Product Preview # 64K x 18 Bit BurstRAM™ Synchronous Fast Static RAM With Burst Counter and Self-Timed Write The MCM67B618A is a 1,179,648 bit synchronous fast static random access memory designed to provide a burstable, high–performance, secondary cache for the i486™ and Pentium™ microprocessors. It is organized as 65,536 words of 18 bits, fabricated with Motorola's high–performance silicon–gate BiCMOS technology. The device integrates input registers, a 2–bit counter, high speed SRAM, and high drive capability outputs onto a single monolithic circuit for reduced parts count implementation of cache data RAM applications. Synchronous design allows precise cycle control with the use of an external clock (K). BiCMOS circuitry reduces the overall power consumption of the integrated functions for greater reliability. Addresses (A0 – A15), data inputs (D0 – D17), and all control signals except output enable (\overline{G}) are clock (K) controlled through positive–edge–triggered noninverting registers. Bursts can be initiated with either address status processor (\overline{ADSP}) or address status cache controller (\overline{ADSO}) input pins. Subsequent burst addresses can be generated internally by the MCM67B618A (burst sequence imitates that of the i486 and Pentium) and controlled by the burst address advance (\overline{ADV}) input pin. The following pages provide more detailed information on burst controls. Write cycles are internally self-timed and are initiated by the rising edge of the clock (K) input. This feature eliminates complex off-chip write pulse generation and provides increased flexibility for incoming signals. Dual write enables (\overline{LW} and \overline{UW}) are provided to allow individually writeable bytes. \overline{LW} controls DQ0 – DQ8 (the lower bits), while \overline{LW} controls DQ9 – DQ17 (the upper bits). This device is ideally suited for systems that require wide data bus widths and cache memory. See Figure 2 for applications information. - Single 5 V ± 5% Power Supply - Fast Access Times: 8.5/9/10/12 ns Max - · Byte Writeable via Dual Write Enables - · Internal Input Registers (Address, Data, Control) - · Internally Self-Timed Write Cycle - . ADSP, ADSC, and ADV Burst Control Pins - Asynchronous Output Enable Controlled Three-State Outputs - · Common Data Inputs and Data Outputs - 3.3 V I/O Compatible - · High Board Density 52-Lead PLCC Package - 119 Bump, 50 mil (1.27 mm) Pitch, 14 mm x 22 mm Plastic Ball Grid Array (PBGA) Package BurstRAM is a trademark of Motorola, Inc. i486 and Pentium are trademarks of Intel Corp. This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. ## MCM67B618A 4 #### FN PACKAGE PLASTIC #### PIN NAMES | A0 – A15 Address Inputs | |------------------------------------| | K Clock | | ADV Burst Address Advance | | LW Lower Byte Write Enable | | UW Upper Byte Write Enable | | ADSC Controller Address Status | | ADSP Processor Address Status | | E Chip Enable | | G Output Enable | | DQ0 - DQ17 Data Input/Output | | V _{CC} + 5 V Power Supply | | V _{SS} Ground | | NC No Connection | All power supply and ground pins must be connected for proper operation of the device. # TOP VIEW ZP PACKAGE 119 BUMP PBGA | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | |---|---------------------------------------|--------------------------------------|---|--|--|--|---|---| | Α | O NC | O
A7 | O
A6 | O
ADSP | O
A9 | O
A10 | O
NC | ` | | В | O
NC | O
NC | O
NC | O
ADSC | O
NC | O
NC | O
NC | | | С | O
NC | O
A11 | O
A2 | O
VCC | O
A8 | O
A12 | O
NC | | | D | O
NC
O
DQ9
O
NC | O
A11
O
NC | O
VSS | Ŏ
NC | o
V _{SS} | O
DQ8 | O
NC | | | Ε | O
NC | O DQ10 O NC O DQ11 O NC | o
Vss | <u>e</u> | o
Vss | O
NC | O
DQ7 | | | F | Vcc | O
NC | v_{SS}^{O} | o
G | V _{SS} | O
DQ6 | v _{CC} | | | G | O
NC | O
DQ11 | UW | ADV | o
V _{SS} | O
NC | O
DQ5 | | | Н | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | NC
NC | 0 2 0 9 5 0 5 0 0 5 0 0 5 0 5 0 5 0 5 0 5 0 | NC
NC | V _{SS} | O A12
O DQ8
O NC O DQ6
O NC O DQ4
O NC O DQ2
O NC O DQ1
O NC | NC
NC | | | J | VCC | O VCC O DQ13 O NC O DQ15 O NC O DQ17 | NC
NC | V _C C | NC | Vcc | V _{CC} | | | K | O
NC | DQ13 | V_{SS} | K | v_{SS} | O
NC | DQ3 | | | L | DQ14 | NC | VSS | NC | 0
LW | O
DQ2 | O
NC | | | М | VCC | DQ15 | VSS | NC | VSS | NC
NC | VCC | | | N | DQ16 | NC | VSS | A1 | V _{SS} | DQ1 | NC | | | P | | | VSS | A0 | V _{SS} | NC | DQ0 | | | R | NC
NC | O
A4 | NC
O | V _{CC} | NC
NC | O
A14 | NC
NC | | | T | 020202 | A4
O
A5 | A3 | 0 \(\frac{1}{100} \) \ | O # O 95 O 95 O 95 O 95 O 95 O 05 O 95 O 05 O 95 O 9 | O
A14
O
A13
O
NC | 0 NC 0 NC 0 DD 0 VC 0 DD 0 NC 0 VC 0 DD 0 NC 0 VC 0 NC 0 NC 0 NC 0 NC 0 NC 0 NC | | | U | \ NC | O
NC | O
NC | NC | NC | NC | NC | / | Not to Scale #### **BLOCK DIAGRAM** (See Note) NOTE: All registers are positive-edge triggered. The ADSC or ADSP signals control the duration of the burst and the start of the next burst. When ADSP is sampled low, any ongoing burst is interrupted and a read (independent of W and ADSC) is performed using the new external address. Alternatively, an ADSP-initiated two cycle WRITE can be performed by asserting ADSP and a valid address on the first cycle, then negating both ADSP and ADSC and asserting LW and/or UW with valid data on the second cycle (see Single Write Cycle in WRITE CYCLES timing diagram). When ADSC is sampled low (and ADSP is sampled high), any ongoing burst is interrupted and a read or write (dependent on \overline{W}) is performed using the new external address. Chip enable (\overline{E}) is sampled only when a new base address is loaded. After the first cycle of the burst, ADV controls subsequent burst cycles. When ADV is sampled low, the internal address is advanced prior to the operation. When ADV is sampled high, the internal address is not advanced, thus inserting a wait state into the burst sequence accesses. Upon completion of a burst, the address will wrap around to its initial state. See BURST SEQUENCE TABLE. Write refers to either or both byte write enables (LW, UW). #### BURST SEQUENCE TABLE (See Note) External Address 1st Burst Address 2nd Burst Address 3rd Burst Address | A15 - A2 | A1 | A0 | |----------|----|------------| | A15 - A2 | A1 | Ā0 | | A15 ~ A2 | Āī | A 0 | | A15 – A2 | A1 | ĀŌ | NOTE: The burst wraps around to its initial state upon completion. MCM67B618A MOTOROLA FAST SRAM #### SYNCHRONOUS TRUTH TABLE (See Notes 1, 2, and 3) | Ē | ADSP | ADSC | ADV | UW or LW | к | Address Used | Operation | |---|------|------|-----|----------|-----|------------------|-----------------------------| | Н | L | Х | Х | Х | L-H | N/A | Deselected | | Н | Х | L | × | Х | L-H | N/A | Deselected | | L | L | Х | Х | Х | L–H | External Address | Read Cycle, Begin Burst | | L | Н | L | X | L | L-H | External Address | Write Cycle, Begin Burst | | L | Н | L | X | Н | L–H | External Address | Read Cycle, Begin Burst | | Х | Н | Н | L | L | L-H | Next Address | Write Cycle, Continue Burst | | X | Н | Н | L | Н | L-H | Next Address | Read Cycle, Continue Burst | | Х | Н | Н | Н | L | L-H | Current Address | Write Cycle, Suspend Burst | | Х | Н | Н | Н | Н | L–H | Current Address | Read Cycle, Suspend Burst | #### NOTES: - 1. X means Don't Care. - 2. All inputs except \overline{G} must meet setup and hold times for the low-to-high transition of clock (K). - 3. Wait states are inserted by suspending burst. #### ASYNCHRONOUS TRUTH TABLE (See Notes 1 and 2) | Operation | G | I/O Status | |------------|---|------------------| | Read | L | Data Out | | Read | Н | High-Z | | Write | X | High-Z — Data In | | Deselected | × | HighZ | #### NOTES: - 1. X means Don't Care. - 2. For a write operation following a read operation, \overline{G} must be high before the input data required setup time and held high through the input data hold time. #### ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to $V_{SS} = 0 \text{ V}$) | Rating | Symbol | Value | Unit | |---|------------------------------------|--------------------------------|------| | Power Supply Voltage | Vcc | - 0.5 to + 7.0 | V | | Voltage Relative to V _{SS} for Any
Pin Except V _{CC} | V _{in} , V _{out} | - 0.5 to V _{CC} + 0.5 | ٧ | | Output Current (per I/O) | lout | ± 30 | mA | | Power Dissipation | PD | 1.6 | w | | Temperature Under Bias | Tbias | 10 to + 85 | °C | | Operating Temperature | TA | 0 to +70 | °C | | Storage Temperature | T _{stg} | - 55 to + 125 | °C | NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. This device contains circuitry that will ensure the output devices are in High–Z at power up. #### DC OPERATING CONDITIONS AND CHARACTERISTICS (V_{CC} = $5.0 \text{ V} \pm 5\%$, T_A = $0 \text{ to} + 70^{\circ}\text{C}$, Unless Otherwise Noted) #### RECOMMENDED OPERATING CONDITIONS (Voltages referenced to VSS = 0 V) | Parameter | Symbol | Min | Max | Unit | |--|--------|--------|-------------------------|------| | Supply Voltage (Operating Voltage Range) | Vcc | 4.75 | 5.25 | V | | Input High Voltage | VIH | 2.2 | V _{CC} + 0.3** | ν | | Input Low Voltage | VIL | - 0.5* | 0.8 | ٧ | #### DC CHARACTERISTICS AND SUPPLY CURRENTS | Parameter | Symbol | Min | Max | Unit | |---|--------------------------------------|-----|--------------------------|------| | Input Leakage Current (All Inputs, V _{In} = 0 to V _{CC}) | lkg(i) | _ | ± 1.0 | μА | | Output Leakage Current (G = V _{IH}) | llkg(O) | | ± 1.0 | μА | | AC Supply Current (\overline{G} = V _{IH} , \overline{E} = V _{IL} , I _{Out} = 0 mA, All Inputs = V _{IL} or V _{IH} , V _{IL} = 0.0 V and V _{IH} \geq 3.0 V, Cycle Time \geq t _{KHKH} min) | ICCA8.5
ICCA9
ICCA10
ICCA12 | _ | 290
275
265
250 | mA | | AC Standby Current (\overline{E} = V _{IH} , I _{OUt} = 0 mA, All Inputs = V _{IL} and V _{IH} , V _{IL} = 0.0 V and V _{IH} \geq 3.0 V, Cycle Time \geq t _{KHKH} min) | ^I SB1 | | 95 | mA | | Output Low Voltage (I _{OL} = + 8.0 mA) | VOL | _ | 0.4 | ٧ | | Output High Voltage (I _{OH} = - 4.0 mA) | Voн | 2.4 | 3.3 | ٧ | NOTE: Good decoupling of the local power supply should always be used. DC characteristics are guaranteed for all possible i486 and Pentium bus cycles. #### CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested) | Parameter | Symbol | Тур | Max | Unit | |--|------------------|-----|-----|------| | Input Capacitance (All Pins Except DQ0 – DQ17) | C _{in} | 4 | 5 | pF | | Input/Output Capacitance (DQ0 - DQ17) | C _{I/O} | 6 | 8 | ρF | MOTOROLA FAST SRAM $^{^*}$ V $_{|L}$ (min) = - 0.5 V dc; V $_{|L}$ (min) = - 2.0 V ac (pulse width \leq 20.0 ns) for I \leq 20.0 mA. * V $_{|H}$ (max) = V $_{CC}$ + 0.3 V dc; V $_{|H}$ (max) = V $_{CC}$ + 2.0 V ac (pulse width \leq 20.0 ns) for I \leq 20.0 mA. #### AC OPERATING CONDITIONS AND CHARACTERISTICS $(V_{CC} = 5.0 \text{ V} \pm 5\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$ | Input Timing Measurement Reference Level 1.5 V | Output Timing Reference Level | |--|--| | Input Pulse Levels 0 to 3.0 V | Output Load See Figure 1A Unless Otherwise Noted | | Input Rise/Fall Time | | #### READ/WRITE CYCLE TIMING (See Notes 1, 2, 3, and 4) | | | MCM67B618A-8.5 MCM67B618A-9 I | | MCM67E | 618A-10 | MCM67E | 3618A-12 | | | | | |--|--|-----------------------------------|-----|--------|---------|--------|----------|-----|-----|------|-------| | Parameter | Symbol | Min | Max | Min | Max | Min | Max | Min | Max | Unit | Notes | | Cycle Time | tkHKH | 13.3 | _ | 15 | | 16.6 | | 20 | _ | ns | | | Clock Access Time | tkhqv | | 8.5 | _ | 9 | _ | 10 | | 12 | пѕ | 5 | | Output Enable to Output
Valid | tGLQV | | 5 | - | 5 | _ | 5 | | 6 | ns | | | Clock High to Output
Active | tkHQX1 | 6 | _ | 6 | - | 6 | | 6 | _ | ns | | | Clock High to Output
Change | tKHQX2 | 3 | | 3 | _ | 3 | _ | 3 | | ns | | | Output Enable to Output
Active | ^t GLQX | 0 | | 0 | - | 0 | _ | 0 | _ | ns | | | Output Disable to Q
High–Z | ^t GHQZ | 2 | 6 | 2 | 6 | 2 | 7 | 2 | 7 | ns | 6 | | Clock High to Q High-Z | tkHQZ | | 6 | - | 6 | - | 6 | | 6 | ns | | | Clock High Pulse Width | †KHKL | 4 5 | _ | 5 | _ | 5 | _ | 6 | | ns | | | Clock Low Pulse Width | ^t KLKH | 4 5 | _ | 5 | reserve | 5 | | 6 | _ | ns | | | Setup Times: Address
Address Status
Data In
Write
Address Advance
Chip Enable | tavkh
tadsvkh
tdvkh
twvkh
tadvvkh
tevkh | 25 | | 2.5 | _ | 2.5 | _ | 2.5 | - | ns | 7 | | Hold Times: Address
Address Status
Data In
Write
Address Advance
Chip Enable | tkhax
tkhadsx
tkhdx
tkhwx
tkhadvx
tkhadvx | 0 5 | _ | 0.5 | _ | 0.5 | _ | 0.5 | | ns | 7 | #### NOTES: - 1. In setup and hold times, W (write) refers to either one or both byte write enables \overline{LW} and \overline{UW} . - 2. A read cycle is defined by UW and UW high or ADSP low for the setup and hold times. A write cycle is defined by UW or UW low and ADSP high for the setup and hold times. - 3. All read and write cycle timings are referenced from K or G. - 4. \overline{G} is a don't care when \overline{UW} or \overline{LW} is sampled low. - 5. Maximum access times are guaranteed for all possible i486 and Pentium external bus cycles. - 6. Transition is measured ± 500 mV from steady-state voltage with load of Figure 1B. This parameter is sampled rather than 100% tested. At any given voltage and temperature, t_{KHQZ} max is less than t_{KHQZ1} min for a given device and from device to device. - 7. This is a synchronous device. All addresses must meet the specified setup and hold times for ALL rising edges of K whenever ADSP or ADSC is low, and the chip is selected. All other synchronous inputs must meet the specified setup and hold times for ALL rising edges of K when the chip is enabled. Chip enable must be valid at each rising edge of clock for the device (when ADSP or ADSC is low) to remain enabled. Figure 1A Figure 1B NOTE: Q(A2) represents the first output data from the base address A2; Q(A2 + 1) represents the next output data in the burst sequence with A2 as the base address. #### COMBINATION READ/WRITE CYCLE (E low, ADSC high) #### **APPLICATION EXAMPLE** 512K Byte Burstable, Secondary Cache Using Four MCM67B618AFN9s with a 66 MHz Pentium Figure 2 # ORDERING INFORMATION (Order by Full Part Number) Full Part Numbers — MCM67B618AFN8.5 MCM67B618AFN9 MCM67B618AFN10 MCM67B618AFN12 MCM67B618AZP8.5 MCM67B618AZP9 MCM67B618AZP10 MCM67B618AZP12