T-79-33

LTC1049

TECHNOL LINEAR TECHNOLOGY CORP

Low Power Chopper Stabilized Operational Amplifier with Internal Capacitors

April 1989

FEATURES

- Low Supply Current 200µA
- No External Components Required
- Maximum Offset Voltage 10μV
- Maximum Offset Voltage Drift 0.1µV/°C
- Single Supply Operation 4.75V to 16V
- Input Common Mode Range Includes Ground
- Output Swings to Ground
- Typical Overload Recovery Time 25ms

APPLICATIONS

- 4mA-20mA Current Loops
- Thermocouple Amplifiers
- Electronic Scales
- Medical Instrumentation
- Strain Gauge Amplifiers
- High Resolution Data Acquisition

DESCRIPTION

The LTC1049 is a high performance low power chopper stabilized operational amplifier. The two sample-and-hold capacitors usually required externally by other chopper stabilized amplifiers are integrated on the chip. Further, the LTC1049 offers superior DC and AC performance with a nominal supply current of only 200µA.

The LTC1049 has an offset voltage of $0.5\mu V$, with drift of $0.01\mu V/^{\circ}C$, 0.1Hz to 10Hz input noise voltage is $3\mu Vp$ -p and typical voltage gain is 160dB. The slew rate is $0.8V/\mu s$ with the gain bandwidth product of 0.8MHz.

Overload recovery times from positive and negative saturation conditions are 6ms and 25ms respectively, a very significant improvement over chopper amplifiers using external capacitors.

The LTC1049 is available in standard 8-pin metal can, plastic and ceramic dual in line packages as well as an 8-pin SO package. The LTC1049 can be a plug-in replacement for most standard op amps with improved performance.

TYPICAL APPLICATION

Single Supply Thermocouple Amplifier

TLINEA

T-79-33

ABSOLUTE MAXIMUM RATINGS

(Note 1)	
Total Supply Voltage (V + to V -)	18V
Input Voltage(V++(0.3V) to $(V0.3V)$
Output Short Circuit Duration	
Operating Temperature Range	
LTC1049M	55°C to 125°C
LTC1049C	– 40°C to 85°C
Storage Temperature Range	– 65°C to 150°C
Lead Temperature (Soldering, 10 sec.)	300°C

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS

 $V_S = \pm 5V$, $T_A =$ operating temperature range, unless otherwise specified.

PARAMETER	CONDITIONS		LTC1049M MIN TYP MAX			LTC1049C MIN TYP MAX			UNITS
Input Offset Voltage	T _A = 25°C (Note 3)	7 1		±2	± 10		±2	±10	μV
Average Input Offset Drift	(Note 3)	•		± 0.02	±0.1		±0,02	±0.1	μVI°C
Long Term Offset Voltage Drift				50			50		nV/√mo
Input Offset Current	T _A = 25°C	•		±30	±60 ±150		±30 .	± 100 ± 150	pA pA
Input Bias Current	T _A = 25°C			± 15	±30 ±800		± 15	± 50 ± 150	pA pA
Input Noise Voltage	0.1Hz to 10Hz			3.0			3.0		μ∨р-р
	0.1Hz to 1Hz			1.0			1.0		μVp-р
Input Noise Current	f = 10Hz (Note 4)			2.0			2.0		fA/√Hz
Common Mode Rejection Ratio	V _{CM} = V ⁻ to 2.7V	•	115	130		110	130		dB
Power Supply Rejection Ratio	$V_S = \pm 2.375 \text{V to } \pm 8 \text{V}$	•	115	130		110	130		dB
Large Signal Voltage Gain	$R_L = 100k\Omega, V_{OUT} = \pm 4.9V$	•	130	160		130	160		dB

13

LTC1049

T-79-33

ELECTRICAL CHARACTERISTICS

 $V_S = \pm 5V$, $T_A =$ operating temperature range, unless otherwise specified.

PARAMETER	CONDITIONS	;		MIN	LTC1049M TYP	MAX	MIN	LTC1049C TYP	MAX	UNITS
Maximum Output Voltage Swing	$R_L = 10k\Omega$	TA = 25°C			-4.9/+4.2			-4.9/+4.2		Ville
			•	-4.6/+3.2			-4.6/+3.2			V
	$R_L = 100 k\Omega$		•	±4.9	±4.97		±4.9	±4.97		· .
Slew Rate	$R_L = 10k\Omega, C_L$	=50pF			0.8			0.8		. VIμs
Gain Bandwidth Product			Ī	· ·	0.8		<u> </u>	0.8		MHz
Supply Current	No Load	T _A = 25°C			200	270	<u> </u>	200	300	μА
			•			400			450	μА
Internal Sampling Frequency					700	-		700		Hz

Rications which apply over the full operating temperature range.

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

Note 2: Connecting any terminal to voltages greater than V^{\pm} or less than V may cause destructive latch up. It is recommended that no sources operating from external supplies be applied prior to power-up of the LTC1049.

Note 3: These parameters are guaranteed by design. Thermocouple effects preclude measurement of these voltage levels in high speed automatic test systems. Vos is measured to a limit determined by test equipment capability. Note 4: Current Noise is calculated from the formula:

 $I_N = \sqrt{(2q \cdot 1b)}$ where $q = 1.6 \times 10^{-19}$ Coulomb.

TEST CIRCUITS

Electrical Characteristics Test Circuit

DC to 10Hz and DC to 1Hz Noise Test Circuit

