Octal bus transceiver with direction pin; 3-state; inverting

74LVC640

FEATURES

- Wide supply voltage range of 1.2 V to 3.6 V
- In accordance with the JEDEC standard no. 8-1A
- Flow-through pin-out architecture
- Inputs accept voltages upto 5.5 V
- CMOS low power consumption
- · Direct interface with TTL levels
- Output drive capability 50 Ω transmission lines @ 85 °C

DESCRIPTION

The 74LVC640 is a high-performance, low-power, low-voltage, Si-gate CMOS device and superior to most advanced CMOS compatible TTL families.

The 74LVC640 is an octal transceiver featuring inverting 3-state bus compatible outputs in both send and receive directions. The '640' features an output enable (OE) input for easy cascading and a send/receive (DIR) input for direction control. OE controls the outputs so that the buses are effectively isolated.

The '640' is identical to the '245' but has inverting outputs.

FUNCTION TABLE

INPUTS		INPUTS/OUTPUT			
OE	DIR	A _n	B _n		
L	L	$A = \overline{B}$	inputs		
L	Н	inputs	$B = \overline{A}$		
Н	Х	Z	Z		

H = HIGH voltage level

L = LOW voltage level

X = don't care

Z = high impedance OFF-state

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25$ °C; $t_r = t_t \le 2.5$ ns

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	propagation delay A_n to \overline{B}_n ; B_n to \overline{A}_n	C _L = 50 pF V _{CC} = 3.3 V	3.8	ns
Cı	input capacitance		3.0	pF
C _{1/O}	input/output capacitance		10	pF
C _{PD}	power dissipation capacitance per buffer	notes 1 and 2	40	pF

Notes to the quick reference data

- 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):
 - $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:
 - f_i = input frequency in MHz; C_L = output load capacity in pF; f_o = output frequency in MHz; V_{cc} = supply voltage in V;
 - $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$
- 2. The condition is $V_1 = GND$ to V_{CC} .

ORDERING INFORMATION

	PACKAGES					
TYPE NUMBER	PINS	PACKAGE	MATERIAL	CODE		
74LVC640D	20	so	plastic	SO20/SOT163A		
74LVC640DB	20	SSOP	plastic	SSOP20/SOT339		

PINNING

PIN	SYMBOL	NAME AND FUNCTION		
DIR		direction control		
2, 3, 4, 5, 6, 7, 8, 9	A ₀ to A ₇	data inputs/outputs		
10	GND	ground (0 V)		
18, 17, 16, 15, 14, 13, 12, 11	B _o to B ₇	data inputs/outputs		
19	ŌĒ	output enable input (active LOW)		
20	V _{cc}	positive supply voltage		

August 1993 3 - 80

Octal bus transceiver with direction pin; 3-state; inverting

74LVC640

74LVC640

DC CHARACTERISTICS FOR 74LVC640

For the DC characteristics see chapter "LVC family characteristics", section "Family specifications". $I_{\rm CC}$ category: MSI

AC CHARACTERISTICS FOR 74LVC640

GND = 0 V; $t_i = t_i \le 2.5 \text{ ns}$; $C_t = 50 \text{ pF}$

	PARAMETER	T	T _{amb} (°C) -40 to +85		UNIT	TEST CONDITIONS	
SYMBOL						V _{cc}	WAVEFORMS
		MIN.	TYP.	MAX.		(V)	WAVEIOIMS
t _{PHL} /t _{PLH}	propagation delay	T-	20	-		1.2	
	A_n to \overline{B}_n ;	1.5	4.5	8.0	ns	2.7	Fig. 4
	B _n to A _n	1.5	4.0	7.0		3.0 to 3.6	
t _{PZH} /t _{PZL}	3-state output enable time	_	25			1.2	
	\overline{OE} to \overline{A}_0 ;	1.5	5.3	8.5	ns	2.7	Fig. 5, 6
	OE to B	1.5	4.5	7.5		3.0 to 3.6	
tour/tour	3-state output disable time	T -	8.0	T -		1.2	
	\overline{OE} to \overline{A}_n ;	1.5	4.3	6.5	ns	III.	Fig. 5, 6
	OE to B	1.5	4.0	6.0		3.0 to 3.6	Ì

Notes: All typical values are measured at $T_{amb} = 25$ °C.

^{*} Typical values are measured at V_{cc} = 3.3 V.

AC WAVEFORMS

Notes: (1) $V_M = 1.5 \text{ V at } V_{CC} \ge 2.7 \text{ V}$

 $V_{M}^{m} = 0.5 \cdot V_{CC}$ at $V_{CC} < 2.7 \text{ V}$

(2) V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load

(3) $\begin{aligned} V_{\chi} &= V_{OL} + 0.3 \text{ V at } V_{CC} \geq 2.7 \text{ V} \\ V_{\chi} &= V_{OL} + 0.1 \cdot V_{CC} \text{ at } V_{CC} < 2.7 \text{ V} \end{aligned}$

(4) $V_Y = V_{OH} - 0.3 \text{ V at } V_{CC} \ge 2.7 \text{ V}$ $V_Y = V_{OH} - 0.1 \cdot V_{CC} \text{ at } V_{CC} < 2.7 \text{ V}$