512K (64K x 8) **CMOS EPROM** Low Voltage OTP #### **Features** - Fast Read Access Time 90 ns - Dual Voltage Range Operation Low Voltage Power Supply Range, 3.0V to 3.6V or Standard 5V ± 10% Supply Range - Compatible with JEDEC Standard AT27C512 - Low Power CMOS Operation 20 μ A max. (less than 1 μ A typical) Standby for V_{CC} = 3.6V 29 mW max. Active at 5 MHz for V_{CC} = 3.6V - JEDEC Standard Packages - 32-Lead PLCC - 28-Lead 330-mil SOIC - 28-Lead TSOP - High Reliability CMOS Technology - 2,000V ESD Protection - 200 mA Latchup Immunity - Rapid[™] Programming Algorithm 100 µs/byte (typical) - CMOS and TTL Compatible Inputs and Outputs - JEDEC Standard for LVTTL - Integrated Product Identification Code - Commercial and Industrial Temperature Ranges #### Description The AT27LV512A is a high performance, low power, low voltage 524,288 bit one-time programmable read only memory (OTP EPROM) organized as 64K by 8 bits. It requires only one supply in the range of 3.0V to 3.6V in normal read mode operation, making it ideal for fast, portable systems using battery power. Atmel's innovative design techniques provide fast speeds that rival 5V parts while keeping the low power consumption of a 3.3V supply. At V_{CC} = 3.0V, any byte can be accessed in less than 90 ns. With a typical power dissipation of only 18 mW at 5 MHz and V_{CC} = 3.3V, the AT27LV512A consumes less than one fifth the power of a standard 5V EPROM. (continued) ## Pin Configurations | Pin Name | Function | |--------------------|---------------| | A0 - A15 | Addresses | | O0 - O7 | Outputs | | CE | Chip Enable | | OE/V _{PP} | Output Enable | | NC | No Connect | Note: PLCC Package Pins 1 and 17 are DON'T CONNECT. ## SOIC Top View | A15 (| 1 | 28 | نـ | VCC | |-------|----|----|----|--------| | A12 🤇 | 2 | 27 | ė | A14 | | A7 - | 3 | 26 | ٦, | A13 | | A8 F | 4 | 25 | | 8A | | A5 🤄 | 5 | 24 | L | A9 | | A4 : | 6 | 23 | ł | A11 | | A3 ! | 7 | 22 | 1 | OE/VPP | | A2 1 | 8 | 21 | 1 | A10 | | A1 1 | 9 | 20 | n | CE | | AO L | 10 | 19 | ļ1 | 07 | | ∞ ∟ | 11 | 18 | Ļ1 | O6 | | 01 L | 12 | 17 | Ц | O5 | | O2 | 13 | 16 | ш | 04 | | GND | 14 | 15 | ļ1 | 03 | | | 1 | | | | **TSOP Top View** | | | | Type 1 | | | | | | |--|----------------|----------------------|--------|----------------------|---------------------|-------|-----------------------|-----------------| | OE/VPP
A11
A9
A13
A14
VCC | 23
25
27 | 22
24
26
28 | .,,,, | 21
19
17
15 | 20
18
16 | 1000 | CE
O6
O4 | A16
O7
O5 | | A15
A12
A6
A6
A4
A3 | 3
5
7 | 2
4
6 | | 13
11
9 | 14
12
10
8 | anana | GND
O1
A0
A2 | O2
O0
A1 | 0607A #### **Description** (Continued) Standby mode supply current is typically less than 1 μA at 3.3V. The AT27LV512A is available in industry standard JEDEC-approved one-time programmable (OTP) plastic PLCC, SOIC, and TSOP packages. All devices feature two-line control (CE, OE) to give designers the flexibility to prevent bus contention. The AT27LV512A operating with V_{CC} at 3.0V produces TTL level outputs that are compatible with standard TTL logic devices operating at $V_{CC} = 5.0V$. The device is also capable of standard 5-volt operation making it ideally suited for dual supply range systems or card products that are pluggable in both 3-volt and 5-volt hosts. Atmel's AT27LV512A has additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 μs/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages. The AT27LV512A programs exactly the same way as a standard 5V AT27C512R and uses the same programming equipment. #### **System Considerations** Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed data sheet limits, resulting in device non-conformance. At a minimum, a 0.1 µF high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V_{CC} and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 µF bulk electrolytic capacitor should be utilized, again connected between the V_{CC} and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array. ## **Block Diagram** ## **Absolute Maximum Ratings*** | Temperature Under Bias40°C to +85°C | |--| | Storage Temperature65°C to +125°C | | Voltage on Any Pin with Respect to Ground2.0V to +7.0V (1) | | Voltage on A9 with Respect to Ground2.0V to +14.0V (1) | | V _{PP} Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾ | *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: 1. Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75V dc which may be exceeded if certain precautions are observed (consult application notes) and which may overshoot to +7.0 volts for pulses of less than 20 ns. ## **Operating Modes** | Mode \ Pin | CE | OE/V _{PP} | Ai | Vcc | Outputs | |-------------------------------|-----|--------------------|---|--------------------------------|------------------------| | Read (2) | VıL | VIL | Ai | Vcc (2) | Dout | | Output Disable (2) | VìL | ViH | X ⁽¹⁾ | Vcc (2) | High Z | | Standby (2) | ViH | Х | X | Vcc (2) | High Z | | Rapid Program (3) | VIL | Vpp | Ai | Vcc (3) | DIN | | PGM Inhibit (3) | ViH | Vpp | х | Vcc (3) | High Z | | Product Identification (3, 5) | VIL | VIL | A9 = V _H ⁽⁴⁾
A0 = V _{IH} or V _{IL}
A1 - A15 = V _{IL} | V _{CC} ⁽³⁾ | Identification
Code | Notes: 1. X can be V_{IL} or V_{IH}. - 2. Read, output disable, and standby modes require, 3.0V ≤ V_{CC} ≤ 3.6V, or 4.5V ≤ V_{CC} ≤ 5.5V. - Refer to Programming Characteristics. Programming modes require V_{CC} = 6.5V. - 4. $V_H = 12.0 \pm 0.5 V$. - Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte. ## DC and AC Operating Conditions for Read Operation | | | | AT27LV512A | <u> </u> | |------------------------------|------|--------------|--------------|--------------| | | | -90 | -12 | -15 | | Operating Temperature (Case) | Com. | 0°C - 70°C | 0°C - 70°C | 0°C - 70°C | | | Ind. | -40°C - 85°C | -40°C - 85°C | -40°C - 85°C | | Vcc Power Supply | | 3.0V to 3.6V | 3.0V to 3.6V | 3.0V to 3.6V | | VCC Fower Supply | | 5V ± 10% | 5V ± 10% | 5V ± 10% | ## DC and Operating Characteristics for Read Operation | Symbol | Parameter | Condition | Min | Max | Units | |---------------------------------|---|---|------|-----------------------|-------| | $V_{CC} = 3$ | .0V to 3.6V | | | | | | ILI | Input Load Current | V _{IN} = 0V to V _{CC} | | ±1 | μA | | llo | Output Leakage Current | Vout = 0V to Vcc | | ±5 | μА | | IPP1 (2) | V _{PP} ⁽¹⁾ Read/Standby Current | V _{PP} = V _{CC} | | 10 | μA | | I _{SB} | V _{CC} ⁽¹⁾ Standby Current | I _{SB1} (CMOS), $\overline{CE} = V_{CC} \pm 0.3V$ | | 20 | μΑ | | 130 | | I _{SB2} (TTL), $\overline{CE} = 2.0$ to V _{CC} + 0.5V | | 100 | μA | | lcc | Vcc Active Current | $\frac{f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA},}{CE = V_{IL}}$ | | 8 | mA | | VIL | Input Low Voltage | | -0.6 | 0.8 | ٧ | | VIH | Input High Voltage | | 2.0 | Vcc + 0 .5 | ٧ | | VoL | Output Low Voltage | loL = 2.0 mA | | 0.4 | ٧ | | Vон | Output High Voltage | I _{OH} = -2.0 mA | 2.4 | _ | ٧ | | V _{CC} = 4 | .5V to 5.5V | | | | | | lu | Input Load Current | V _{IN} = 0V to V _{CC} | | ±1 | μA | | ILO | Output Leakage Current | Vout = 0V to Vcc | | ±5 | μА | | I _{PP1} ⁽²⁾ | V _{PP} ⁽¹⁾ Read/Standby Current | VPP = VCC | | 10 | μА | | ISB | V _{CC} ⁽¹⁾ Standby Current | I _{SB1} (CMOS), $\overline{CE} = V_{CC} \pm 0.3V$ | | 100 | μА | | ספי | | I _{SB2} (TTL), \overline{CE} = 2.0 to V _{CC} + 0.5V | | 1 | mA | | Icc | V _{CC} Active Current | $f = 5 \text{ MHz}$, $I_{OUT} = 0 \text{ mA}$, $CE = V_{IL}$ | | 20 | mA | | VIL | Input Low Voltage | | -0.6 | 0.8 | ٧ | | ViH | Input High Voltage | | 2.0 | V _{CC} + 0.5 | V | | Vol | Output Low Voltage | I _{OL} = 2.1 mA | | 0.4 | ٧ | | Vон | Output High Voltage | loн = -400 µA | 2.4 | | ٧ | Note: 1. V_{CC} must be applied simultaneously with or before $\overline{\text{OE}}/\text{V}_{PP}$, and removed simultaneously with or after $\overline{\text{OE}}/\text{V}_{PP}$. ## AC Characteristics for Read Operation ($V_{CC} = 3.0V$ to 3.6V and 4.5V to 5.5V) | | | | -(| 90 | _ | 12 | | 15 | | |------------------------|---|---|-----|-----|-----|-----|-----|-----|-------| | Symbol | Parameter | Condition | Min | Мах | Min | Max | Min | Max | Units | | tacc (3) | Address to Output Delay | $\overline{CE} = \overline{OE}/V_{PP} = V_{IL}$ | | 90 | | 120 | | 150 | ns | | tcE (2) | CE to Output Delay | OE/Vpp = VIL | | 90 | | 120 | | 150 | ns | | toE (2, 3) | OE/V _{PP} to Output Delay | CE = VIL | | 50 | | 50 | | 60 | ns | | t _{DF} (4, 5) | OE/VPP or CE High to Output Float, whichever occurred first | | | 40 | | 40 | | 50 | ns | | tон | Output Hold from Address, CE or OE/V _{PP} , whichever occurred first | | 0 | | 0 | | 0 | | ns | Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation. ## AC Waveforms for Read Operation (1) - Notes: 1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified. - 2. OE/Vpp may be delayed up to tce toe after the falling edge of CE without impact on tce. - 3. OE/Vpp may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} . - 4. This parameter is only sampled and is not 100% tested. - Output float is defined as the point when data is no longer driven. ## **Input Test Waveform and Measurement Level** # AC DRIVING LEVELS 0.45V 2.0 AC MEASUREMENT LEVEL 0.8 LEVEL tp. tr < 20 ns (10% to 90%) ## **Output Test Load** Note: CL = 100 pF including jig capacitance. ## Pin Capacitance (f = 1 MHz, T = 25°C) (1) | | Тур | Max | Units | Conditions | |------|-----|-----|-------|-----------------------| | Cin | 4 | 6 | pF | V _{IN} = 0V | | Cout | 8 | 12 | pF | V _{OUT} = 0V | Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. Notes: 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH} . 2. top and topp are characteristics of the device but must be accommodated by the programmer. ## **DC Programming Characteristics** $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25V$, $\overline{OE}/V_{PP} = 13.0 \pm 0.25V$ | | | | L | .imits | | |-----------------|---|---------------------------|------|-----------------------|-------| | Symbol | Parameter | Test Conditions | Min | Max | Units | | ILI | Input Load Current | VIN = VIL, VIH | | 10 | μА | | VIL | Input Low Level | | -0.6 | 0.8 | ٧ | | ViH | Input High Level | | 2.0 | V _{CC} + 0.5 | ٧ | | Vol | Output Low Voltage | I _{OL} = 2.1 mA | | 0.4 | ٧ | | Voh | Output High Voltage | lo _H = -400 μA | 2.4 | | ٧ | | ICC2 | V _{CC} Supply Current (Program and Verify) | | | 25 | mA | | IPP2 | OE/V _{PP} Current | CE = V _{IL} | | 25 | mA | | V _{ID} | A9 Product Identification Voltage | | 11.5 | 12.5 | ٧ | ## **AC Programming Characteristics** $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25V$, $\overline{OE}/V_{PP} = 13.0 \pm 0.25V$ | Sym- | Test Conditions* (1) | Lir | nits | | |------|--|-----|------|-------| | bol | Parameter | Min | Max | Units | | tas | Address Setup Time | 2 | | μS | | toes | OE/V _{PP} Setup Time | 2 | | μS | | toeh | OE/V _{PP} Hold Time | 2 | | μS | | tos | Data Setup Time | 2 | | μ\$ | | tan | Address Hold Time | 0 | | μS | | tDH | Data Hold Time | 2 | | μS | | tDFP | CE High to
Output Float Delay (2) | 0 | 130 | ns | | tvcs | V _{CC} Setup Time | 2 | | μS | | tpw | CE Program Pulse Width (3) | 95 | 105 | μS | | tov | Data Valid from CE (2) | | 1 | μs | | tva | OE/V _{PP} Recovery Time | 2 | | μS | | tpat | OE/Vpp Pulse Rise
Time During Programming | 50 | | ns | *AC Conditions of Test: | Input Hise and Fall Times (10% to 9 | 90%)20 ns | |-------------------------------------|---------------| | Input Pulse Levels | 0.45V to 2.4V | | Input Timing Reference Level | 0.8V to 2.0V | | Output Timing Reference Level | 0.8V to 2.0V | - Notes: 1. V_{CC} must be applied simultaneously or before OE/V_{PP} and removed simultaneously or after - 2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven -see timing diagram. - 3. Program Pulse width tolerance is 100 μ sec \pm 5%. # Atmel's 27LV512A Integrated Product Identification Code (1) | | Pins | | | | | Hex | | | | | |--------------|------|----|----|----|----|-----|----|----|----|------| | Codes | A0 | 07 | O6 | O5 | 04 | О3 | 02 | 01 | 00 | Data | | Manufacturer | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1E | | Device Type | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0D | 1. The AT27LV512A has the same Product Identification Code as the AT27C512R. Both are programming compatible. #### **Rapid Programming Algorithm** A 100 µs CE pulse width is used to program. The address is set to the first location. VCC is raised to 6.5V and OE/VPP is raised to 13.0V. Each address is first programmed with one 100 μs \overline{CE} pulse without verification. Then a verification / reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 µs pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. OE/VPP is then lowered to VIL and VCC to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails. ## Ordering Information | t _{ACC}
(ns) | Icc (mA) | | Ondania a Oada | Doubone | | | |--------------------------|----------|---------|---|-------------------|-------------------------------|--| | | Active | Standby | Ordering Code | Package | Operation Range | | | 90 | 8 | 0.02 | AT27LV512A-90JC
AT27LV512A-90RC
AT27LV512A-90TC | 32J
28R
28T | Commercial
(0°C to 70°C) | | | | 8 | 0.02 | AT27LV512A-90JI
AT27LV512A-90RI
AT27LV512A-90TI | 32J
28R
28T | Industrial
(-40°C to 85°C) | | | 120 | 8 | 0.02 | AT27LV512A-12JC
AT27LV512A-12RC
AT27LV512A-12TC | 32J
28R
28T | Commercial
(0°C to 70°C) | | | | 8 | 0.02 | AT27LV512A-12JI
AT27LV512A-12RI
AT27LV512A-12TI | 32J
28R
28T | Industrial
(-40°C to 85°C) | | | 150 | 8 | 0.02 | AT27LV512A-15JC
AT27LV512A-15RC
AT27LV512A-15TC | 32J
28R
28T | Commercial
(0°C to 70°C) | | | | 8 | 0.02 | AT27LV512A-15JI
AT27LV512A-15RI
AT27LV512A-15TI | 32J
28R
28T | Industrial
(-40°C to 85°C) | | | Package Type | | | | | |--------------|--|--|--|--| | 32J | 32 Lead, Plastic J-Leaded Chip Carrier (PLCC) | | | | | 28R | 28 Lead, 0.330" Wide, Plastic Gull Wing Small Outline (SOIC) | | | | | 28T | 28 Lead, Thin Small Outline Package (TSOP) | | | |