy58040u.shtml | | | MLF® Application Note | www.amkor.com/products/notes_paper/MLF_AppNote.pdf | | HBW Solutions | New Products and Applications | www.micrel.com/product-info/products/solutions.shtml | SY58040U Micrel, Inc. #### 44-PIN *Micro*LeadFrame[®](MLF-44) #### NOTES: - 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14,5M, 1994, - 2. ALL DIMENSIONS ARE IN MILLIMETERS, O IS IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS, - 3. N IS THE TOTAL NUMBER OF TERMINALS. DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0,15 AND 0,30mm from terminal tip, if the terminal has the optional radius on the other end of the terminal, the dimension 6 should not be measured in that radius area, and and ne refer to the number of terminals on each D and e side respectively, - 6. MAX. PACKAGE WARPAGE IS 0.05 mm. 7. MAXIMUM ALLOWABLE BURRS IS 0,076 mm IN ALL DIRECTIONS. - PIN #1 ID ON TOP WILL BE LASER MARKED, - igtriangle bilateral coplanarity zone applies to the exposed heat sink slug as well as the TERMINALS. DIMENSIONS NOM 0.60 0.25 3,30 3,30 7.00 BS0 7.00 BSC 0.85 0.02 0,20 MIN 0.18 0.65 0.30 3,40 3.40 10, THIS DRAWING CONFORMES TO JEDEC REGISTERED OUTLINE MO-220 SIDE VIEW EVEN TERMINAL/SIDE DETAIL "A" PCB Thermal Consideration for 44-Pin MLF® Package (Always solder, or equivalent, the exposed pad to the PCB) #### **Package Notes:** - 1. Package meets Level 2 qualification. - All parts are dry-packaged before shipment. - Exposed pads must be soldered to a ground for proper thermal management. #### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2005 Micrel, Incorporated.