150 Watt DC-DC Converters

K Series

Input voltage ranges from 8...385 V DC 1or 2 outputs up to 48 V DC 4 kV AC I/O electric strength test voltage

- Extremely wide input voltage range
- · Input over- and undervoltage lock-out
- Efficient input filter and built-in surge and transient suppression circuitry
- · Fully isolated outputs
- · Outputs open- and short-circuit proof
- No derating over entire operating temperature range

Safety according to IEC/EN 60950

Summary

The K series of DC-DC converters represents a broad and flexible range of power supplies for use in advanced electronic systems. Features include high efficiency, high reliability, low output voltage noise and excellent dynamic response to load/line changes.

The converter inputs are protected against surges and transients occuring at the source lines. An input over- and undervoltage lock-out circuitry disables the outputs if the input voltage is outside the specified range. Certain types include an inrush current limitation preventing circuit breakers and fuses from being damaged at switch-on.

All outputs are open- and short-circuit proof and are protected against overvoltages by means of a built-in suppressor diode. The outputs can be inhibited by a logic signal applied to the connector pin 18 (i). If the inhibit function is not used pin 18 must be connected with pin 14 to enable the outputs.

LED indicators display the status of the converter and allow visual monitoring of the system at any time.

Full input to output, input to case, output to case and output to output isolation is provided. The modules are designed and built according to the international safety standards

IEC/EN 60950 and have been approved by the safety agencies LGA (Germany) and UL (USA). The UL Mark for Canada has been officially recognized by regulatory authorities in provinces across Canada.

The case design allows operation at nominal load up to 71 °C in a free air ambient temperature. If forced cooling is provided, the ambient temperature may exceed 71 °C but the case temperature must remain below 95 °C under all conditions.

A temperature sensor generates an inhibit signal which disables the outputs if the case temperature $T_{\rm C}$ exceeds the limit. The outputs are automatically re-enabled when the temperature drops below the limit.

Various options are available to adapt the converters to individual applications.

The modules may either be plugged into 19" rack systems according to DIN 41494, or be chassis mounted.

Table of Contents	Page
Summary	
Type Survey and Key Data	
Type Key	3
Functional Description	
Electrical Input Data	
Electrical Output Data	7
Auxiliary Functions	

	Page
Electromagnetic Compatibility (EMC)	18
Immunity to Environmental Conditions	20
Mechanical Data	21
Safety and Installation Instructions	22
Description of Options	25
Accessories	31

Type Survey and Key Data

Non standard input configurations or special custom adaptions are available on request. See also: Commercial Information: Inquiry Form for Customized Power Supply.

Table 1a: Type survey AK

Outp	ut 1	Outp	ut 2	Input Voltage		Options
U _{o nom} [V DC]	Ι _{ο nom} [A] ²	U _{o nom} [V DC]	Ι _{ο nom} [A] ²	U _{i min} U _{i max} 835 V DC	η _{min} [%]	
5.1 12.0 15.0 24.0	20.0 10.0 8.0 5.0	- - -	- - -	AK 1001-7R AK 1301-7R AK 1501-7R AK 1601-7R	78 80 80 82	-9 E ³ D V ⁶
24.0 ⁴ 30.0 ⁴ 48.0 ⁴	5.0 4.0 2.5	- - -	- - -	AK 2320-7R AK 2540-7R AK 2660-7R	78 79 79	P T B1 B2
12.0 15.0 24.0	5.0 4.0 2.5	12.0 ⁵ 15.0 ⁵ 24.0 ⁵	5.0 4.0 2.5	AK 2320-7R AK 2540-7R AK 2660-7R	78 79 79	52

Table 1b: Type survey BK, FK, CK

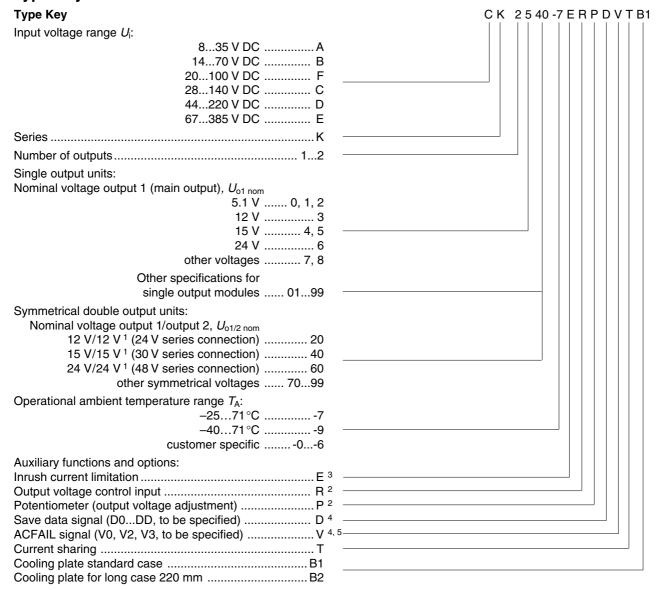
Outp	ut 1	Outp	ut 2		Input	Voltage Range and	Efficie	ency ¹		Options
U _{o nom} [V DC]	Ι _{ο nom} [A] ²	U _{o nom} [V DC]	Ι _{ο nom} [A] ²	<i>U</i> _{i min} <i>U</i> _{i max} 1470 V DC	η_{min} [%]	U _{i min} U _{i max} 20100 V DC	η _{min} [%]	<i>U</i> _{i min} <i>U</i> _{i max} 28140 V DC	η_{min} [%]	
5.1 12.0 15.0 24.0	25.0 12.0 10.0 6.0	- - -	- - -	BK 1001-7R BK 1301-7R BK 1501-7R BK 1601-7R	79 81 82 84	FK 1001-7R FK 1301-7R FK 1501-7R FK 1601-7R	80 82 85 86	CK 1001-7R CK 1301-7R CK 1501-7R CK 1601-7R	79 82 84 86	-9 E ³ D V ⁶
24.0 ⁴ 30.0 ⁴ 48.0 ⁴	6.0 5.0 3.0	- - -	- - -	BK 2320-7R BK 2540-7R BK 2660-7R	80 80 80	FK 2320-7R FK 2540-7R FK 2660-7R	81 83 84	CK 2320-7R CK 2540-7R CK 2660-7R	80 82 84	P T B1 B2
12.0 15.0 24.0	6.0 5.0 3.0	12.0 ⁵ 15.0 ⁵ 24.0 ⁵	6.0 5.0 3.0	BK 2320-7R BK 2540-7R BK 2660-7R	80 80 80	FK 2320-7R FK 2540-7R FK 2660-7R	81 83 84	CK 2320-7R CK 2540-7R CK 2660-7R	80 82 84	52

Table 1c: Type survey DK, EK

Outp	ut 1	Outp	ut 2	Input Voltag	e Ranç	ge and Efficiency ¹		Options
U _{o nom} [V DC]	Ι _{ο nom} [A] ²	U _{o nom} [V DC]	Ι _{ο nom} [A] ²	U _{i min} U _{i max} 44220 V DC	η_{min} [%]	U _{i min} U _{i max} 67385 V DC	η _{min} [%]	
5.1	25.0	-	-	DK 1001-7R	79	-	-	-9
12.0	12.0	-	-	DK 1301-7R	83	EK 1301-7R	84	E ³
15.0	10.0	-	-	DK 1501-7R	86	EK 1501-7R	84	D
24.0	6.0	-	-	DK 1601-7R	87	EK 1601-7R	84	Λ e
24.0 ⁴	6.0	-	-	DK 2320-7R	81	EK 2320-7R	81	P
30.04	5.0	-	-	DK 2540-7R	82	EK 2540-7R	80	T
48.0 ⁴	3.0	-	-	DK 2660-7R	85	EK 2660-7R	83	B1 B2
12.0	6.0	12.0 ⁵	6.0	DK 2320-7R	81	EK 2320-7R	81	DZ
15.0	5.0	15.0 ⁵	5.0	DK 2540-7R	82	EK 2540-7R	80	
24.0	3.0	24.0 ⁵	3.0	DK 2660-7R	85	EK 2660-7R	83	

¹ Efficiency at $U_{\text{i nom}}$ and $I_{\text{o nom}}$.

² If the output voltages are increased above $U_{\text{o nom}}$ via R-input control, option P setting, remote sensing or option T, the output currents should be reduced accordingly so that $P_{\text{o nom}}$ is not exceeded.


³ Option E only for CK, DK, EK types.

⁴ Series connection of output 1 and 2.

⁵ Second output semi-regulated.

⁶ Option V for K 1001 types only.

Type Key

¹ External wiring of main and second output depending upon the desired output configuration (see: *R-Function for Different Output Configurations*).

Example: CK 2540-7PD3: DC-DC converter, input voltage range 28...140 V, double output, each providing 15 V/5 A, equipped with potentiometer and undervoltage monitoring option. Ambient temperature –25...71°C.

² Feature R excludes option P and vice versa.

³ Option E available for CK, DK and EK types.

⁴ Option D excludes option V and vice versa.

⁵ Option V available for K 1001 type.

Functional Description

The input voltage is fed via an input fuse, an input filter, and an inrush current limiter to the input capacitor. This capacitor sources a single transistor forward converter. Each output is powered by a separate secondary winding of the main transformer. The resultant voltages are rectified and their ripples smoothed by a power choke and output filter. The control logic senses the main output voltage U_{01} and

generates, with respect to the maximum admissible output currents, the control signal for the primary switching transistor

The second output of double output units is controlled by the main output but has independent current limiting. If the main output is driven into current limitation, the second output voltage will fall as well and vice versa.

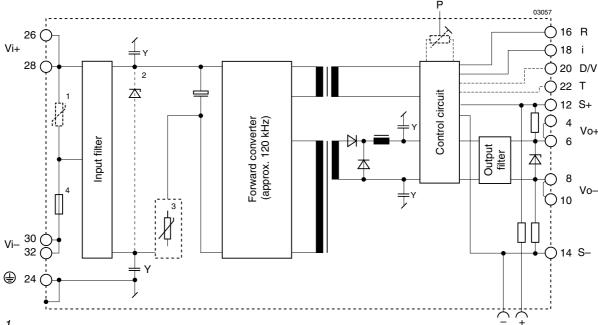


Fig. 1
Block diagram of single output converters AK...EK 1000

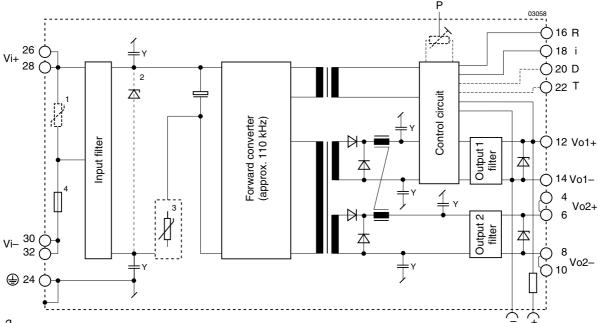


Fig. 2
Block diagram of symmetrical double output converters AK...EK 2000

¹ Transient suppressor (VDR) in CK, DK, EK, FK types

² Transient suppressor (diode) in AK, BK, CK, FK types

³ Inrush current limiter in CK, DK, EK types (NTC or Opt. E), -9 versions exclude the NTC

⁴ Input fuse

Electrical Input Data

General Conditions

- $-T_A = 25$ °C, unless T_C is specified.
- Pin 18 connected to pin 14, U_0 adjusted to $U_{0 \text{ nom}}$ (option P); R input not connected.
- Sense line pins S+ and S- connected to Vo+ and Vo- respectively.

Table 2a: Input data

Input				AK			вк			FK		
Charac	eteristics	Conditions	min	typ	max	min	typ	max	min	typ	max	Unit
Ui	Operating input voltage	$I_0 = 0I_{0 \text{ nom}}$	8		35	14		70	20		100	V DC
U _{i nom}	Nominal input voltage	$T_{\text{C min}}T_{\text{C max}}$		15			30			48		
I _i	Input current	U _{i nom} , I _{o nom} 1		9.0			6.0			3.75		Α
P _{i0}	No-load input power	U _{i min} U _{i max}			2.5			2.5			2.5	W
$P_{\text{i inh}}$	Idle input power	unit inhibited			1.5			1.5			1.5	
Ri	Input resistance	<i>T</i> _C = 25 °C	65			100			70			mΩ
R_{NTC}	NTC resistance ²			3			3			3		
Ci	Input capacitance		830		1250	300		450	1200		1800	μF
U _{i RFI}	Conducted input RFI	EN 55022		Α			В			В		
	Radiated input RFI	$U_{\text{i nom}}, I_{\text{o nom}}$		Α			Α			В		
U _{i abs}	Input voltage limits without damage		0		40	0		80	0		100	V DC

Table 2b: Input data

Input				СК			DK			EK		
Charac	teristics	Conditions	min	typ	max	min	typ	max	min	typ	max	
Ui	Operating input voltage	$I_0 = 0I_{0 \text{ nom}}$	28		140	44		220	67		385	V DC
U _{i nom}	Nominal input voltage	$T_{\text{C min}}T_{\text{C max}}$		60			110			220		
I _i	Input current	U _{i nom} , I _{o nom} 1		3.0			1.6			0.8		Α
P _{i0}	No-load input power	U _{i min} U _{i max}			2.5			2.5			2.5	W
P _{i inh}	Idle input power	unit inhibited			1.5			1.5			1.5	
Ri	Input resistance	<i>T</i> _C = 25°C	150			170			180			mΩ
R _{NTC}	NTC resistance ²		800			1600			3200			
Ci	Input capacitance		660		1000	260		400	210		400	μF
U _{i RFI}	Conducted input RFI	EN 55022		В			В			В		
	Radiated input RFI	$U_{\text{i nom}}, I_{\text{o nom}}$		В			В			В		
U _{i abs}	Input voltage limits without damage		0		154	0		400 ⁴	0		400	V DC

 $^{^{\}rm 1}$ With double output modules, both outputs loaded with $\it I_{\rm 0\;nom}.$

Input Transient Protection

A suppressor diode or a VDR (depending upon the input voltage range) together with the input fuse and a symmetrical input filter form an effective protection against high input transient voltages which typically occur in most installations, but especially in battery driven mobile applications.

Nominal battery voltages in use are: 12, 24, 36, 48, 60, 72, 110 and 220 V. In most cases each nominal value is specified in a tolerance of -30%...+25%.

In certain applications, surges according to RIA 12 are specified in addition to those defined in IEC 571-1. The power supply must not switch off during these surges and since their energy can practically not be absorbed an ex-

tremely wide input range is required. The EK input range for 110 V batteries has been designed and tested to meet this requirement.

Inrush Current Limitation

The CK, DK, EK modules incorporate an NTC resistor in the input circuitry which - at initial turn on - reduces the peak inrush current value by a factor of 5...10 to protect connectors and switching devices from damage. Subsequent switch-on cycles within short periods will cause an increase of the peak inrush current value due to the warming-up of the NTC resistor. See also: *E option*.

² Valid for -7 versions with NTC, (-9 versions exclude the NTC). Initial switch-on cycle. Subsequent switch-on/off cycles increase the inrush current peak value.

 $^{^{\}rm 3}$ AK, BK and FK types have no NTC (inrush current limiter) fitted.

^{4 1} s max., duty cycle 1% max.

Input Fuse

A fuse mounted inside the converter protects the module against severe defects. This fuse may not fully protect the module when the input voltage exceeds 200 V DC! In applications where the converters operate at source voltages above 200 V DC an external fuse or a circuit breaker at system level should be installed!

Table 3: Fuse Specification

Module	Fuse type	Fuse rating	
AK ¹	fast-blow	Little fuse 314	30.0 A, 125 V
BK ¹	fast-blow	Little fuse 314	25.0 A, 125 V
CK ²	slow-blow	SPT	12.5 A, 250 V
DK ²	slow-blow	SPT	8 A, 250 V
EK ²	slow-blow	SPT	4 A, 250 V
FK ²	slow-blow	SPT	16 A, 250 V

¹ Fuse size 6.3×32 mm ² Fuse size 5×20 mm

Static Input Current Characteristic

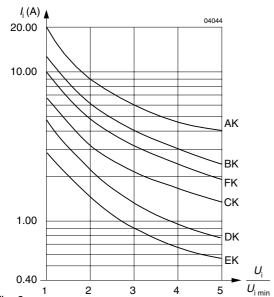


Fig. 3
Typical input current versus relative input voltage

Inrush Current Peak Value

The inrush current peak value (initial switch-on cycle) can be determined by following calculation: (See also: *Input Inrush Current Characteristic*)

$$I_{\text{inr p}} = \frac{U_{\text{i source}}}{(R_{\text{s ext}} + R_{\text{i}} + R_{\text{NTC}})}$$

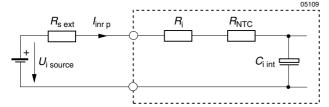


Fig. 4
Equivalent circuit for input impedance

Reverse Polarity

The units are not protected against reverse polarity at the input to avoid unwanted power losses and may be damaged.

Input Inrush Current Characteristic

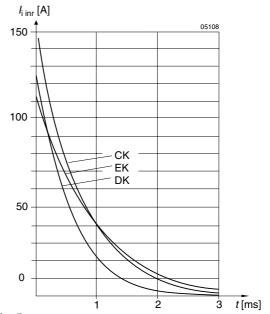


Fig. 5 Typical inrush current versus time at $U_{i max}$, $R_{ext} = 0$. For AK, BK and FK as well as for application related values use the formula given in Inrush Current Peak Value to get realistic results.

Input Under-/Overvoltage Lock-out

If the input voltage remains below approx. 0.8 $U_{\rm i\,min}$ or exceeds approx. 1.1 $U_{\rm i\,max}$, an internally generated inhibit signal disables the output(s). When checking this function the absolute maximum input voltage rating $U_{\rm i\,abs}$ should be considered! Between $U_{\rm i\,min}$ and the undervoltage lock-out level the output voltage may be below the value defined in table: *Output data* (see: *Technical Information: Measuring and Testing*).

Hold-up Time versus relative Input Voltage

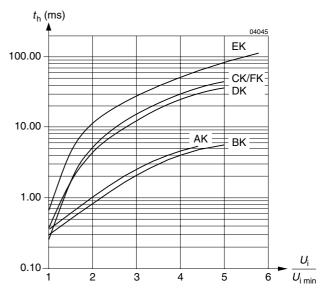


Fig. 6 Typical hold-up time t_h versus relative input voltage $U_i/U_{i \, min}$. The DC-DC converters require an external series diode in the input path if other loads are connected to the same input supply lines.

Electrical Output Data

General Conditions

- $-T_A = 25$ °C, unless T_C is specified.
- Pin 18 (i) connected to pin 14 (S–/Vo1–), U_0 adjusted to $U_{0 \text{ nom}}$ (option P), R input not connected.
- Sense line pins 12 (S+) and 14 (S-) connected to Vo1+ and Vo1- respectively.

Table 4a: Output data single output modules AK/BK

Outpu	ut			AK/BK 1001 5.1 V	AK/BK 1301 12.0 V	AK/BK 1501 15.0 V	AK/BK 1601 24.0 V	
Chara	cteristics		Conditions	min typ max	min typ max	min typ max	min typ max	Unit
Uo	Output v	oltage	U _{i nom} , I _{o nom}	5.07 5.13	11.93 12.07	14.91 15.09	23.86 24.14	V
U _{o P}		age protection sor diode)		7.6	21	26.5	43.5	
I _{o nom}	Output current ¹		U _{i min} U _{i max} T _{C min} T _{C max}	20.0/25.0	10.0/12.0	8.0/10.0	5.0/6.0	Α
I₀ L	Output c	urrent limit ⁴	U _{i min} U _{i max}	21/26	10.2/12.2	8.2/10.2	5.2/6.2	
u_0^7	Output	Switching freq.	U _{i nom} , I _{o nom}	10	5	5	5	mV_{pp}
	voltage noise Total		IEC/EN 61204 BW = 20 MHz	60	40	30	50	
∆U _{o u}	Static lin	e regulation	U _{i min} U _{i nom} U _{i nom} U _{i max} I _{o nom}	±15	±25	±30	±30	mV
ΔU _{ol}	Static loa	ad regulation	$U_{\text{i nom}}, I_{\text{o}} = (0.11) I_{\text{o nom}}$	20	25	30	40	
<i>u</i> _{o d} ⁵	Dynamic load	Voltage deviation	$U_{\text{i nom}}, I_{\text{o}} = I_{\text{o nom}} \leftrightarrow {}^{1}/_{2} I_{\text{o nom}}$	±220	±110	±150	±130	
<i>t</i> _d ⁵	regulatio	Recovery time	IEC/EN 61204	0.6	0.6	0.5	1	ms
$lpha_{\sf Uo}$	Temperature coefficient of output voltage ⁶		T _{C min} T _{C max} 0I _{o nom}	-0.2	-1	-1	-1	mV/K

 $^{^{1}}$ If the output voltages are increased above $U_{o nom}$ through R-input control, option P setting, remote sensing or option T, the output current should be reduced accordingly so that Ponom is not exceeded.

⁴ See: Output voltage regulation of single output units. ⁵ See: Dynamic load regulation of U₀₁.

⁶ Negative temperature coefficient (0...-3 mV/cell and K) available on request

⁷ Measured according to IEC/EN 61204 sub clause 3.10 with a probe acc. to annex A of the same standards. (see: *Technical Informa*tion: Measuring and Testing)

Table 4b: Output data double output modules AK/BK

Outpu (Outpu	ut uts connected	d in Series)		AK/BK 2320 24 V (2 × 12 V)	AK/BK 2540 30 V (2 × 15 V)	AK/BK 2660 48 V (2×24 V)	
Chara	cteristics		Conditions	min typ max	min typ max	min typ max	Unit
Uo	Output volta	ıge	U _{i nom} , I _{o nom}	24.0 ²	30.0 ²	48.0 ²	V
U _{o P}	Overvoltage (suppressor			38	48	74	
I _{o nom}	Output current ¹		U _{i min} U _{i max} T _{C min} T _{C max}	5.0/6.0	4.0/5.0	2.5/3.0	Α
I _{o L}	Output current limit ⁴		U _{i min} U _{i max}	5.2/6.2	4.2/5.2	2.7/3.2	
u_0^7	Output Switching free			10	5	5	mV_{pp}
	voltage noise ³		IEC/EN 61204 BW = 20 MHz	60	60	70	
ΔU _{o u}	Static line re	egulation	U _{i min} U _{i nom} U _{i nom} U _{i max} I _{o nom}	±15	±15	±20	mV
ΔU _{ol}	Static load r	regulation	$U_{\text{i nom}}, I_{\text{o}} = (0.11) I_{\text{o nom}}$	25	25	35	
<i>u</i> _{o d} ⁵	Dynamic Voltage load deviation		$U_{\text{i nom}}, I_{\text{o}} = I_{\text{o nom}} \leftrightarrow {}^{1}/_{2} I_{\text{o nom}}$	±180	±180 ±160		
<i>t</i> _d 5	regulation Recovery time IEC/EN 61204		IEC/EN 61204	0.3	0.2	0.2	ms
$lpha_{\sf Uo}$	Temperatur of output vo	e coefficient Itage ⁶	T _{C min} T _{C max} 0I _{o nom}	-2	-2	-2	mV/K

 $^{^{1}}$ If the output voltages are increased above $U_{o nom}$ through R-input control, option P setting, remote sensing or option T, the output current should be reduced accordingly so that $P_{0 \text{ nom}}$ is not exceeded.

2 Series connection for $U_{0 \text{ nom}} = 24 \text{ V}$, 30 V or 48 V, see: *R-Function for Different Output Configurations*.

3 Shortest possible wiring for series connection at the connector.

4 See: *Output voltage regulation of single output units*.

⁵ See: Dynamic load regulation of U₀₁ and U₀₂.

Negative temperature coefficient (0...-3 mV/cell and K) available on request.
 Measured according to IEC/EN 61204 sub clause 3.10 with a probe acc. to annex A of the same standards. (See: *Technical Informa* tion: Measuring and Testing.)

Table 4c: Output data double output modules AK/BK

Outpu (Outpu		endently loaded)	1		AK/BH 12 V/					C 2540 /15 V							
Chara	cteristics		Conditions	Outp	ut 1	Ou	tput 2	Outp	ut 1	Output 2							
				min ty	o max	min 1	typ max	min ty	p max	min	typ	max	Unit				
U _o	Output v	oltage	U _{i nom} , I _{o nom} ²	11.93	.93 12.07 11.82 12.18 14		14.91 15.09 14.78 15		15.23	V							
U _{o P}	Overvoltage protection (suppressor diode)			19)	19		19		19		24	4		24		
I _{o nom}	Output current ³		U _{i min} U _{i max} T _{C min} T _{C max}	5.0/	6.0	5.0/6.0		4.0/5.0		4	.0/5.0	0	А				
I₀ L	Output o	urrent limit 4	U _{i min} U _{i max}	5.2/6.2		5.2/6.2	2	4.2/5.2		4.2/5.2							
u_0^9	Output	Switching freq.		10	10 10		10		10		mV_{pp}						
	voltage noise	Total	IEC/EN 61204 BW = 20 MHz	50)		20	50		20							
<i>∆U</i> _{o u}	Static lin	e regulation	U _{i min} U _{i nom} U _{i nom} U _{i max} I _{o nom}		±30		±30		±30			±30	mV				
∆U _{0 1}	Static lo	ad regulation	$U_{\text{i nom}}, I_{\text{o}} = (0.11) I_{\text{o nom}}^{5}$		50	8 50		50			8						
<i>u</i> _{o d} ⁶	Dynamic load	deviation	$U_{\text{i nom}}, I_{\text{o}} = I_{\text{o nom}} \leftrightarrow {}^{1}/_{2} I_{\text{o nom}}$	±8	0			±8	±80								
t _d ⁶	regulatio	Recovery time	IEC/EN 61204	0.2	2			0.2					ms				
$lpha_{Uo}$		ature coefficient t voltage ⁷	T _{C min} T _{C max} 0I _{o nom}	-1	ļ				1				mV/K				

Table 4d: Output data double output modules AK/BK

Outpu (Outpu		ende	ently loaded)	1			AK/BK 24 V/				
Chara	cteristics			Conditions	0	utput	1 1	0	utput	12	
					min	typ	max	min	typ	max	Unit
U _o	Output v	olta	ge	U _{i nom} , I _{o nom} ²	23.86 24.14		23.64		24.36	V	
U _{o P}	Overvolt (suppres	_	protection diode)		37			37			
I _{o nom}	Output o	Output current ³		U _{i min} U _{i max} T _{C min} T _{C max}	2.5/3.0		2	2.5/3.	0	Α	
I _{o L}	Output c	it current limit 4		U _{i min} U _{i max}	2.7/3.	2.7/3.2		2.7/3	2.7/3.2		
<i>u</i> _o ⁹	Output	Sw	ritching freq.	U _{i nom} , I _{o nom}		5		5			mV _{pp}
	voltage noise	To	tal	IEC/EN 61204 BW = 20 MHz	60			30			
ΔU _{o u}	Static lin	ie re	egulation	U _{i min} U _{i nom} U _{i nom} U _{i max} I _{o nom}			±40			±40	mV
ΔU _{o I}	Static loa	ad r	egulation	$U_{\text{i nom}}, I_{\text{o}} = (0.11)I_{\text{o nom}}^{5}$			70		8		
<i>u</i> _{o d} ⁶	Dynamic load	amic Voltage deviation		$U_{\text{i nom}}, I_{\text{o}} = I_{\text{o nom}} \leftrightarrow {}^{1}/_{2} I_{\text{o nom}}$		±50					
<i>t</i> _d ⁶	regulation	Recovery time		IEC/EN 61204		0.2				ms	
$lpha_{Uo}$	Temperature coefficient of output voltage 7			T _{C min} T _{C max} 0I _{o nom}		-1					mV/K

- ¹ Depending upon the desired output configuration the wiring should be made as shown in: R-Function for Different Output Configurations.
- ² Same conditions for both outputs.
- 3 If the output voltages are increased above Uo nom via R-input control, option P setting, remote sensing or option T, the output currents should be reduced accordingly so that $P_{o nom}$ is not exceeded.
- ⁴ See: Output voltage regulation of single output units.
- ⁵ Condition for specified output. Other output loaded with constant current $I_0 = I_{0 \text{ nom}}$ ⁶ See: *Dynamic load regulation of*
- U_{01} and U_{02} .
- ⁷ Negative temperature coefficient (0...-3 mV/cell and K) available on request.
- ⁸ See: Output Voltage Regulation of Double Output Modules.
- ⁹ Measured according to IEC/EN 61204 sub clause 3.10 with a probe acc. to annex A of the same standards. (see: Technical Information: Measuring and Testing)

Table 4e: Output data single output modules CK...EK

Outpu	ut				-	DK 5.1 V		_	EK 2.0 \	1301 V	CKEK 1501 15.0 V			CKEK 1601 24.0 V			
Chara	cteristics			Conditions	min	typ	max	min	typ	max	min	typ	max	min	typ	max	Unit
Uo	Output v	/olta	ge	U _{i nom} , I _{o nom}	5.07		5.13	11.93		12.07	14.91		15.09	23.86		24.14	V
U _{o P}	Overvoli (suppres		protection diode)			7.6			21			26.5			43.5		
I _{o nom}	Output o	Output current 1		U _{i min} U _{i max} T _{C min} T _{C max}		25.0			12.0			10.0			6.0		Α
I _{o L}	Output o	Output current limit ⁴		U _{i min} U _{i max}	26			12.2			10.2			6.2			
u_0^7	Output	' '		U _{i nom} , I _{o nom}		10			5			5			5		mV _{pp}
	voltage noise	voltage noise Total		IEC/EN 61204 BW = 20 MHz		50			40			30			50		
ΔU _{o u}	Static lin	ne re	gulation	U _{i min} U _{i nom} U _{i nom} U _{i max} I _{o nom}			±15			±25			±30			±30	mV
∆U ₀₁	Static lo	ad re	egulation	$U_{\text{i nom}}, I_{\text{o}} = (0.11) I_{\text{o nom}}$			20			25			30			40	
<i>u</i> _{o d} ⁵	load	Dynamic Voltage load deviation		$U_{\text{i nom}}, I_{\text{o}} = I_{\text{o nom}} \leftrightarrow {}^{1/2}I_{\text{o nom}}$		±100			±100)		±100			±80		
t _d 5	regulation	on	Recovery time	IEC/EN 61204		0.3			0.5			0.4			0.3		ms
$lpha_{Uo}$	Tempera of outpu		e coefficient tage ⁶	T _{C min} T _{C max} 0I _{o nom}		-1			-1			-1			-2		mV/K

Table 4f: Output data double output modules CK...EK

Outpu (Outpu	ut uts connected	I in Series)		CKEK 2320 24 V (2 × 12 V)	CKEK 2540 30 V (2 × 15 V)	CKEK 2660 48 V (2 × 24 V)	
Chara	cteristics		Conditions	min typ max	min typ max	min typ max	Unit
Uo	Output volta	ge	U _{i nom} , I _{o nom}	24.0 ²	30.0 ²	48.0 ²	٧
U _{o P}	Overvoltage (suppressor			38	48	74	
I _{o nom}	Output curre	ent ¹	U _{i min} U _{i max} T _{C min} T _{C max}	6.0	5.0	3.0	Α
l₀ L	Output curre	ent limit 4	U _{i min} U _{i max}	6.2	5.2	3.2	
u_0^7		itching freq.	U _{i nom} , I _{o nom}	15	15	20	mV_{pp}
	voltage noise ³	tal	IEC/EN 61204 BW = 20 MHz	100	120	120	
∆U _{o u}	Static line re	gulation	U _{i min} U _{i nom} U _{i nom} U _{i max} I _{o nom}	±40	±30	±50	mV
∆U _{o 1}	Static load re	egulation	$U_{\text{i nom}}, I_{\text{o}} = (0.11) I_{\text{o nom}}$	40	30	40	
<i>u</i> _{o d} ⁵	Dynamic load	Voltage deviation	$U_{\text{i nom}}, I_{\text{o}} = I_{\text{o nom}} \leftrightarrow {}^{1}/_{2} I_{\text{o nom}}$	±100	±100	±100	
<i>t</i> _d ⁵	regulation	Recovery time	IEC/EN 61204	0.3	0.5	0.4	ms
$\alpha_{\sf Uo}$	Temperature of output vol		T _{C min} T _{C max} 0I _{o nom}	-2.2	-2.2	-2.6	mV/K

 $^{^{1}}$ If the output voltages are increased above $U_{o nom}$ through R-input control, option P setting, remote sensing or option T, the output current should be reduced accordingly so that $P_{0 \text{ nom}}$ is not exceeded.

² Series connection for $U_{0 \text{ nom}} = 24 \text{ V}$, 30 V or 48 V, see: *R-Function for Different Output Configurations*.

³ Shortest possible wiring for series connection at the connector.

⁴ See: Output voltage regulation of single output units.

⁵ See: Dynamic load regulation of U_{01} and U_{02} .

⁶ Negative temperature coefficient (0...-3 mV/cell and K) available on request

⁷ Measured according to IEC/EN 61204 sub clause 3.10 with a probe acc. to annex A of the same standards. (See *Technical Informa*tion: Measuring and Testing.)

Table 4g: Output data double output modules CK...EK

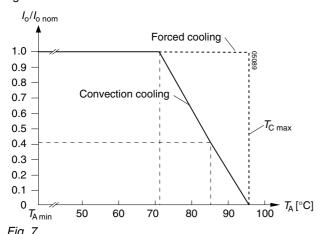
Outpu (Outp		dendtly loaded) 1			CKE 12 V							K 2540 /15 V			
Chara	cteristics		Conditions	0	utput	: 1	0	utput	2	0	utput	:1	0	utput	2	
				min	typ	max	min	typ	max	min	typ	max	min	typ	max	Unit
Uo	Output vol	tage	U _{i nom} , I _{o nom} ²	11.93		12.07	11.82		12.18	14.91		15.09	14.78		15.22	V
U _{o P}	Overvoltag	ge protection or diode)	Failure in control circuit		19			19			24			24		
I _{o nom}	Output current ³		U _{i min} U _{i max} T _{C min} T _{C max}		6.0			6.0			5.0			5.0		Α
I _{o L}	Output current limit 4		U _{i min} U _{i max}	6.2			6.2			5.2			5.2			
u_0^9	Output Switching freq.		U _{i nom} , I _{o nom}		5			5			5			5		mV_{pp}
	voltage noise	otal	IEC/EN 61204 BW = 20 MHz		75			25			100			25		
<i>∆U</i> _{o u}	Static line	regulation	U _{i min} U _{i nom} U _{i nom} U _{i max} I _{o nom}			±30			±40			±30			±40	mV
ΔU _{ol}	Static load	regulation	$U_{\text{i nom}}, I_{\text{o}} = (0.11) I_{\text{o nom}}^{5}$			100		8				100		8		
u _{o d} ⁶	Dynamic load	Voltage deviation	$U_{\text{i nom}}, I_{\text{o}} = I_{\text{o nom}} \leftrightarrow {}^{1}/_{2} I_{\text{o nom}}$		±100	1					±80					
<i>t</i> _d ⁶	regulation	Recovery time	IEC/EN 61204		0.3						0.2					ms
$\alpha_{\sf Uo}$	Temperation of output v	ure coefficient roltage 7	T _{C min} T _{C max} 0I _{o nom}		-1.1						-1.1					mV/K

Table 4h: Output data double output modules CK...EK

Outpu (Outpu		ender	ntly loaded)	1			CKE 24 V	K 2660 /24 V			
Chara	cteristics			Conditions	0	utput	: 1	0	utput	2	
					min	typ	max	min	typ	max	Unit
Uo	Output v	oltag	je	U _{i nom} , I _{o nom} ²	23.86		24.14	23.64		24.36	V
U₀ P	Overvolt (suppres	٠.	protection diode)			37			37		
I _{o nom}	Output o	Output current 3		U _{i min} U _{i max} T _{C min} T _{C max}		3.0			3.0		Α
I _{o L}	Output o	Output current limit 4		U _{i min} U _{i max}	3.2			3.2			
u _o 9	Output	Swi	tching freq.	U _{i nom} , I _{o nom}		5			5		mV_{pp}
	voltage noise	Tota	al	IEC/EN 61204 BW = 20 MHz		100			25		
<i>∆U</i> _{o u}	Static lin	ie reg	gulation	$U_{\text{i min}}U_{\text{i nom}},$ $U_{\text{i nom}}U_{\text{i max}},$ $I_{\text{o nom}}$			±30			±50	mV
ΔU _{ol}	Static lo	ad re	gulation	$U_{\text{i nom}}, I_{\text{o}} = (0.11) I_{\text{o nom}}^{5}$			50		8		
<i>u</i> _{o d} ⁶	Dynamic load		Voltage deviation	$U_{\text{i nom}}, I_{\text{o}} = I_{\text{o nom}} \leftrightarrow {}^{1}/_{2} I_{\text{o nom}}$		±50					
t _d 6	regulation	on	Recovery time	IEC/EN 61204		0.2					ms
$lpha_{Uo}$	Tempera of outpu		coefficient age ⁷	T _{C min} T _{C max} 0I _{o nom}		-1.3					mV/K

- ¹ Depending upon the desired output configuration the wiring should be made as shown in: R-Function for Different Output Configurations.
- ² Same conditions for both outputs.
- ³ If the output voltages are increased above $U_{o nom}$ via R-input control, option P setting, remote sensing or option T, the output currents should be reduced accordingly so that Ponom is not exceeded.
- ⁴ See: Output voltage regulation of single output units.
- ⁵ Condition for specified output. Other output loaded with constant current $I_0 = I_{0 \text{ nom}}$.

 ⁶ See: *Dynamic load regulation of*
- U_{01} and U_{02} .
- ⁷ Negative temperature coefficient (0...-3 mV/cell and K) available on request.
- ⁸ See: Output Voltage Regulation of Double Output Modules.
- ⁹ Measured according to IEC/EN 61204 sub clause 3.10 with a probe acc. to annex A of the same standards. (Se:e Technical Information: Measuring and Testing.)


Thermal Considerations

If a converter is located in free, quasi-stationary air (convection cooling) at the indicated maximum ambient temperature $T_{\rm A\,max}$ (see table: Temperature specifications) and is operated at its nominal input voltage and output power, the temperature measured at the Measuring point of case temperature $T_{\rm C}$ (see: Mechanical Data) will approach the indicated value $T_{\rm C\,max}$ after the warm-up phase. However, the relationship between $T_{\rm A}$ and $T_{\rm C}$ depends heavily on the conditions of operation and integration into a system. The thermal conditions are influenced by input voltage, output current, airflow and temperature of surrounding components and surfaces. $T_{\rm A\,max}$ is therefore, contrary to $T_{\rm C\,max}$, an indicative value only.

Caution: The installer must ensure that under all operating conditions $T_{\mathbb{C}}$ remains within the limits stated in the table *Temperature specifications*.

Notes: Sufficient forced cooling or an additional heat sink allows T_A to be higher than 71 °C (e.g. 85 °C) if $T_{C max}$ is not exceeded.

For -7 or -9 units at an ambient temperature T_A of 85 °C with only convection cooling, the maximum permissible current for each output is approx. 40% of its nominal value as per figure.

Output current derating versus temperature for -7 and -9 units.

Thermal Protection

A temperature sensor generates an internal inhibit signal which disables the outputs if the case temperature exceeds $T_{\rm C\ max}$. The outputs are automatically re-enabled if the temperature drops below this limit.

It is recommended that continuous operation under simultaneous extreme worst case conditions of the following three parameters be avoided: Minimum input voltage, maximum output power and maximum temperature.

Output Protection

Each output is protected against overvoltages which could occur due to a failure of the internal control circuit. Voltage suppressor diodes (which under worst case condition may become a short circuit) provide the required protection. The suppressor diodes are not designed to withstand externally applied overvoltages. Overload at any of the outputs will cause a shut-down of all outputs. A red LED indicates the overload condition.

Parallel or Series Connection of Units

Single or double output units with equal nominal output voltage can be connected in parallel without any precautions using option T.

With option T (current sharing), all units share the current approximately equally.

Single output units and/or main and second outputs of double output units can be connected in series with any other (similar) output.

Note:

- Parallel connection of double output units should always include both, main and second output to maintain good regulation of both outputs.
- Not more than 5 units should be connected in parallel.
- Series connection of second outputs without involving their main outputs should be avoided as regulation may be poor.
- The maximum output current is limited by the output with the lowest current limitation if several outputs are connected in series.

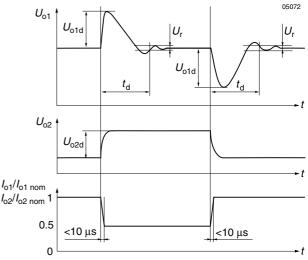


Fig. 8 Typical dynamic load regulation of U_{01} and U_{02}

Output Voltage Regulation of Single or Double Output Modules with Outputs 1 and 2 Connected in Series

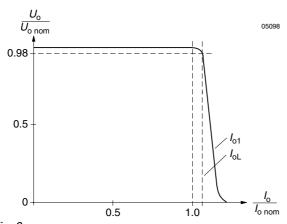


Fig. 9 U_{01} vs. I_{01} (typ.) of single output units AK...EK

Output Voltage Regulation of Double Output Modules

Output 1 is under normal conditions regulated to $U_{\rm o1\ nom}$, independent of the output currents.

 U_{02} is dependent upon the load distribution. If both outputs are loaded with more than 10% of $I_{0 \text{ nom}}$, the deviation of U_{02} remains within $\pm 5\%$ of the value of U_{01} . The following 3 figures show the regulation with varying load distribution. If $I_{01} = I_{02}$ or the two outputs are connected in series, the deviation of U_{02} remains within $\pm 1\%$ of the value of U_{01} provided that a total load of more than 10% of $I_{0 \text{ nom}}$ is applied.

Two outputs of a single K 2000 module connected in parallel will behave like the output of a K 1000 module; the paralleled output is fully regulated. No precautions are necessary in using the R-input and the test sockets.

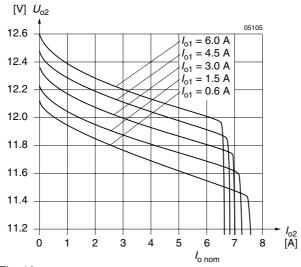


Fig. 10 AK...EK 2320: ΔU_{02} (typ.) vs. I_{02} with different I_{01}

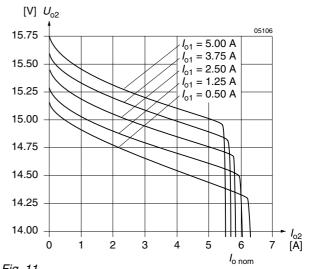


Fig. 11 AK...EK 2540: ΔU_{02} (typ.) vs. I_{02} with different I_{01}

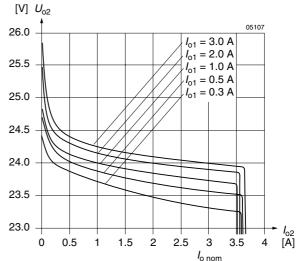


Fig. 12 AK...EK 2660: ΔU_{o2} (typ.) vs. I_{o2} with different I_{01}

Auxiliary Functions

i Inhibit for Remote On and Off

Note: With open i input: Output is disabled ($U_0 = off$).

The outputs of the module may be enabled or disabled by means of a logic signal (TTL, CMOS, etc.) applied between the inhibit input i and the negative pin of output 1 (Vo1–). In systems with several units, this feature can be used, for example, to control the activation sequence of the converters. If the inhibit function is not required, connect the inhibit pin 18 to pin 14 to enable the outputs (active low logic, fail safe). For output response refer to: *Hold-up Time and Output Response*.

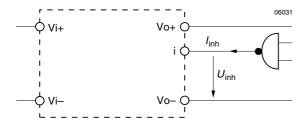


Fig. 13
Definition of U_{inh} and I_{inh}.

Table 5: Inhibit characteristics

Chai	racteristi	С	Conditions	min	typ	max	Unit
U _{inh}	Inhibit	$U_{o} = on$	U _{i min} U _{i max}	-50		0.8	V
	voltage $U_0 = off$			2.4		50	
I _{inh}	Inhibit c	urrent	$U_{\text{inh}} = 0$			-400	μΑ
t _r	Rise tim	е			30		ms
<i>t</i> _f	Fall time)	dep				

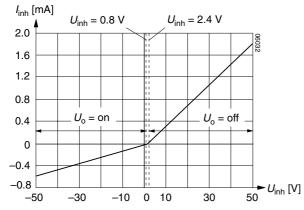


Fig. 14 Typical inhibit current I_{inh} versus inhibit voltage U_{inh}

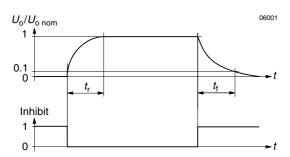


Fig. 15
Typical output response as a function of inhibit control

Sense Lines

(Only for single output units 5.1 V, 12 V, 15 V, 24 V)

This feature enables for compensation of voltage drops across the connector contacts and if necessary, across the load lines. If the sense lines are connected at the load rather than directly at the connector, the user should ensure that $U_{0 \text{ max}}$ (between Vo1+ and Vo1–) is not exceeded. We recommend connecting the sense lines directly at the female connector.

For further information, please refer to: Application Notes.

To ensure correct operation, both sense lines (S+ and S-) should be connected to their respective power outputs (Vo1+ and Vo1-) and the voltage difference between any sense line and its respective power output pin (as measured on the connector) should not exceed the following values:

Table 6: Maximum voltage compensation allowed using sense lines

Output voltage	Total voltage difference between sense lines and their respective outputs	Voltage difference between Vo- and S-
5.1 V	< 0.5 V	< 0.25 V
12 V, 15 V	< 1.0 V	< 0.25 V

If the output voltages are increased above $U_{\rm o\ nom}$ via R-input control, option P setting, remote sensing or option T, the output currents must be reduced accordingly so that $P_{\rm o\ nom}$ is not exceeded.

Note: The output terminals Vo1+ and Vo1- must always be connected to the load before connecting the sense lines S+ and S-, otherwise the unit will be damaged.

Programmable Output Voltage (R-Function)

As a standard feature, the modules offer an adjustable output voltage, identified by letter R in the type designation. The control input R (pin 16) accepts either a control voltage $U_{\rm ext}$ or a resistor $R_{\rm ext}$ to adjust the desired output voltage. When not connected, the control input automatically sets the output voltage to $U_{\rm o \ nom}$.

a) Adjustment by means of an external control voltage $U_{\rm ext}$ between pin 16 (R) and pin 14:

The control voltage range is 0...2.75 V DC and allows an output voltage adjustment in the range of approximately 0...110% $U_{\text{o nom}}$.

$$U_{\text{ext}} = \frac{U_0}{U_{\text{o nom}}} \cdot 2.5 \text{ V (approximate formula)}$$

b) Adjustment by means of an external resistor:

Depending upon the value of the required output voltage the resistor shall be connected

Either: Between pin 16 and pin 14 ($U_{\rm o}$ < $U_{\rm o~nom}$) to achieve an output voltage adjustment range of approximately 0...100% $U_{\rm o~nom}$

or: Between pin 16 and pin 12 ($U_0 > U_{0 \text{ nom}}$) to achieve an output voltage adjustment range of approximately 100...110% $U_{0 \text{ nom}}$.

Warning:

- Uext shall never exceed 2.75 V DC.
- The value of R'_{ext} shall never be less than the lowest value as indicated in table R'_{ext} for (U_o > U_{o nom}) to avoid damage to the unit!

Remarks:

The R-Function excludes option P (output voltage adjustment by potentiometer).

- If the output voltages are increased above U_{o nom} via R-input control, option P setting, remote sensing or option T, the output current(s) should be reduced accordingly so that P_{o nom} is not exceeded.
- The R-input (as well as option P) is related to the main output.
- With double output units the second output follows the value of the controlled main output. Resistor values as indicated for the single output units should be used.
- For correct output voltage adjustment of double output units the external wiring of the outputs should be according to: R-Function for Different Output Configurations, depending upon the desired output configuration.
- In case of parallel connection the output voltages should be individually set within a tolerance of 1 - 2%.

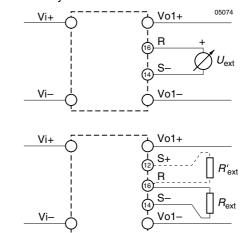


Fig. 16
Output voltage control for single output units AK...EK 1000 by means of the R input

Table 7a: R_{ext} for $U_0 < U_{\text{o nom}}$; approximative values ($U_{\text{i nom}}$, $I_{\text{o nom}}$, series E 96 resistors); $R'_{\text{ext}} = \infty$

U _{o nom} :	= 5.1 V		U _{o nom} = 12 \	1		<i>U</i> _{o nom} = 15 \	1	<i>U</i> _{o nom} = 24 V			
U _o (V)	$R_{\rm ext}[{\sf k}\Omega]$	Uo	[V] ¹	$R_{\rm ext}[k\Omega]$	U	_o [V] ¹	$R_{\rm ext}[k\Omega]$	Uo	[V] ¹	$R_{\rm ext}[{\sf k}\Omega]$	
0.5	0.432	2	4	0.806	2	4	0.619	4	8	0.806	
1.0	0.976	3	6	1.33	4	8	1.47	6	12	1.33	
1.5	1.65	4	8	2	6	12	2.67	8	16	2	
2.0	2.61	5	10	2.87	8	16	4.53	10	20	2.87	
2.5	3.83	6	12	4.02	9	18	6.04	12	24	4.02	
3.0	5.76	7	14	5.62	10	20	8.06	14	28	5.62	
3.5	8.66	8	16	8.06	11	22	11	16	32	8.06	
4.0	14.7	9	18	12.1	12	24	16.2	18	36	12.1	
4.5	30.1	10	20	20	13	26	26.1	20	40	20	
5.0	200	11	22	42.2	14	28	56.2	22	44	44.2	

Table 7b: R'_{ext} for $U_0 > U_{\text{o nom}}$; approximative values ($U_{\text{i nom}}$, $I_{\text{o nom}}$, series E 96 resistors); $R_{\text{ext}} = \infty$

U _{o nom} :	= 5.1 V		<i>U</i> o nom = 12 \	/		<i>U</i> o nom = 15 \	/	<i>U</i> _{o nom} = 24 V			
<i>U</i> _o [V]	$R'_{\mathrm{ext}}[\mathrm{k}\Omega]$	<i>U</i> o	[V] ¹	$R'_{\mathrm{ext}}[k\Omega]$	<i>U</i> o	[V] ¹	$R'_{\mathrm{ext}}[k\Omega]$	U _o	[V] ¹	$R'_{\rm ext}[k\Omega]$	
5.15	432	12.1	24.2	1820	15.2	30.4	1500	24.25	48.5	3320	
5.2	215	12.2	24.4	931	15.4	30.8	768	24.5	49.0	1690	
5.25	147	12.3	24.6	619	15.6	31.2	523	24.75	49.5	1130	
5.3	110	12.4	24.8	475	15.8	31.6	392	25.0	50.0	845	
5.35	88.7	12.5	25.0	383	16.0	32.0	316	25.25	50.5	698	
5.4	75	12.6	25.2	316	16.2	32.4	267	25.5	51.0	590	
5.45	64.9	12.7	25.4	274	16.4	32.8	232	25.75	51.5	511	
5.5	57.6	12.8	25.6	243	16.5	33.0	221	26.0	52.0	442	
		13.0	26.0	196				26.25	52.5	402	
		13.2	26.4	169				26.4	52.8	383	

¹ First column: single output units or double output units with separated outputs, second column: outputs in series connection

R-Function for Different Output Configurations

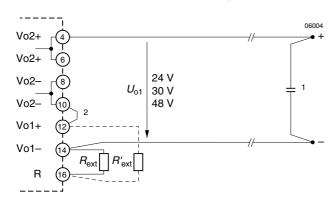


Fig. 17a

or ±24 V.

AK...EK 2000 with H15 connector. R-input for output voltage control. Wiring for output voltage 24 V or 30 V or 48 V with main and second output connected in series.

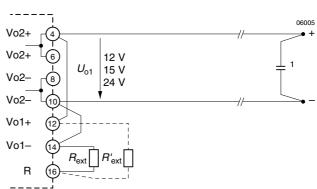


Fig. 17b

AK...EK 2000 with H15 connector. R-input for output voltage control. Wiring for output voltage 12 V or 15 V or 24 V with main and second output connected in parallel.

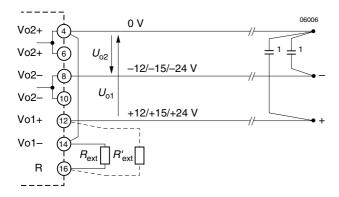


Fig. 17c AK...EK 2000 with H15 connector. R-input for output voltage control. Wiring of main and second output for two symmetrical output voltages U_{01} and U_{02} : $\pm 12~V$ or $\pm 15~V$

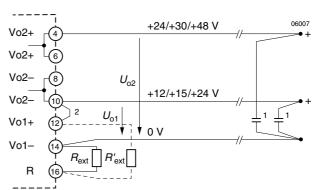


Fig. 17d

AK...EK 2000 with H15 connector. R-input for output voltage control. Wiring of main and second output for two output voltages U_{o1} and U_{o2} : +12 V and +24 V or +15 V and +30 V or +24 V and +48 V.

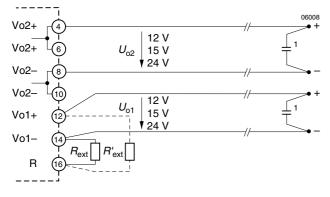
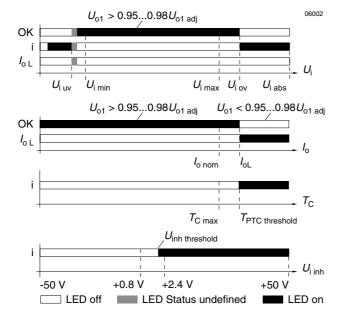


Fig. 17e AK...EK 2000 with H15 connector. R-input for output voltage control. Wiring of main and second output for two output voltages U_{o1} and U_{o2} : 12 V/12 V or 15 V/15 V or 24 V/24 V, the outputs are galvanically isolated.

- ¹ A ceramic multilayer capacitor connected across the output lines reduces ripple and spikes.
- ² Shortest possible wiring for series connection at the female connector


Remarks:

Double output units fitted with H-15 connectors have the output pins of the second output, pins 4/6 and 8/10, internally paralleled.

It is recommended that pins 4/6 and 8/10 be directly paralleled at the female connector as well to reduce the voltage drop across the connector.

Please note: U_{02} varies depending upon its own load and the load on output 1.

Display Status of LEDs

Test Sockets (Main output only)

Test sockets for measuring the output voltage $U_{\rm o1}$ are located at the front of the module. The positive test socket is protected by a series resistor (see: Functional Description, block diagrams). The voltage measured at the test sockets is approximetly 30 mV lower than the value measured at the output terminals.

In case of double output units externally connected in series for U_0 = 24 V, 30 V or 48 V the monitored output voltage is 12 V, 15 V or 24 V respectively.

Fig. 18 LEDs "OK", "i" and " $I_{0 L}$ " status versus input voltage Conditions: $I_{0} \le I_{0 nom}$, $T_{C} \le T_{C max}$, $U_{inh} \le 0.8 \ V$ $U_{i uv}$ = undervoltage lock-out, $U_{i ov}$ = overvoltage lock-out

LEDs "OK" and " I_0 L" status versus output current Conditions: $U_{i \text{ min}}...U_{i \text{ max}}$, $T_C \le T_{C \text{ max}}$, $U_{i \text{nh}} \le 0.8 \text{ V}$

LED "i" versus case temperature Conditions: $U_{i \; min}...U_{i \; max}, \; I_{o} \leq I_{o \; nom}, \; U_{inh} \leq 0.8 \; V$

 $\begin{array}{ll} \textit{LED "i" versus U_{inh}} \\ \textit{Conditions: $U_{i \; min}...U_{i \; max}$, $I_{0} \leq I_{0 \; nom}$, $T_{C} \leq T_{C \; max}$} \end{array}$

Electromagnetic Compatibility (EMC)

A suppressor diode or a metal oxide VDR (depending upon the type) together with an input fuse and an input filter form an effective protection against high input transient voltages

which typically occur in most installations, but especially in battery driven mobile applications. The K series has been successfully tested to the following specifications:

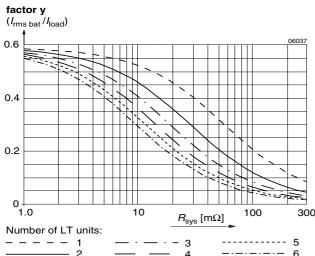
Electromagnetic Immunity

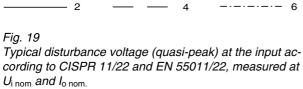
Table 8: Immunity type tests

Phenomenon	Standard 1	Level	Coupling mode ²	Value applied	Waveform	Source imped.	Test procedure	In oper.	Per- form. ³			
Voltage surge	IEC 60571-1		i/c, +i/–i	800 V _p	100 μs	100 Ω	1 pos. and 1 neg.	yes	Α			
				1500 V _p	50 μs		voltage surge per coupling mode					
				3000 V _p	5 μs		coupling mode					
				4000 V _p	1 μs							
				7000 V _p	100 ns							
Supply related	RIA 12	A 4	+i/—i	3.5 • <i>U</i> batt	2/20/2 ms	0.2 Ω	1 positive	yes	Α			
surge		В		1.5 • <i>U</i> batt	0.1/1/0.1 s		surge					
Direct transient		С	+i/c, -i/c	960 V _p	10/100 μs	5 Ω	5 pos. and 5 neg.	yes	В			
		D		1800 V _p	5/50 μs		impulses					
		Е		3600 V _p	0.5/5 μs	100 Ω						
		F		4800 V _p	0.1/1 μs							
		G		8400 V _p	0.05/0.1 μs							
Indirect coupled		Н	+o/c, -o/c,	1800 V _p	5/50 μs				5			
transient		J		3600 V _p	0.5/5 μs							
					K		4800 V _p	0.1/1 μs				
		L		8400 V _p	0.05/0.1 μs							
Electrostatic	IEC/EN	4	contact discharge	8000 V _p	1/50 ns	330 Ω	10 positive and	yes	Α			
discharge (to case)	61000-4-2		air discharge	15000 V _p			10 negative discharges					
Electromagnetic field	IEC/EN 61000-4-3	3	antenna	20 V/m	AM 80% 1 kHz	n.a.	801000 MHz	yes	Α			
Electromagnetic field, pulse modulated	ENV 50204			10 V/m	50% duty cycle, 200 Hz repetition frequency		900 ±5 MHz	yes	Α			
Electrical fast	IEC/EN	4	capacitive, o/c	2000 V _p	bursts of 5/50 ns	50 Ω	1 min positive	yes	Α			
transient/burst	61000-4-4		i/o, +i/–i direct	4000 V _p	2.5/5 kHz over 15 ms; burst period: 300 ms		1 min negative transients per coupling mode					
Surge	IEC/EN	3	i/c	2000 V _p	1.2/50 μs	12 Ω	5 pos. and 5 neg.	yes	Α			
	61000-4-5	4	+i/—i			2 Ω	surges per coupling mode					
Conducted disturbances	IEC/EN 61000-4-6	3	i, o, signal wires	10 V _{rms} (140 dBμV)	AM 80% 1 kHz	150 Ω	0.1580 MHz	yes	Α			

¹ Related and previous standards are referenced in: *Technical Information: Standards*.

Note: Previous standards are referenced in: Technical Information: Standards.


 $^{^{2}}$ i = input, o = output, c = case.


³ A = Normal operation, no deviation from specifications, B = Normal operation, temporary deviation from specs possible.

Only met with extended input voltage range of CK (48 V battery) and EK (110 V battery) types. These units are available on customer's request. Standard DK units (110 V battery) will not be damaged, but overvoltage lock-out will occur during the surge. Under normal operation temporary deviation from specifications possible.

⁵ Test in progress, please consult factory.

Electromagnetic Emission

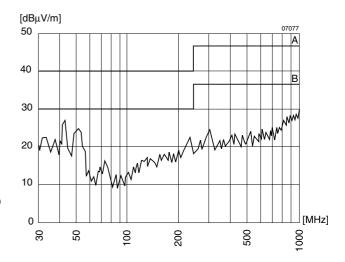


Fig. 20 Typical radiated electromagnetic field strength (quasipeak) according to CISPR 11/22 and EN 55011/22, normalized to a distance of 10 m, measured at $U_{\rm i\ nom}$ and $I_{\rm o\ nom}$.

Immunity to Environmental Conditions

Table 9: Environment specifications

Test	method	Standard	Test conditions		Status
Ca	Damp heat steady state	IEC/DIN IEC 60068-2-3 MIL-STD-810D section 507.2	Temperature: Relative humidity: Duration:	40 ±2 °C 93 +2/-3 % 56 days	Unit not operating
Ea	Shock (half-sinusoidal)	IEC/EN/DIN EN 60068-2-27 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	100 g _n = 981 m/s ² 6 ms 18 (3 each direction)	Unit operating
Eb	Bump (half-sinusoidal)	IEC/EN/DIN EN 60068-2-29 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	$40 g_n = 392 \text{ m/s}^2$ 6 ms 6000 (1000 each direction)	Unit operating
Fc	Vibration (sinusoidal)	IEC/EN/DIN EN 60068-2-6	Acceleration amplitude: Frequency (1 Oct/min): Test duration:	0.35 mm (1060 Hz) 5 g_n = 49 m/s² (602000 Hz) 102000 Hz 7.5 h (2.5 h each axis)	Unit operating
Fn	Vibration broad band random (digital control)	IEC 60068-2-64 DIN 40046 part 23 MIL-STD-810D section 514.3	Acceleration spectral density: Frequency band: Acceleration magnitude: Test duration:	0.05 g _n ² /Hz 5500 Hz 4.97 g _{n rms} 3 h (1 h each axis)	Unit operating
Kb	Salt mist, cyclic (sodium chloride NaCl solution)	IEC/EN/DIN IEC 60068-2-52	Concentration: Duration: Storage: Storage duration: Number of cycles:	5% (30°C) 2 h per cycle 40°C, 93% rel. humidity 22 h per cycle 3	Unit not operating

Table 10: Temperature specifications, valid for an air pressure of 800...1200 hPa (800...1200 mbar)

Tem	perature		Stand	ard -7	Opti		
Char	racteristics	Conditions	min	max	min	max	Unit
T _A	Ambient temperature ¹	Operational ²	-25	71	-40	71	°C
T _C	Case temperature 3		-25	95	-40	95	
Ts	Storage temperature ¹	Non operational	-40	100	-55	100	

¹ MIL-STD-810D section 501.2 and 502.2.

Table 11: MTBF

Values at specified case temperature	Module types	Ground benign 40°C	Groun 40°C	d fixed 70°C	Ground mobile 50°C	Unit	
MTBF ¹	AKEK	500'000	150'000	80'000	50'000	h	
Device hours ²		500'000					

¹ Calculated in accordance with MIL-HDBK-217F.

² See: Thermal Considerations.

 $^{^3}$ Overtemperature lock-out at $\textit{T}_{\text{C}}\!>\!\!95\,^{\circ}\text{C}$ (PTC).

² Statistical values, based on an average of 4300 working hours per year and in general field use, over 3 years.

Mechanical Data 9 TE 3.27 Dimensions in mm. Tolerances ± 0.3 mm unless otherwise indicated. 8 159 Test jacks (+/ Option P (U_0) Option D (U_{to}) 29.9 Option D (U_{ti}) 111 (30) LED i (red) 89 LED OK (green LED I_{oL} (red) Gravitational axis Q = 0.3.5Measuring point of 51.5 \circ = Ø 4.1 6.5 ⊗ 50 42 171.93 (DIN 41494) 80 Front plate Main face Back plate 168.5 ±0.5 European Projection - d ≥15 mm, recommended minimum distance to next part to ensure proper air circulation at full output power. Fig. 21 - free air locations: the module should be moun-

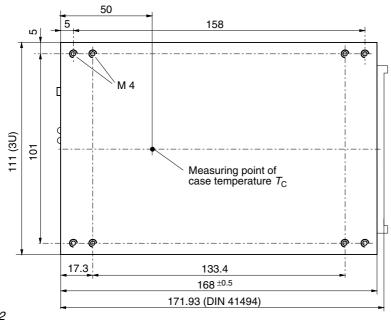
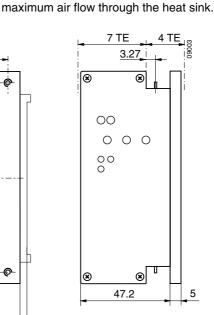



Fig. 22
Case K02 with option B1 (cooling plate),case aluminium, black finish and self cooling, weight: Approx. 1.15 kg

Case K02 with heatsink, case aluminium, black finish and

self cooling, weight: Approx. 1.55 kg

ted with fins in vertical position to achieve a

Note: Long case with S-type heatsink or cooling plate B2, elongated by 60 mm for 220 mm rack depth, is available on request. (No LED's and no test jacks.)

Safety and Installation Instructions

Connector Pin Allocation

The connector pin allocation table defines the electrical potentials and the physical pin positions on the H15/H15 S4 connector. Pin no. 24, the protective earth pin present on all

Fixtures for connector retention clips V (see Accessory Products)

30/32 4/6

Type H15 S4
Fig. 23
View of module's male connectors

AK...FK DC-DC converters is leading, ensuring that it makes contact with the female connector first.

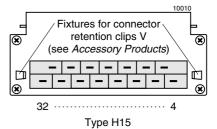


Table 12: H15 and H15 S4 connector pin allocation

Pin		Connector t	ype H15 S4		Connector type H 15				
No.	AK 1000 (a	all), BKEK 1001	AK 2000		BKEK 1301/1501/1601		BKEK 2000		
4	Vo1+	Output 1	Vo2+	Output 0	Vo1+	Output 1	Vo2+	Output 0	
6	V01+	Output 1	V02+	Output 2	Vo1+	Output 1	Vo2+	Output 2	
8	Vo1-	Outrant 4	Vo2-	0	Vo1-	Outrast 1	Vo2-	0	
10	V01-	Output 1	V02-	Output 2	Vo1-	Output 1	Vo2-	Output 2	
12	S+	Sense	Vo1+	Output 1	S+	Sense	Vo1+	Output 1	
14	S-	Sense	Vo1–	Output 1	S-	Sense	Vo1-	Output 1	
16	R ¹	Control of U _{o1}	R ¹	Control of U _{o1}	R ¹	Control of U _{o1}	R ¹	Control of U _{o1}	
18	i	Inhibit	i	Inhibit	i	Inhibit	i	Inhibit	
20	D 3	Save data	D	Safe data	D	Save data	D	Save data	
	V 3	ACFAIL							
22	Т	Current sharing	Т	Current sharing	Т	Current sharing	Т	Current sharing	
24 ²	\(\begin{array}{c} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	Protective earth	(a)	Protective earth	\(\begin{array}{c} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	Protective earth	\(\begin{array}{c} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	Protective earth	
26	\/:.	land.	\/:.	land.	Vi+	land.	Vi+	Innest or November	
28	Vi+	Input	Vi+	Input	Vi+	Input	Vi+	Input or Neutral	
30	\ \(\tau_i \)	land.	\ \/:	lan	Vi–		Vi–	January Dhana	
32	Vi–	Input	Vi–	Input	Vi–	Input		Input or Phase	

¹ Feature R excludes option P and vice versa; ² Leading pin (pregrounding); ³ Option D excludes option V and vice versa.

Installation Instructions

The K series DC-DC converters are components, intended exclusively for inclusion within other equipment by an industrial assembly operation or by professional installers. Installation must strictly follow the national safety regulations in compliance with the enclosure, mounting, creepage, clearance, casualty, markings and segregation requirements of the end-use application.

Connection to the system shall be made via the female connector H15 (see: *Accessories*). Other installation methods may not meet the safety requirements.

The DC-DC converters are provided with pin no. 24 (\circledast) , which is reliably connected with their case. For safety reasons it is essential to connect this pin with the protective earth of the supply system unless specified in: *Safety of operator accessible output circuit*.

An input fuse is built-in in the connection from pins no. 30 and 32 (Vi-) of the unit. Since this fuse is designed to protect the unit in case of an overcurrent and does not necessarily cover all customer needs, an external fuse suitable for the application and in compliance with the local requirements might be necessary in the wiring to one or both input potentials, pins nos. 26 and 28 and/or nos. 30 and 32.

Important: Whenever the inhibit function is not in use, pin no. 18 (i) should be connected to pin no. 14 (S-/Vo1-) to enable the output(s).

Do not open the modules, or guarantee will be invali-

Due to high current values, all AK...FK units provide two internally parallel connected contacts for certain paths (pins 4/6, 8/10, 26/28 and 30/32 respectively). It is recommended to connect load and supply to both female connector pins of each path in order to keep the voltage drop across the connector pins to an absolute minimum and to not overstress the connector contacts if currents are higher than approx. 8 A. The connector contacts are rated 8 A over the whole temperature range.

Make sure that there is sufficient air flow possible for convection cooling. This should be verified by measuring the case temperature when the unit is installed and operated in the end-use application. The maximum specified case temperature $T_{\text{C max}}$ shall not be exceeded. See also *Thermal Considerations*.

If the end-product is to be UL certified, the temperature of the main isolation transformer should be evaluated as part of the end-product investigation.

Check for hazardous voltages before altering any connections.

Ensure that a unit failure (e.g. by an internal short-circuit) does not result in a hazardous condition. See also: *Safety of operator accessible output circuit.*

Cleaning Agents

In order to avoid possible damage, any penetration of cleaning fluids is to be prevented, since the power supplies are not hermetically sealed.

Isolation

The electric strength test is performed as factory test in accordance with IEC/EN 60950 and UL 1950 and should not be repeated in the field. Power-One will not honour any guarantee claims resulting from electric strength field tests.

Table 13: Isolation

Standards and approvals

All DC-DC converters correspond to class I equipment. They are UL recognized according to UL 1950, UL recognized for Canada to CAN/CSA C22.2 No. 950-95 and LGA approved to IEC/EN 60950 standards.

The units have been evaluated for:

- · Building in,
- Basic insulation between input and case and double or reinforced insulation between input and output, based on 150 V AC/DC (AK and BK) or 250 V AC and 400 V DC (CK, DK, EK, FK),
- · The use in a pollution degree 2 environment,
- Connecting the input to a primary or secondary circuit which is subject to a maximum transient rating of 2500 V.

The DC-DC converters are subject to manufacturing surveillance in accordance with the above mentioned UL, CSA, EN and with ISO 9001 standards.Cleaning Agents

In order to avoid possible damage, any penetration of cleaning fluids is to be prevented, since the power supplies are not hermetically sealed.

Protection Degree

Condition: Female connector fitted to the unit.

IP 30: All units except those with option P, and except those with option D or V with potentiometer.

IP 20: All units fitted with option P, or with option D or V with potentiometer.

Characterist	tic	Input to case	Input to output	Output to case	Output to output	Unit	
Electric	Required according to	AK, BK	1.0	2.0 ¹	0.5	-	kV _{rms}
strength test voltage	IEC/EN 60950		1.4	2.8 1	0.7	-	kV DC
lest voltage		CK, DK EK, FK	1.5	3.0 ¹	0.5	-	kV _{rms}
			2.1	4.2 ¹	0.7	-	kV DC
	Actual factory test 1 s	AK, BK	2.8	5.6 ¹	1.4	0.14	
	AC test voltage equivalent to actual factory test CK, DK		2.0	4.0 ¹	1.0	0.1	kV _{rms}
Insulation res	sistance at 500 V DC	>300	>300	>300	>1002	MΩ	

¹ In accordance with IEC/EN 60950 only subassemblies are tested in factory with this voltage.

For creepage distances and clearances refer to: *Technical Information: Safety.*

² Tested at 150 V DC.

Safety of operator accessible output circuit

If the output circuit of a DC-DC converter is operator accessible, it shall be an SELV circuit according to the IEC/EN 60950 related safety standards.

The following table shows some possible installation configurations, compliance with which causes the output circuit of the DC-DC converter to be an SELV circuit according to

nominal voltages if in series or +/- configuration) of 35 V. However, it is the sole responsibility of the installer to assure the compliance with the relevant and applicable safety.

IEC/EN 60950 up to a configured output voltage (sum of

sure the compliance with the relevant and applicable safety regulations. More information is given in: *Technical Information: Safety.*

Table 14: Safety concept leading to an SELV output circuit

Conditions	Front end			DC-DC	converter	Result
Nominal supply voltage	Minimum required grade of isolation, to be provided by the AC-DC front end, including mains supplied battery charger	Nominal DC output voltage from the front end	Minimum required safety status of the front end output circuit	Types	Measures to achieve the specified safety status of the output circuit	Safety status of the DC-DC converter output circuit
Mains ≤150 V AC	Operational (i.e. there is no need for electrical isolation between the mains supply voltage and the DC-DC converter input voltage)	≤100 V (The nominal voltage between any input pin and earth can be up to 150 V AC or DC)	Primary circuit	AK BK	Double or reinforced insulation, based on the mains voltage and ² (provided by the DC-DC converter) and earthed case ³	SELV circuit
Mains ≤250 V AC		≤400 V (The nominal voltage between any input pin and earth can be up to 250 V AC or 400 V DC)		CK DK EK FK		
	Basic	≤400 V	Unearthed hazardous voltage secodary circuit	AK BK CK DK EK FK	Supplementary insulation, based on 250 V AC and double or reinforced insulation ² (provided by DC-DC converter) and earthed case ³ .	
			Earthed hazardous voltage secondary circuit		Double or reinforced insulation ² (provided by the DC-DC converter) earthed case ³	
	Double or reinforced	≤60 V	SELV circuit		Operational insulation (provided by the DC-DC converter) ⁴	
		≤120 V	TNV-3 circuit		Basic insulation (provided by the DC-DC converter) 4	

¹ The front end output voltage should match the specified input voltage range of the DC-DC converter.

⁴ Earthing of the case is recommended, but not mandatory.

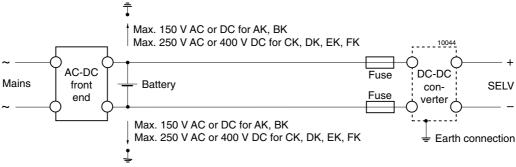


Fig. 24 Schematic safety concept.

Use earth connection as per table: Safety concept leading to an SELV output circuit. Use fuse if required by the application. See also: Installation Instructions.

² Based on the maximum nominal output voltage from the front end.

³ The earth connection has to be provided by the installer according to the relevant safety standard, e.g. IEC/EN 60950.

Description of Options

Table 15: Survey of options

Option	Function of Option	Characteristics
-9	Extended operational ambient temperature range	T _A = -40°C71°C
Е	Electronic inrush current limitation circuitry	Active inrush current limitation for CK, DK, EK
P 1	Potentiometer for fine adjustment of output voltage	Adjustment range +10/-60% of $U_{o \text{ nom}}$ excludes R input
D 2	Input and/or output undervoltage monitoring circuitry	Safe data signal output (Versions D0DD)
V 2 3	Input (and output) undervoltage monitoring circuitry	ACFAIL signal according to VME specs (Versions V0, V2, V3)
Т	Current sharing	Interconnect T-pins if paralleling outputs (5 units max.)
B1/B2	Cooling plate	Replaces standard heat sink, allowing direct chassis-mounting

¹ Function R excludes option P and vice versa.

-9 Extended Temperature Range

Option -9 extends the operational ambient temperature range from -25...71°C (standard) to -40...71°C. The power supplies provide full nominal output power with convection cooling. Option -9 excludes inrush current limitation by NTC.

E Inrush Current Limitation

CK/DK/EK types may be supplemented by an electronic circuit (option E, replacing the standard built-in NTC) to achieve an enhanced inrush current limiting function (not available with AK/BK/FK types).

If fitted with option E (inrush current limitation) together with option D6, input voltage monitoring, the CK units meet the CEPT/ETSI standards for 48 V DC supply voltages according to prETS 300132-2, version 4.2, date 9312. Option D6, externally adjustable via potentiometer, is necessary to disable the converter at input voltages below actual service voltage ranges, avoiding an excessive input current when the input voltage is raised slowly according to prETS 300132-2. Option D6 threshold level should be adjusted to 36.0...40.5 V for 48 V nominal supply systems or 44.0...50.0 V for 60 V nominal supply systems (refer also to description of option D). The D output should be connected to the inhibit input. Please contact Power-One if applications do not permit potentiometer setting.

Table 16: Inrush current characteristics with option E

Characterist	tics	СК	DK	EK	Unit
U _{i nom} , I _{o nom}	Input voltage	60	110	220	V
l _{inr p}	Peak inrush current	6.8	7.4	14.6	Α
t _{inr}	Inrush current duration	18	14	16	ms
U _{i max} , I _{o nom}	Input voltage	140	220	380	V
l _{inr p}	Peak inrush current	9.3	14.5	25.3	Α
t _{inr}	Inrush current duration	20	14	12	ms

Precaution: Subsequent switch-on cycles at start-up are limited to max. 10 cycles during the first 20 seconds (cold unit) and at continuing on/off ($T_C = 95$ °C) max. 1 cycle every 8 sec.

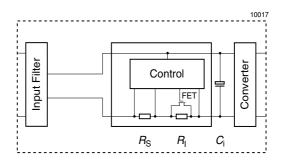
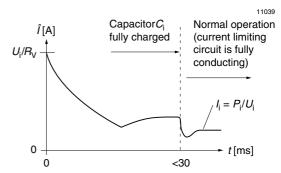



Fig. 25 Option E block diagram

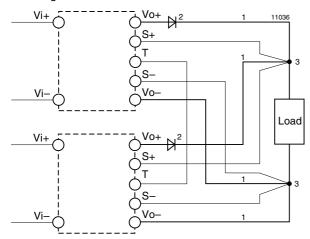
 R_V : Current limiting resistance = $R_S + R_I = 15 \Omega$

Fig. 26
Inrush current with option E

P Potentiometer

The potentiometer provides an output voltage adjustment range of +10/-60% of $U_{0 \text{ nom}}$ and is accessible through a hole in the front cover. This feature enables compensation of voltage drops across the connector and wiring. Option P is not recommended if units are connected in parallel.

Option P excludes the R-function. With double output units both outputs are affected by the potentiometer setting (doubling the voltage setting if the outputs are in series).


If the output voltages are increased above $U_{\rm 0\ nom}$ via R-input control, option P setting, remote sensing or option T, the output current(s) should be reduced accordingly so that $P_{\rm 0\ nom}$ is not exceeded.

² Option D excludes Option V and vice versa

³ Only available if main output voltage $U_{o1} = 5.1$.

T Current Sharing

This option ensures that the output currents are approximately shared between all paralleled modules hence increasing system reliability. To use this facility, simply interconnect the T pins of all modules and make sure, that pins 14, the S-pins (K 1000) or the Vo1-pins (K 2000) are also connected together. The load leads should have equal length and cross section to ensure equal voltage drops. Not more than 5 units should be connected in parallel. If output voltage adjustment is requested we strongly recommend to use the R-input instead of option P, as with option P the required setting accuracy is difficult to achieve. The output voltages must be individually set prior to paralleling to within a tolerance of 1...2% or the R pins should be connected together.

max. 5 units in parallel connection

Fig. 28
Paralleling of single output units using option T with the sense lines connected at the load

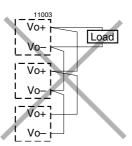


Fig. 27
An example of poor wiring for connection in parallel

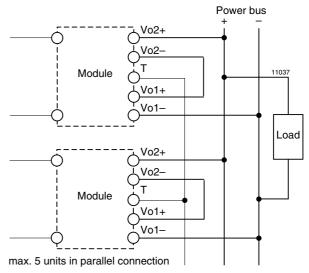


Fig. 29
Paralleling of double output units using option T with
Power Bus

¹ Leads should have equal length and cross sections and should run in the same cable loom.

² Diodes recommended in redundant operation only

³ DC common point

D Undervoltage monitor

The input and/or output undervoltage monitoring circuit operates independently of the built-in input undervoltage lock-out circuit. A logic "low" (JFET output) or "high" signal (NPN output) is generated at pin 20 as soon as one of the monitored voltages drops below the preselected threshold level U_t . The return for this signal is Vo1–. The D output recovers when the monitored voltage(s) exceed(s) $U_t + U_h$. The

threshold levels $U_{\rm ti}$ and $U_{\rm to}$ are either adjustable by a potentiometer, accessible through a hole in the front cover, or factory adjusted to a fixed value specified by the customer.

Option D exists in various versions D0...DD as shown in the following table.

Table 17: Undervoltage monitor functions

Output type Monito		toring <i>U</i> _{o1}	Minimum adjustment range of threshold level U_t		Typical hysteresis U_h [% of U_t] for $U_{t min}U_{t max}$		
				U_{ti}	U_{to}	U_{hi}	U_{ho}
D1	D5	no	yes	-	3.540 V ¹	-	2.50.6
D2	D6	yes	no	U _{i min} U _{i max} 1	-	3.40.4	-
D3	D7	yes	yes	U _{i min} U _{i max} ¹	(0.950.985 U _{o1}) ²	3.40.4	"0"
D4	D8	no	yes	-	(0.950.985 U _{o1}) ²	-	"0"
D0	D9	no	yes	-	3.540 V ³	-	2.50.6
		yes	no	<i>U</i> _{i min} <i>U</i> _{i max} ^{3 4}	-	3.40.4	-
		yes	yes	<i>U</i> _{i min} <i>U</i> _{i max} ^{3 4}	3.540 V ³	3.40.4	2.50.6
		yes	yes	U _{i min} U _{i max} ^{3 4}	(0.950.985 U _{o1}) ²	3.40.4	"0"
-	DD	yes	yes	U _{i min} U _{i max} 1	3.540 V ¹	3.40.4	2.50.6

¹ Threshold level adjustable by potentiometer

JFET output (D0...D4):

Connector pin D is internally connected via the drain-source path of a JFET (self-conducting type) to the negative potential of output 1. $U_D \le 0.4 \text{ V}$ (logic low) corresponds to a monitored voltage level (U_i and/or U_{01}) < U_t . The current I_D through the JFET should not exceed 2.5 mA. The JFET is protected by a 0.5 W Zener diode of 8.2 V against external overvoltages.

$U_{\rm i},U_{\rm o1}$ status	D output, U _D			
$U_{\rm i}$ or $U_{\rm o1} < U_{\rm t}$	low, L, $U_D \le 0.4 \text{ V}$ at $I_D = 2.5 \text{ mA}$			
$U_{\rm i}$ and $U_{\rm o1} > U_{\rm t} + U_{\rm h}$	high, H, $I_D \le 25 \mu\text{A}$ at $U_D = 5.25 \text{V}$			

11006 Vo1+ D UD Vo1-

Fig. 30 Option D1...D0: JFET output, $I_D \le 2.5 \text{ mA}$

NPN output (D5...DD):

Connector pin D is internally connected via the collectoremitter path of a NPN transistor to the negative potential of output 1. U_D < 0.4 V (logic low) corresponds to a monitored voltage level (U_i and/or U_{o1}) > U_t + U_h . The current I_D through the open collector should not exceed 20 mA. The NPN output is not protected against external overvoltages. U_D should not exceed 40 V.

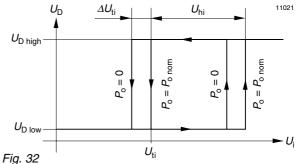
$U_{\rm i},U_{\rm o1}$ status	D output, U _D		
$U_{\rm i}$ or $U_{\rm o1} < U_{\rm t}$	high, H, $I_D \le 25 \mu A$ at $U_D = 40 \text{ V}$		
$U_{\rm i}$ and $U_{\rm o1} > U_{\rm t} + U_{\rm h}$	low, L, $U_D \le 0.4 \text{ V}$ at $I_D = 20 \text{ mA}$		

11007 Vo1+ D U_D Vo1-

Fig. 31 Option D5...DD: NPN output, U₀₁ ≤ 40 V, I_D ≤ 20 mA

Table 18: D-output logic signals

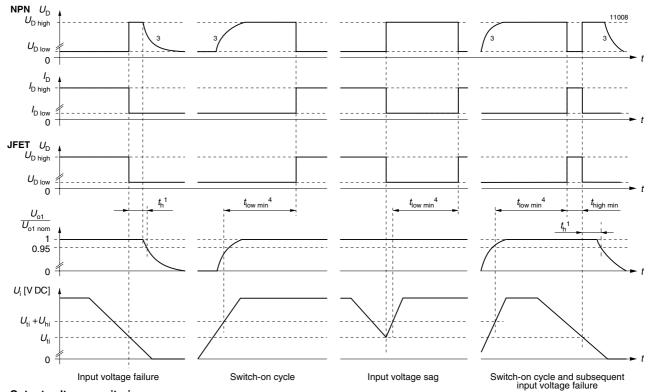
Version of D	Version of D $U_i < U_t \text{ resp. } U_o < U_t$		Configuration	
D1, D2, D3, D4, D0	low	high	JFET	
D5, D6, D7, D8, D9, DD	high	low	NPN	

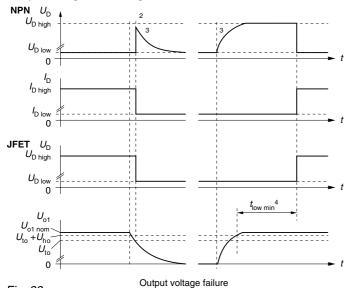

 $^{^{2}}$ Fixed value tracking if U_{01} is adjusted via R-input, option P or sense lines.

³ The threshold level permanently adjusted according to customer specification ±2% at 25°C. Any value within the specified range is basically possible but causes a special type designation in addition to the standard option designations (D0/D9 respectively)!

⁴ Adjusted at I_{o nom}

Threshold tolerances and hysteresis:


If $U_{\rm i}$ is monitored, the internal input voltage after the input filter is measured. Consequently this voltage differs from the voltage at the connector pins by the voltage drop $\Delta U_{\rm ti}$ across the input filter. The threshold levels of the D0 and D9 options are factory adjusted at nominal output current $I_{\rm o\,nom}$ and at $T_{\rm A}=25\,^{\circ}{\rm C}$. The value of $\Delta U_{\rm ti}$ depends upon the input voltage range (CK, DK, ..), threshold level $U_{\rm t}$, temperature and input current. The input current is a function of the input voltage and the output power.


Prig. 32 Definition of U_{ti} , ΔU_{ti} and ΔU_{hi} (JFET output)

D-signal with respect to input and output voltage versus time:

Input voltage monitoring

Output voltage monitoring

Relationship between U_i , U_{o1} , U_D , $U_{o1}/U_{o nom}$ versus time

- ¹ Hold-up time see section Electrical Input Data
- ² With output voltage monitoring, hold-up time $t_h = 0$.
- ³ The signal will remain high if the D output is connected to an external source.
- 4 $t_{\text{low min}} = 100...170 \text{ ms, typically } 130 \text{ ms.}$

V ACFAIL signal (VME)

Available for units with $U_{01} = 5.1 \text{ V}$.

This option defines an undervoltage monitoring circuit for the input or input and main output voltage ($U_{01 \text{ nom}} = 5.1 \text{ V}$ only) equivalent to option D and generates an ACFAIL signal (V signal) which conforms to the VME standard.

The low state level of the ACFAIL signal is specified at a sink current of $I_V \le 48$ mA to $U_V \le 0.6$ V (open-collector output of a NPN transistor). The pull-up resistor feeding the open-collector output should be placed on the VME back plane.

After the ACFAIL signal has gone low, the VME standard requires a hold-up time $t_{\rm h}$ of at least 4 ms before the 5.1 V output drops to 4.875 V when the output is fully loaded. This hold-up time $t_{\rm h}$ is provided by the internal input capacitance. Consequently the working input voltage and the threshold level $U_{\rm ti}$ should be adequately above the minimum input voltage $U_{\rm i}$ min of the converter so that enough energy is remaining in the input capacitance. If the input voltage is below the required level, an external hold-up capacitor ($C_{\rm i}$ ext) should be added.

Formula for threshold level for desired value of t_h :

$$U_{ti} = \sqrt{\frac{2 \cdot P_{o} \cdot (t_{h} + 0.3 \text{ ms}) \cdot 100}{C_{i \text{ min}} \cdot \eta} + U_{i \text{ min}}^{2}}$$

Formula for the external input capacitor:

$$C_{\text{i ext}} = \frac{2 \cdot P_{\text{o}} \cdot (t_{\text{h}} + 0.3 \text{ ms}) \cdot 100}{\eta \cdot (U_{\text{ti}}^2 - U_{\text{i min}}^2)} - C_{\text{i min}}$$

where as:

 $C_{\text{i min}}$ = internal input capacitance [mF] $C_{\text{i ext}}$ = external input capacitance [mF]

 P_{o} = output power [W] η = efficiency [%] t_{h} = hold-up time [ms]

 $U_{i \min} = \min \min voltage [V]^1$

 U_{ti} = threshold level [V]

¹ Min. input voltage according to *Electrical Input Data*. For output voltages $U_0 > U_{0 \text{ nom}}$, the minimum input voltage increases proportionally to $U_0/U_{0 \text{ nom}}$.

Remarks:

Option V2 and V3 can be adjusted by potentiometer to a threshold level between $U_{\rm i\ min}$ and $U_{\rm i\ max}$. A decoupling diode should be connected in series with the input of AK...FK converters to avoid the input capacitance discharging through other loads connected to the same source voltage.

Table 19: Available internal input capacitance and factory potentiometer setting of Uti with resulting hold-up time

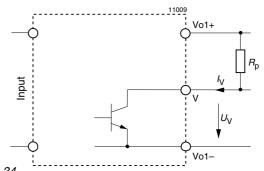
Types	AK	ВК	FK	СК	DK	EK	Unit
$C_{\text{i min}}$	0.83	0.3	1.2	0.66	0.26	0.21	mF
<i>U</i> t i	9.5	19.5	39	39	61	97	V DC
<i>t</i> _h	0.1	0.1	3.4	1.1	1.1	2.7	ms

Option V operates independently of the built-in input undervoltage lock-out circuit. A logic "low" signal is generated at pin 20 as soon as one of the monitored voltages drops below the preselected threshold level $U_{\rm t}$. The return for this signal is Vo1–. The V output recovers when the monitored

voltage(s) exceed(s) $U_{t} + U_{h}$. The threshold level U_{ti} is either adjustable by potentiometer, accessible through a hole in the front cover, or adjusted during manufacture to a determined customer specified value.

Versions V0, V2 and V3 are available as shown below.

Table 20: Undervoltage monitor functions

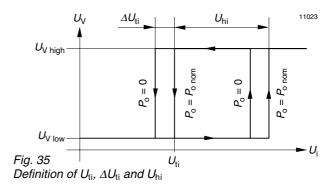

V output (VME compatible)	Monitoring		Minimum adjustment range of threshold level $U_{\rm t}$		Typical hysteresis U_h [% of U_t] for $U_{t min}U_{t max}$	
	U _i	U _{o1}	U_{ti}	U_{to}	U_{hi}	U_{ho}
V2	yes	no	U _{i min} U _{i max} ¹	-	3.40.4	_
V3	yes	yes	<i>U</i> _{i min} <i>U</i> _{i max} ¹	0.950.985 <i>U</i> _{o1} ²	3.40.4	"0"
V0	yes	no	<i>U</i> _{i min} <i>U</i> _{i max} ^{3 4}	_	3.40.4	_
	yes	yes	<i>U</i> _{i min} <i>U</i> _{i max} ^{3 4}	0.950.985 U _{o1} ²	3.40.4	"0"

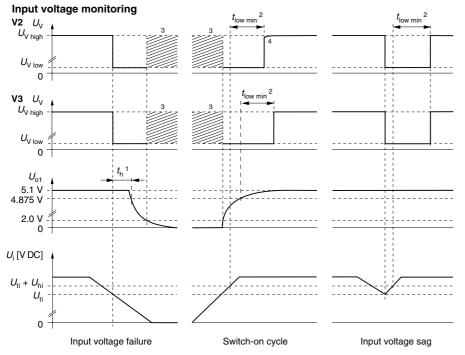
¹ Threshold level adjustable by potentiometer. ² Fixed value between 95% and 98.5% of U_{01} (tracking). ³ Adjusted at $I_{0 \text{ nom}}$.

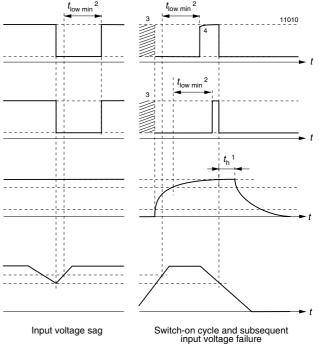
V output (V0, V2, V3):

Connector pin V is internally connected to the open collector of a NPN transistor. The emitter is connected to the negative potential of output 1. $U_{\rm V} \le$ 0.6 V (logic low) corresponds to a monitored voltage level ($U_{\rm i}$ and/or $U_{\rm o1}$) < $U_{\rm t}$. The current $I_{\rm V}$ through the open collector should not exceed 50 mA. The NPN output is not protected against external overvoltages. $U_{\rm V}$ should not exceed 60 V.

U _i , U _{o1} status	V output, U _V
$U_{\rm i}$ or $U_{\rm o1} < U_{\rm t}$	low, L, $U_{V} \le 0.6 \text{ V}$ at $I_{V} = 50 \text{ mA}$
$U_{\rm i}$ and $U_{\rm o1} > U_{\rm t} + U_{\rm h}$	high, H, $I_V \le 25 \mu\text{A}$ at $U_V = 5.1 \text{V}$




Cutput configuration of options V0, V2 and V3


⁴ Fixed value, resistor-adjusted (±2% at 25°C) acc. to customer's specifications; individual type number is determined by Power-One.

Threshold tolerances and hysteresis:

If $U_{\rm i}$ is monitored, the internal input voltage is measured after the input filter. Consequently this voltage differs from the voltage at the connector pins by the voltage drop $\Delta U_{\rm ti}$ across the input filter. The threshold level of option V0 is adjusted during manufacture at $I_{\rm o\ nom}$ and $T_{\rm A}=25\,^{\circ}{\rm C}$. The value of $\Delta U_{\rm ti}$ depends upon the input voltage range (AK, BK, ...), threshold level $U_{\rm t}$, temperature and input current. The input current is a function of input voltage and output power.

Output voltage monitoring

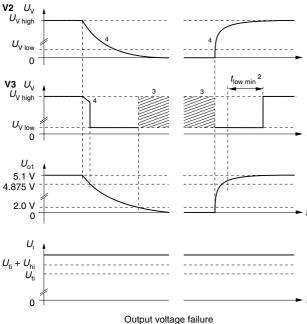


Fig. 36 Relationship between U_i , U_{o1} , U_V , I_V and $U_{o1}/U_{o\;nom}$ versus time.

- ¹ VME request: minimum 4 ms
- 2 $t_{\text{low min}} = 40...200 \text{ ms}$, typically 80 ms
- 3 U_V level not defined at $U_{01} < 2.0 \text{ V}$
- ⁴ The V signal drops simultaneously with the output voltage. If the pull-up resistor $R_{\rm P}$ is connected to Vo1+. The V signal remains high if $R_{\rm P}$ is connected to an external source.

B1/B2 Cooling Plate (see: Mechanical Data)

Where a cooling surface is available, we recommend the use of a cooling plate (option B1) instead of the standard heatsink. The mounting system should ensure sufficient cooling capacity to guarantee that the maximum case temperature $T_{\text{C max}}$ is not exceeded. The cooling capacity is calculated by:

$$P_{\text{Loss}} = \frac{(100\% - \eta)}{\eta} \; (U_0 \bullet I_0)$$

Efficiency η see Type survey

Elongated case for 220 mm rack depth: Option B2

Accessories

A variety of electrical and mechanical accessories are available including:

- Front panels for 19" rack mounting, Schroff and Intermas systems.
- Mating H15/H15 S4 connectors with screw, solder, faston or press-fit terminals.
- Connector retention facilities.
- Code key system for connector coding.
- Chassis mounting plates for mounting the 19" cassette to a chassis/wall where only frontal access is given.
- Universal mounting bracket for DIN-rail or chassis mounting.

For more detailed information please refer to: *Accessory Products*.

Front panels

H15 female connector, code key system

Universal mounting bracket for DIN-rail mounting.

Mounting plate (option B1 essential), connector retention clips