ENGINEERING DATA SHEET RELAY - NONLATCH 2 PDT, 2 AMP **APPLICATION NOTES:** <u>001</u> <u>007</u> **APPLICABLE SOCKET:** HRCW SO9005 SF250-4 Non polarized, non latching hermetically sealed relay Contact arrangement 2 PDT Coil supply Designed to the performance standards of Direct current MIL-R-6106/6 CECC16101-014 BS CECC16101-021 Contact types per Contacts with reduced service life CECC1610-021 for resistive loads (contact types I, II, III) -- Code 01; contacts with reduced service life at low level resistive loads -- Code 02 #### PRINCIPLE TECHNICAL CHARACTERISTICS Contacts rated at Weight Dimensions max. 2 Amps / 28 Vdc less than 11 grams 20.6 x 10.4 x 10.5 of case in mm Hermetically sealed, corrosion protected metal can. # **CONTACT ELECTRICAL CHARACTERISTICS** | Minimum | Contact rating per | Load Cu | Load Current in Amps | | | | | |--|---|----------------|----------------------|--|--|--|--| | operating cycles | pole and load type | @28Vdc | @115Vac/60-400Hz | | | | | | 100,000 cycles
100,000 cycles
100,000 cycles | resistive load
inductive load (L/R=5ms)
lamp load | 2
0.75
- | 0.3
-
- | | | | | | 100 cycles | resistive overload | 4 | - | | | | | | 400,000 cycles | at 25% rated load | | | | | | | Featuring **LEACH**[©] power and control solutions www.esterline.com AMERICAS EUROPE 6900 Orangethorpe Ave. 2 Rue Goo P.O. Box 5032 57430 Sai Buena Park, CA 90622 2 Rue Goethe 57430 Sarralbe France ASIA Units 602-603 6/F Lakeside 1 No.8 Science Park West Avenue Phase Two, Hong Kong Science Park Pak Shek Kok, Tai Po, N.T. Hong Kong Tel: (01) 714-736-7599 Tel: (33) 3 87 97 31 01 Tel: (852) 2 191 3830 Fax: (01) 714-670-1145 Fax: (33) 3 87 97 96 86 Fax: (852) 2 389 5803 Data sheets are for initial product selection and comparison. Contact Esterline Power Systems prior to choosing a component. | CECC 16101-014 | 01 | 02 | 06 | 11 | 13 | 17 | 19 | 20 | 21 | 24 | |-------------------------------------|------|------|------|-----|-----|------|------|------|------|------| | Nominal operating voltage | 5 | 6 | 6 | 12 | 12 | 26.5 | 26.5 | 28 | 28 | 48 | | Coil resistance in Ω ±10% at +25° C | 27 | 37 | 47.5 | 150 | 190 | 700 | 935 | 700 | 935 | 2600 | | Maximum operating voltage | 6 | 7.5 | 7.5 | 15 | 15 | 32 | 32 | 32 | 32 | 55 | | Pickup voltage at 25° C | 2.7 | 3.2 | 3.5 | 6.4 | 7 | 13.5 | 14.5 | 13.5 | 14.5 | 28 | | Pickup voltage at 125° C | 3.8 | 4.5 | 4.5 | 9 | 9 | 18 | 19 | 18 | 19 | 36 | | Maximum Drop-out voltage at 20° C | 1.65 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 16 | | Minimum drop-out voltage at -65° C | 0.29 | 0.35 | 0.35 | 0.7 | 0.7 | 1.5 | 1.5 | 1.5 | 1.5 | 2.8 | | BS CECC 16101-021 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | |---|-----|-----|-----|------|------|------|------|------|------|------|------|------|------|------|------| | Nominal operating voltage | 6 | 6 | 6 | 12 | 12 | 12 | 24 | 24 | 24 | 48 | 48 | 48 | 5 | 24 | 20 | | Coil resistance in Ohms
±10% at +25° C | 40 | 42 | 60 | 150 | 210 | 320 | 675 | 830 | 1250 | 2500 | 2800 | 3500 | 40 | 700 | 700 | | Maximum operating voltage | 7.2 | 7.2 | 7.2 | 14.4 | 14.4 | 14.4 | 32 | 32 | 32 | 57.6 | 57.6 | 57.6 | 6 | 32 | 24 | | Pickup voltage at 25° C | 3.6 | 3.6 | 3.6 | 7.2 | 7.2 | 7.2 | 14.4 | 14.4 | 14.4 | 28.8 | 28.8 | 28.8 | 3 | 14.4 | 10.6 | | Minimum drop-out voltage | 0.3 | 0.3 | 0.3 | 0.6 | 0.6 | 0.6 | 1.2 | 1.2 | 1.2 | 2.4 | 2.4 | 2.4 | 0.25 | 1.2 | 1 | | Temperature range | -65°C to 125°C | |--|----------------------| | Dielectric strength at sea level | , | | - All circuits to ground and circuit to circuit | 1000 Vrms / 50 Hz | | - Coil to ground and across open contacts | 500 Vrms / 50 Hz | | Dielectric strength at altitude 22,000 m | 350 Vrms / 50 Hz | | Initial insulation resistance at 100 Vdc | > 1000 M Ω | | Sinusoidal vibration | 20 G / 70 to 3000 Hz | | Shock | 100 G / 11 ms | | Maximum contact opening time under vibration and shock | 10 μs | | Operate time at nominal voltage (including bounce) | 4 ms max | | Release time (including bounce) | 4 ms max | | Bounce time | 2.5 ms max | | Contact resistance at rated current | 50 mΩ max | # **MOUNTING STYLES** Date of issue: 9/10 - 31 - Page 3 of 4 TERMINAL TYPES F250 #### **SCHEMATIC DIAGRAM** #### **NUMBERING SYSTEM** #### **NOTES** - 1. Socket: - 1.1 HRCW 1M with mounting hardware and solder connections. - 1.2 SF 250-R4 with mounting hardware and crimping contacts. - 1.3 SO-9005 for printed circuit board. - 2. Isolation spacer pads for PCB mounting available on request - 3. Ultrasonic cleaning may adversely effective the normally closed contacts # TYPICAL CHARACTERISTICS - Coil resistance/temperature change: See application note no. 001 - L/R ratio for all coils is: = 1.5 ms - Coil resistance Application notes N°001 # CORRECTION DUE TO COIL COPPER WIRE RESISTANCE CHANGE IN TEMPERATURE Example: Coil resistance at 25°C: 935 ohms. What is it at 125°C? Correction coefficient on diagram is: 1.39 at 125°C. R becomes: 935x1.39=1299 Ohms Correction also applies to operating voltages #### SUPPRESSOR DEVICES FOR RELAY COILS The inductive nature of relay coils allows them to create magnetic forces which are converted to mechanical movements to operate contact systems. When voltage is applied to a coil, the resulting current generates a magnetic flux, creating mechanical work. Upon deenergizing the coil, the collapasing magnetic field induces a reverse voltage (also known as back EMF) which tends to maintain current flow in the coil. The induced voltage level mainly depends on the duration of the deenergization. The faster the switch-off, the higher the induced voltage. All coil suppression networks are based on a reduction of speed of current decay. This reduction may also slow down the opening of contacts, adversly effecting contact life and reliability. Therefore, it is very important to have a clear understanding of these phenomena when designing a coil suppression circuitry. #### Typical coil characteristics On the graph below, the upper record shows the contacts state. (High level NO contacts closed, low level NC contacts closed, intermediate state contact transfer). The lower record shows the voltage across the coil when the current is switched off by another relay contact. The surge voltage is limited to -300V by the arc generated across contact poles. Discharge duration is about 200 mircoseconds after which the current change does not generate sufficient voltage. The voltage decreases to the point where the contacts start to move, at this time, the voltage increases due to the energy contained in the NO contact springs. The voltage decreases again during transfer, and increases once more when the magnetic circuit is closed on permanent magnet. Operating times are as follows: Time to start the movement 1.5ms Total motion time 2.3ms Transfer time 1.4ms #### **Contact State** #### Types of suppressors: #### Passive devices. #### The resistor capacitor circuit It eliminates the power dissipation problem, as well as fast voltage rises. With a proper match between coil and resistor, approximate capacitance value can be calculated from: C = 0.02xT/R, where T = operating time in milliseconds R = coil resistance in kiloOhms C = capacitance in microFarads The series resistor must be between 0.5 and 1 times the coil resistance. Special consideration must be taken for the capacitor inrush current in the case of a low resistance coil. The record shown opposite is performed on the same relay as above. The operation time becomes: - time to start the movement 2.3ms - transfer time 1.2ms The major difficulty comes from the capacitor volume. In our example of a relay with a 290 Ω coil and time delay of 8 ms, a capacitance value of C=0.5 uF is found. This non polarized capacitor, with a voltage of 63V minimum, has a volume of about 1cm³. For 150V, this volume becomes 1.5 cm³. Date of issue: 6/00 - 9 - #### The bifilar coil The principle is to wind on the magnetic circuit of the main coil a second coil shorted on itself. By a proper adaptation of the internal resistance of this second coil it is possible to find an acceptable equilibrium between surge voltage and reduction of the opening speed. To be efficient at fast voltage changes, the coupling of two coils must be perfect. This implies embedded windings. The volume occupied by the second coil reduces the efficiency of the main coil and results in higher coil power consumption. This method cannot be applied efficiently to products not specifically designed for this purpose. #### The resistor (parallel with the coil) For efficient action, the resistor must be of the same order of magnitude as the coil resistance. A resistor 1.5 times the coil resistance will limit the surge to 1.5 times the supply voltage. Release time and opening speed are moderately affected. The major problem is the extra power dissipated. #### **Semi-conductor devices** #### The diode It is the most simple method to totally suppress the surge voltage. It has the major disadvantage of the higher reduction of contact opening speed. This is due to the total recycling, through the diode, of the energy contained in the coil itself. The following measurement is performed once again on the same relay. Operation times are given by the upper curve: - time to start the movement 14ms - transfer time 5ms These times are multiplied by a coefficient from 4 to 8. The lower curve shows the coil current. The increase prior to NO contact opening indicates that the contact spring dissipates its energy. At the opening time the current becomes constant as a result of practically zero opening speed. Due to this kind of behavior, this type of suppression must be avoided for power relays. For small relays which have to switch low currents of less than 0.2 A, degradation of life is not that significant and the method may be acceptable. #### The diode + resistor network It eliminates the inconvenience of the resistor alone, explained above, and it limits the action of a single diode. It is now preferred to used the diode + zener network. #### The diode + zener network Like the resistor, the zener allows a faster decurrent decay. In addition it introduces a threshold level for current conduction which avoids the recycling of energy released during contact movement. The lower curve on the opposite record demonstrates those characteristics. Voltage limitation occurs at 42V. The two voltages spikes generated by internal movement are at lower levels than zener conduction. As a result, no current is recycled in the coil. The opening time phases are as follows: - time to start the movement 2.6ms - total motion time 2.4ms - transfer time 1.4ms The release time is slightly increased. The contacts' opening speed remains unchanged. # **HRCW** ### **ENGINEERING DATA SHEET** RELAY SOCKET 2 AMP BASIC SOCKET SERIES DESIGNATION FOR: SERIES F250, F257, W260, GP5, and 144 MEETS THE REQUIREMENTS OF: MIL-S-12883 #### **DIMENSIONS** ### **GENERAL CHARACTERISTICS** www.leachintl.com | Supplied with mounting hardware. | | | | | | |---|---------------------------|--|--|--|--| | Temperature range | -65°C to +125°C | | | | | | Weight | 10 grams | | | | | | Dielectric Strength at sea level | 1500 Vrms / 50 Hz Minimum | | | | | | Gold plated contact per MIL-G-45204 | | | | | | | Dallyl phthalate, glass-fiber filled per MIL-M-14 | | | | | | **EUROPE** 2 Rue Goethe **ASIA** Featuring LEACH® power and control solutions P.O. Box 5032 57430 Sarralbe Room 501, 5/F, The Centre Mark 287 - 299 Queen's Road Central Hong Kong Buena Park, CA 90622 USAFrance Tel: (01) 714-736-7599 Fax: (01) 714-670-1145 Tel: (33) 3 87 97 31 01 Tel: (852) 2 191 3830 Fax: (33) 3 87 97 96 86 Fax: (852) 2 389 5803 Data sheets are for initial product selection and comparison. Contact Leach International prior to choosing a component. # **SO9005** # **ENGINEERING DATA SHEET** RELAY SOCKET 2 AMP BASIC SOCKET SERIES DESIGNATION FOR: Series F250, F257, W260, WB260 MEETS THE REQUIREMENTS OF: MIL-DTL-12883 #### **GENERAL CHARACTERISTICS** σ Ø | Temperature range | -65°C to +125°C | |-----------------------|-------------------| | Weight | 10 grams | | Terminal designations | On coupling face | | Insulation resistance | 1200 M Ω | | Contact resistance | $2\ { m m}\Omega$ | Ø 0.9 3.7 **EUROPE** 1.0 2.0 Featuring LEACH® power and control solutions www.esterline.com 2 Rue Goethe P.O. Box 5032 57430 Sarralbe Buena Park, CA 90622 France Units 602-603 6/F Lakeside 1 No.8 Science Park West Avenue Phase Two, Hong Kong Science Park Pak Shek Kok, Tai Po, N.T. Hong Kong Tel: (33) 3 87 97 31 01 Tel: (852) 2 191 3830 Tel: (01) 714-736-7599 Fax: (01) 714-670-1145 Fax: (33) 3 87 97 96 86 Fax: (852) 2 389 5803 Data sheets are for initial product selection and comparison. Contact Esterline Power Systems prior to choosing a component.