

PIC16C433 Data Sheet

8-Bit CMOS Microcontroller with LIN bus Transceiver

"All rights reserved. Copyright © 2001, Microchip Technology Incorporated, USA. Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights."

Trademarks

The Microchip name, logo, PIC, PICmicro, PICMASTER, PIC-START, PRO MATE, KEELOQ, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Total Endurance, ICSP, In-Circuit Serial Programming, Filter-Lab, MXDEV, microID, FlexROM, fuzzyLAB, MPASM, MPLINK, MPLIB, PICDEM, ICEPIC, Migratable Memory, FanSense, ECONOMONITOR and SelectMode are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELO© code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

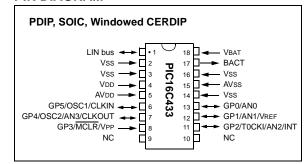
8-Bit CMOS Microcontroller with LIN bus Transceiver

Devices Included in this Data Sheet:

PIC16C433

High-Performance RISC CPU:

- · Only 35 single word instructions to learn
- All instructions are single cycle (400 ns) except for program branches which are two-cycle
- Operating speed: DC 10 MHz clock input DC - 400 ns instruction cycle


Device	Memory					
Device	Program	Data RAM				
PIC16C433	2048 x 14	128 x 8				

- 14-bit wide instructions
- · 8-bit wide data path
- · Interrupt capability
- · Special function hardware registers
- 8-level deep hardware stack
- Direct, indirect and relative addressing modes for data and instructions

Peripheral Features:

- · Integrated LIN bus Transceiver
- · Wake-up on bus activity
- · 12V battery operation for Transceiver
- Thermal Shut-down for Transceiver
- · Ground Loss Protection
- Four-channel, 8-bit A/D converter
- 8-bit real time clock/counter (TMR0) with 8-bit programmable prescaler

PIN DIAGRAM

Special Microcontroller Features:

- In-Circuit Serial Programming (ICSP™)
- Internal 4 MHz oscillator with programmable calibration
- · Selectable clockout
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code protection
- · Power saving SLEEP mode
- Interrupt-on-pin change (GP0, GP1, GP3)
- Internal pull-ups on I/O pins (GP0, GP1, GP3)
- Internal pull-up on MCLR pin
- Selectable oscillator options:
 - INTRC: Precision internal 4 MHz oscillator
 - EXTRC: External low-cost RC oscillator
 - XT: Standard crystal/resonator
 - HS: High speed crystal/resonator
 - LP: Power saving, low frequency crystal

CMOS Technology:

- Low power, high speed CMOS EPROM/ HV-CMOS technology
- · Fully static design
- · Operating voltage range 4.5V to 5.5V
- · Industrial and Extended temperature ranges
- Low power consumption
 - < 2 mA @ 5V, 4 MHz
 - < 1 µA typical standby current

Table of Contents

1.0	General Description	3
2.0	PIC16C433 Device Varieties	
3.0	Architectural Overview	7
4.0	Memory Organization	11
5.0	I/O Port	
6.0	LIN bus Transceiver	33
7.0	Timer0 Module	35
8.0	Analog-to-Digital Converter (A/D) Module	41
9.0	Special Features of the CPU	49
10.0	Instruction Set Summary	65
11.0	Development Support	79
12.0	Electrical Specifications for PIC16C433	85
13.0	DC and AC Characteristics - PIC16C433	
14.0	Packaging Information	107
Appen	dix A: Compatibility	111
On-Lin	ne Support	117
Reade	er Response	118
Produ	ct Identification System	119

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

1.0 GENERAL DESCRIPTION

The PIC16C433 device is a low cost, high performance, CMOS, fully static, 8-bit microcontroller with integrated analog-to-digital (A/D) converter and an integrated LIN bus Transceiver.

The LIN physical layer is implemented in hardware with a voltage range from 0V to 18V, with a 40V transient capability. The LIN protocol is to be implemented in firmware, which enables flexibility with future revisions of the LIN protocol.

All PICmicro® microcontrollers employ an advanced RISC architecture. The PIC16C433 microcontroller has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches, which require two cycles. A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16C433 microcontroller typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC16C433 device has 128 bytes of RAM, 5 I/O pins and 1 input pin. In addition, a timer/counter is available. Also a 4-channel, high-speed, 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low cost analog interface (i.e., thermostat control, pressure sensing, etc.)

The PIC16C433 device has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. The Power-on Reset (POR), Power-up Timer (PWRT), and Oscillator Start-up Timer (OST) eliminate the need for external RESET circuitry. There are five oscillator configurations to choose from, including INTRC precision internal oscillator mode and the power saving LP (Low Power) oscillator mode. Power saving SLEEP mode, Watchdog Timer and code protection features improve system cost, power and reliability. The SLEEP (power-down) feature provides a power saving mode. The user can wake-up the chip from SLEEP through several external and internal interrupts and RESETS.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock-up.

A UV erasable windowed package version is ideal for code development, while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers, while benefiting from the OTP's flexibility.

1.1 **Applications**

The PIC16C433 microcontroller fits well in applications ranging from personal care appliances and security systems to low power remote transmitters/receivers. The EPROM technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C433 series very versatile even in areas where no microcontroller use has been considered before (i.e., timer functions, replacement of "glue" logic and PLD's in larger systems, coprocessor applications).

1.2 Family and Upward Compatibility

The PIC16C433 product is code compatible with other members of the 14-bit PIC16CXXX families.

1.3 <u>Development Support</u>

The PIC16C433 device is supported by a full featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full featured programmer. A "C" compiler and fuzzy logic support tools are also available.

NOTES:

2.0 PIC16C433 DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C433 Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For example, the PIC16C433 device "type" is indicated in the device number:

- 1. **C**, as in PIC16**C**433. These devices have EPROM type memory and operate over the standard voltage range.
- 2. **LC**, as in PIC16**LC**433. These devices have EPROM type memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in windowed package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip's PRO MATE® II device programmer supports the PIC16C433. Third party programmers also are available; refer to the Microchip Third Party Guide for a list of sources.

Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be saved prior to erasing the part.

2.2 <u>One-Time-Programmable (OTP)</u> Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turn-Programming (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turn Programming</u> (SQTPSM) Devices

Microchip offers a unique programming service where a few user defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry code, password, or ID number.

NOTES:

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C433 family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C433 uses a Harvard architecture, in which program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses also allow instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single instruction cycle. A two-stage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (400 ns @ 10 MHz) except for program branches.

The PIC16C433 can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16C433 has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C433 simple, yet efficient. In addition, the learning curve is reduced significantly.

PIC16C433 devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register, or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 3-1: PIC16C433 BLOCK DIAGRAM

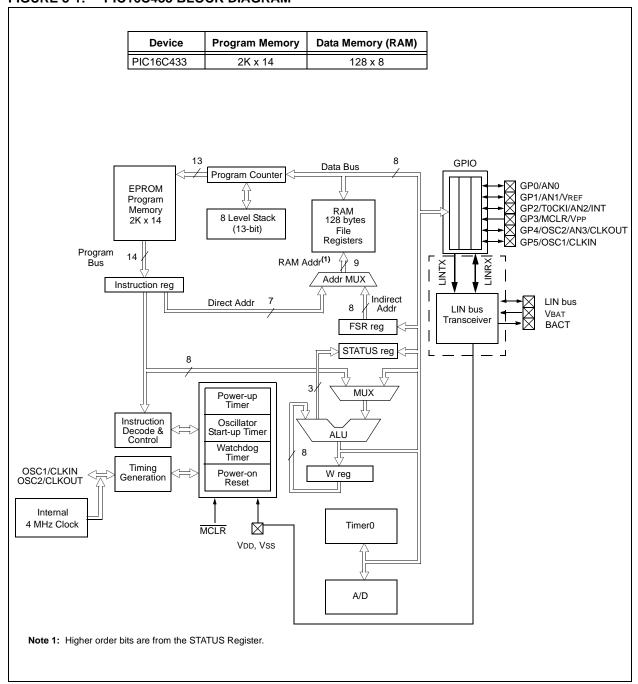


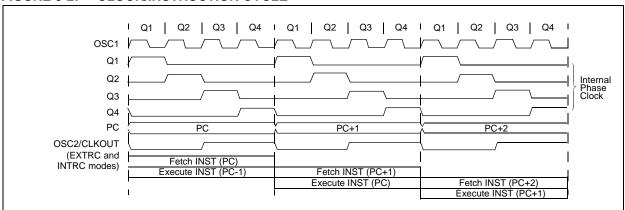
TABLE 3-1: PIC16C433 PINOUT DESCRIPTION

Name	DIP Pin #	I/O/P Type	Buffer Type	Description
GP0/AN0	13	I/O	TTL/ST	Bi-directional I/O port/serial programming data/analog input 0. Can be software programmed for internal weak pull-up and interrupt-on-pin change. This buffer is a Schmitt Trigger input when used in Serial Programming mode.
GP1/AN1/VREF	12	I/O	TTL/ST	Bi-directional I/O port/serial programming clock/analog input 1/voltage reference. Can be software programmed for internal weak pull-up and interrupt-on-pin change. This buffer is a Schmitt Trigger input when used in Serial Programming mode.
GP2/T0CKI/AN2/INT	11	I/O	ST	Bi-directional I/O port/analog input 2. Can be configured as T0CKI or external interrupt.
GP3/MCLR/VPP	8	-	TTL/ST	Input port/master clear (RESET) input/programming voltage input. When configured as MCLR, this pin is an active low RESET to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation. Can be software programmed for internal weak pull-up and interrupt-on-pin change. Weak pull-up always on if configured as MCLR . This buffer is Schmitt Trigger when in MCLR mode.
GP4/OSC2/AN3/CLKOUT	7	I/O	TTL	Bi-directional I/O port/oscillator crystal output/analog input 3. Connections to crystal or resonator in crystal oscillator mode (HS, XT and LP modes only, GPIO in other modes). In EXTRC and INTRC modes, the pin output can be configured to CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
GP5/OSC1/CLKIN	6	I/O	TTL/ST	Bi-directional IO port/oscillator crystal input/external clock source input (GPIO in INTRC mode only, OSC1 in all other oscillator modes). Schmitt trigger input for EXTRC oscillator mode.
LIN bus	1	I/O	HV/OD	High voltage bi-directional bus interface.
VBAT	18	Р	_	Battery input voltage.
BACT	17	0	_	Bus activity output pin.
VDD	4	Р	_	Positive supply for logic and I/O pins.
Vss	2,3,14, 16	Р	_	Ground reference for logic and I/O pins.
AVDD	5	Р	_	Analog positive supply.
AVss	15	Р	_	Analog ground.

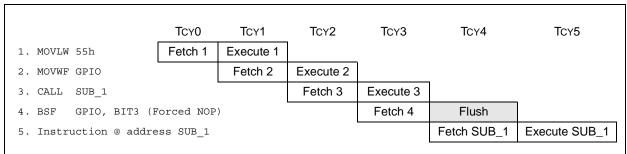
 $\label{eq:logend:loge$

3.1 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, and the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.


3.2 <u>Instruction Flow/Pipelining</u>

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (i.e., GOTO), then two cycles are required to complete the instruction (Example 3-1).

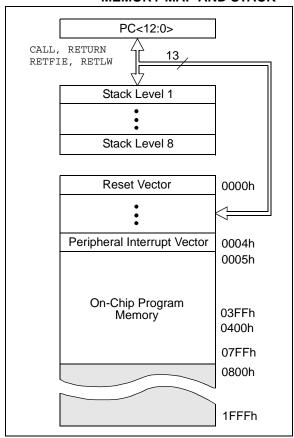

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetched instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.


4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16C433 has a 13-bit program counter capable of addressing an 8K x 14 program memory space.

For the PIC16C433 the first 2K x 14 (0000h-07FFh) is implemented. Accessing a location above the physically implemented address will cause a wraparound. The Reset Vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 4-1: PIC16C433 PROGRAM MEMORY MAP AND STACK

4.2 <u>Data Memory Organization</u>

The data memory is partitioned into two banks, which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = $1 \rightarrow Bank 1$

RP0 (STATUS<5>) = $0 \rightarrow Bank 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain Special Function Registers. Some "high use" Special Function Registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

Also note that F0h through FFh on the PIC16C433 is mapped into Bank 0 registers 70h-7Fh as common RAM.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-2: PIC16C433 REGISTER FILE MAP

	WAP								
File Address	i		File Address						
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h						
01h	TMR0	OPTION	81h						
02h	PCL	PCL	82h						
03h	STATUS	STATUS	83h						
04h	FSR	FSR	84h						
05h	GPIO	TRIS	85h						
06h			86h						
07h			87h						
08h			88h						
09h			89h						
0Ah	PCLATH	PCLATH	8Ah						
0Bh	INTCON	INTCON	8Bh						
0Ch	PIR1	PIE1	8Ch						
0Dh			8Dh						
0Eh		PCON	8Eh						
0Fh		OSCCAL	8Fh						
10h			90h						
11h			91h						
12h			92h						
13h			93h						
14h			94h						
15h			95h						
16h			96h						
17h			97h						
18h			98h						
19h			99h						
1Ah			9Ah						
1Bh			9Bh						
1Ch			9Ch						
1Dh			9Dh						
1Eh	ADRES		9Eh						
1Fh	ADCON0	ADCON1	9Fh						
20h		General Purpose Register	A0h						
	General		BFh						
	Purpose Register		C0h						
701			EFh						
70h 7Fh		Mapped in Bank 0	F0h FFh						
Bank 0 Bank 1									
Unimplemented data memory locations, read as '0'.									
Note 1:	Not a physical re	gister.							

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM.

The Special Function Registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

TABLE 4-1: PIC16C433 SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address dat	a memory (n	ot a physica	l register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ac	ldress pointe	er					xxxx xxxx	uuuu uuuu
05h	GPIO	LINTX	LINRX	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu
06h	_	Unimpleme	nted							_	_
07h	_	Unimpleme	nted							_	_
08h	_	Unimpleme	plemented —								
09h	_	Unimpleme	nted		_	_					
0Ah ^(1,2)	PCLATH	_	— — Write Buffer for the upper 5 bits of the Program Counter						0 0000	0 0000	
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	_	_	_	_	_	_	-0	-0
0Dh	_	Unimpleme	nted							_	_
0Eh	_	Unimpleme	nted							_	_
0Fh	_	Unimpleme	nted							_	_
10h	_	Unimpleme	nted							_	_
11h	_	Unimpleme	nted							_	_
12h	_	Unimpleme	nted							_	_
13h	_	Unimpleme	nted							_	_
14h	_	Unimpleme	nted							_	_
15h	_	Unimpleme	nted							_	_
16h	_	Unimpleme	nted							_	_
17h	_	Unimpleme	nted							_	_
18h	_	Unimpleme	nted							_	_
19h	_	Unimpleme	nted							_	_
1Ah	_	Unimpleme	nted							_	_
1Bh	_	Unimpleme	nted							_	_
1Ch	_	Unimpleme	nted							_	_
1Dh	_	Unimpleme	nted							_	_
1Eh	ADRES	A/D Result I	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	reserved	CHS1	CHS0	GO/DONE	reserved	ADON	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

^{2:} The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

^{3:} Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

^{4:} The IRP and RP1 bits are reserved on the PIC16C433; always maintain these bits clear.

TABLE 4-1: PIC16C433 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address dat	a memory (n	ot a physica	l register)	0000 0000	0000 0000
81h	OPTION	GPPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	dress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRIS	_	_	GPIO Data	Direction Re	gister				11 1111	11 1111
86h	_	Unimpleme	nted							_	_
87h	_	Unimpleme	nted							_	_
88h	_	Unimpleme	nted							_	_
89h	_	Unimpleme	plemented								_
8Ah ^(1,2)	PCLATH	_	— — Write Buffer for the upper 5 bits of the PC							0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF	0000 000x	0000 000u
8Ch	PIE1	_	ADIE	_	_	_	_	_	_	-0	-0
8Dh	_	Unimpleme	nted							_	_
8Eh	PCON	_	_	_	_	_	_	POR	_	0-	u-
8Fh	OSCCAL	CAL3	CAL2	CAL1	CAL0	CALFST	CALSLW	_	_	0111 00	uuuu uu
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							_	_
92h	_	Unimpleme	nted							_	_
93h	_	Unimpleme	nted							_	_
94h	_	Unimpleme	nted							_	_
95h	_	Unimpleme	nted							_	_
96h	_	Unimpleme	nted							_	_
97h	_	Unimpleme	nted							_	_
98h	_	Unimpleme	nted							_	_
99h	_	Unimpleme	nted							_	_
9Ah	_	Unimpleme	nted							_	_
9Bh	_	Unimpleme	nted							_	_
9Ch	_	Unimpleme	nted							_	_
9Dh	_	Unimpleme	nted							_	_
9Eh	_	Unimpleme	nted							_	_
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000

Note 1: These registers can be addressed from either bank.

^{2:} The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

^{3:} Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

^{4:} The IRP and RP1 bits are reserved on the PIC16C433; always maintain these bits clear.

4.2.2.1 STATUS Register

The STATUS Register, shown in Register 4-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS Register can be the destination for any instruction, as with any other register. If the STATUS Register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are not writable. Therefore, the result of an instruction with the STATUS Register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS Register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS Register, because these instructions do not affect the Z, C or DC bits from the STATUS Register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: Bits IRP and RP1 (STATUS<7:6>) are not used by the PIC16C433 and should be maintained clear. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
 - 2: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the <u>SUBLW</u> and <u>SUBWF</u> instructions for examples.

REGISTER 4-1: STATUS REGISTER (ADDRESS 03h, 83h)

Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit7							bit0

- bit 7 IRP: Register Bank Select bit (used for indirect addressing)
 - 1 = Bank 2, 3 (100h 1FFh)
 - 0 = Bank 0, 1 (00h FFh)

The IRP bit is reserved, always maintain this bit clear.

- bit 6-5 **RP1:RP0**: Register Bank Select bits (used for direct addressing)
 - 11 = Bank 3 (180h 1FFh)
 - 10 = Bank 2 (100h 17Fh)
 - 01 = Bank 1 (80h FFh)
 - 00 = Bank 0 (00h 7Fh)

Each bank is 128 bytes. The RP1 bit is reserved, always maintain this bit clear.

- bit 4 **TO**: Time-out bit
 - 1 = After power-up, CLRWDT instruction, or SLEEP instruction
 - 0 = A WDT time-out occurred
- bit 3 **PD**: Power-down bit
 - 1 = After power-up or by the CLRWDT instruction
 - 0 = By execution of the SLEEP instruction
- bit 2 Z: Zero bit
 - 1 = The result of an arithmetic or logic operation is zero
 - 0 = The result of an arithmetic or logic operation is not zero
- bit 1 DC: Digit Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)

(for borrow the polarity is reversed)

- n = Value at POR reset

- 1 = A carry-out from the 4th low order bit of the result occurred
- 0 = No carry-out from the 4th low order bit of the result
- bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)
 - 1 = A carry-out from the most significant bit of the result occurred
 - 0 = No carry-out from the most significant bit of the result occurred

Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

4.2.2.2 OPTION Register

The OPTION Register is a readable and writable register, which contains various control bits to configure the TMR0/WDT prescaler, the External INT Interrupt, TMR0 and the weak pull-ups on GPIO.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer by setting bit PSA (OPTION<3>).

REGISTER 4-2: OPTION REGISTER (ADDRESS 81h))

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
GPPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0
bit7							bit0

bit 7 GPPU: Weak Pull-up Enable bit

1 = Weak pull-ups disabled

0 = Weak pull-ups enabled (GP0, GP1, GP3)

bit 6 INTEDG: Interrupt Edge Select bit

 ${\tt 1 = Interrupt\ on\ rising\ edge\ of\ GP2/T0CKI/AN2/INT\ pin}$

0 = Interrupt on falling edge of GP2/T0CKI/AN2/INT pin

bit 5 TOCS: TMR0 Clock Source Select bit

1 = Transition on GP2/T0CKI/AN2/INT pin

0 = Internal instruction cycle clock (CLKOUT)

bit 4 **T0SE**: TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on GP2/T0CKI/AN2/INT pin

0 = Increment on low-to-high transition on GP2/T0CKI/AN2/INT pin

bit 3 **PSA**: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT

0 = Prescaler is assigned to the Timer0 module

bit 2-0 PS<2:0>: Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1:256	1:128

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

4.2.2.3 INTCON Register

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 Register overflow, GPIO port change and external GP2/INT pin interrupts.

Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

REGISTER 4-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-x						
GIE	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF
bit7							bit0

Note:

bit 7 GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

0 = Disables all interrupts

bit 6 PEIE: Peripheral Interrupt Enable bit

1 = Enables all unmasked peripheral interrupts

0 = Disables all peripheral interrupts

bit 5 **T0IE**: TMR0 Overflow Interrupt Enable bit

1 =Enables the TMR0 interrupt

0 = Disables the TMR0 interrupt

bit 4 INTE: INT External Interrupt Enable bit

1 = Enables the external interrupt on GP2/INT/T0CKI/AN2 pin

0 = Disables the external interrupt on GP2/INT/T0CKI/AN2 pin

bit 3 **GPIE**: GPIO Interrupt-on-Change Enable bit

1 = Enables the GPIO Interrupt-on-Change

0 = Disables the GPIO Interrupt-on-Change

bit 2 **T0IF**: TMR0 Overflow Interrupt Flag bit

1 = TMR0 register has overflowed (must be cleared in software)

0 = TMR0 register did not overflow

bit 1 INTF: RB0/INT External Interrupt Flag bit

1 = The external interrupt on GP2/INT/T0CKI/AN2 pin occurred (must be cleared in software)

0 = The external interrupt on GP2/INT/T0CKI/AN2 pin did not occur

bit 0 **GPIF**: GPIO Interrupt-on-Change Flag bit

1 = GP0, GP1 or GP3 pins changed state (must be cleared in software)

0 = Neither GP0, GP1 nor GP3 pins have changed state

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

4.2.2.4 PIE1 Register

This register contains the individual enable bits for the Peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 4-4: PIE1 REGISTER (ADDRESS 8Ch))

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
_	ADIE	_	_	_	_	_	
bit7		•	•				bit0

bit 7 Unimplemented: Read as '0'

bit 6 ADIE: A/D Converter Interrupt Enable bit

1 = Enables the A/D interrupt0 = Disables the A/D interrupt

bit 5-0 Unimplemented: Read as '0'

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

4.2.2.5 PIR1 Register

This register contains the individual flag bits for the Peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 4-5: PIR1 REGISTER (ADDRESS 0Ch))

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
_	ADIF	_	_	_	_	_	_
bit7							bit0

bit 7 Unimplemented: Read as '0'

bit 6 ADIF: A/D Converter Interrupt Flag bit

1 = An A/D conversion completed (must be cleared in software)

0 = The A/D conversion is not complete

bit 5-0 **Unimplemented:** Read as '0'

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

4.2.2.6 PCON Register

The Power Control (PCON) Register contains a flag bit to allow differentiation between a Power-on Reset (POR), an external MCLR Reset and a WDT Reset.

REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh))

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
_	_	_	_	_	_	POR	_
bit7							bit0

bit 7-2 **Unimplemented:** Read as '0'

bit 1 POR: Power-on Reset Status bit 1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 Unimplemented: Read as '0'

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

4.2.2.7 OSCCAL Register

The Oscillator Calibration (OSCCAL) Register is used to calibrate the internal 4 MHz oscillator. It contains four bits for fine calibration and two other bits to either increase or decrease frequency.

REGISTER 4-7: OSCCAL REGISTER (ADDRESS 8Fh)

R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	U-0	U-0
CAL3	CAL2	CAL1	CAL0	CALFST	CALSLW	_	_
bit7							bit0

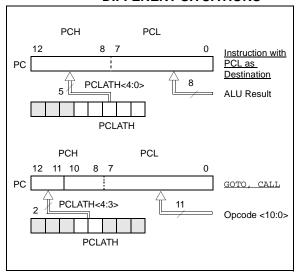
bit 7-4 CAL<3:0>: Fine Calibration'
bit 3 CALFST: Calibration Fast
1 = Increase frequency
0 = No change

bit 2 **CALSLW**: Calibration Slow 1 = Decrease frequency

0 = No change

bit 1-0 Unimplemented: Read as '0'

Note: If CALFST = 1 and CALSLW = 1, CALFST has precedence.


Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

4.3 PCL and PCLATH

The Program Counter (PC) is 13-bits wide. The low byte comes from the PCL Register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 4-3 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-3: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A Computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note "Implementing a Table Read" (AN556).

4.3.2 STACK

The PIC16C433 family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

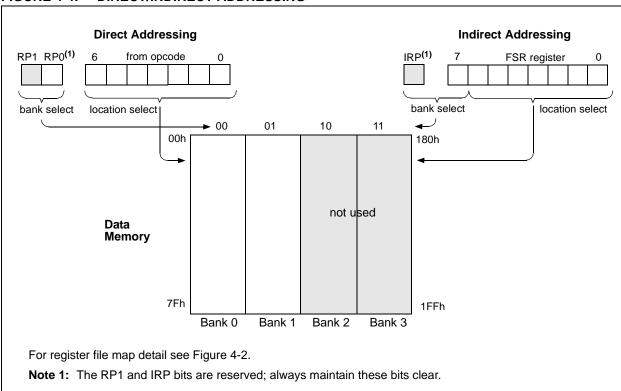
- **Note 1:** There are no status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.

4.4 Program Memory Paging

The PIC16C433 ignores both paging bits PCLATH<4:3>, which are used to access program memory when more than one page is available. The use of PCLATH<4:3> as general purpose read/write bits for the PIC16C433 is not recommended, since this may affect upward compatibility with future products.

4.5 <u>Indirect Addressing, INDF and FSR</u> Registers

The INDF Register is not a physical register. Addressing the INDF Register will cause indirect addressing.


Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0') will read 00h. Writing to the INDF register, indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-4. However, IRP is not used in the PIC16C433.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-1.

EXAMPLE 4-1: INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR,F	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;no clear next
CONTINUE			
	:		; yes continue

FIGURE 4-4: DIRECT/INDIRECT ADDRESSING

NOTES:

5.0 I/O PORT

As with any other register, the I/O register can be written and read under program control. However, read instructions (i.e., MOVF GPIO, W) always read the I/O pins independent of the pin's input/output modes. On RESET, all I/O ports are defined as input (inputs are at hi-impedance), since the I/O control registers are all set.

5.1 **GPIO**

GPIO is an 8-bit I/O register. Only the low order 6 bits are used (GP<5:0>). Bits 6 and 7 (LINTX and LINRX, respectively) are used by the LIN bus transceiver peripheral. Please note that GP3 is an input only pin. The configuration word can set several I/O's to alternate functions. When acting as alternate functions, the pins will read as '0' during port read. Pins GP0, GP1 and GP3 can be configured with weak pull-ups and also with interrupt-on-change. The interrupt-on-change and weak pull-up functions are not pin selectable. If pin 4 (GP3), is configured as MCLR, a weak pull-up is always on. Interrupt-on-change for this pin is not set and GP3 will read as '0'. Interrupt-on-change is enabled by setting bit GPIE, INTCON<3>. Note that external oscillator use overrides the GPIO functions on GP4 and GP5.

5.2 TRIS Register

This register controls the data direction for GPIO. A '1' from a TRIS Register bit puts the corresponding output driver in a hi-impedance mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer. The exceptions are GP3, which is input only and its TRIS bit will always read as '1', while GP6 and GP7 TRIS bits will read as '0'.

Note: A read of the ports reads the pins, not the output data latches. That is, if an output driver on a pin is enabled and driven high, but the external system is holding it low, a read of the port will indicate that the pin is low.

Upon RESET, the TRIS Register is all '1's, making all pins inputs.

TRIS for pins GP4 and GP5 is forced to a '1', where appropriate. Writes to TRIS <5:4> will have an effect in EXTRC and INTRC oscillator modes only. When GP4 is configured as CLKOUT, changes to TRIS<4> will have no effect.

5.3 <u>I/O Interfacing</u>

The equivalent circuit for an I/O port pin is shown in Figure 5-1 through Figure 5-5. All port pins, except GP3, which is input only, may be used for both input and output operations. For input operations, these ports are non-latching. Any input must be present until read by an input instruction (i.e., MOVF GPIO, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRIS must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin (except GP3) can be programmed individually as input or output.

Port pins LINTX and LINRX are used for the LIN bus transceiver. These port pins are not available externally on the package. Users should avoid writing to pins GP6 (SDA) and GP7 (SCL), when not communicating with the LIN bus transceiver.

Note: On a Power-on Reset, GP0, GP1, GP2 and GP4 are configured as analog inputs and read as '0'.

5.4 The BACT Pin

The BACT pin can be used to wake-up the device from SLEEP upon bus activity. In order to wake the bus up, the BACT pin has to be tied to either GP0, GP1 or GP2. These pins can be configured to wake the PIC16C433 upon a change. The BACT pin reflects the communication on the LIN bus. This pin is not latched.

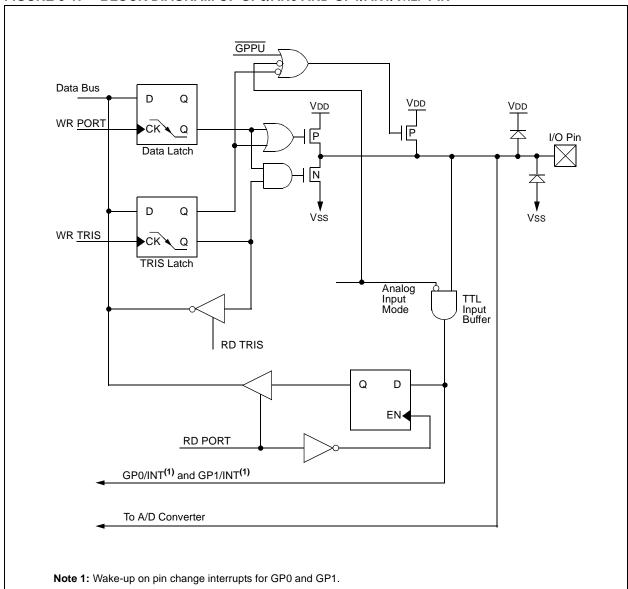


FIGURE 5-1: BLOCK DIAGRAM OF GP0/AN0 AND GP1/AN1/VREF PIN

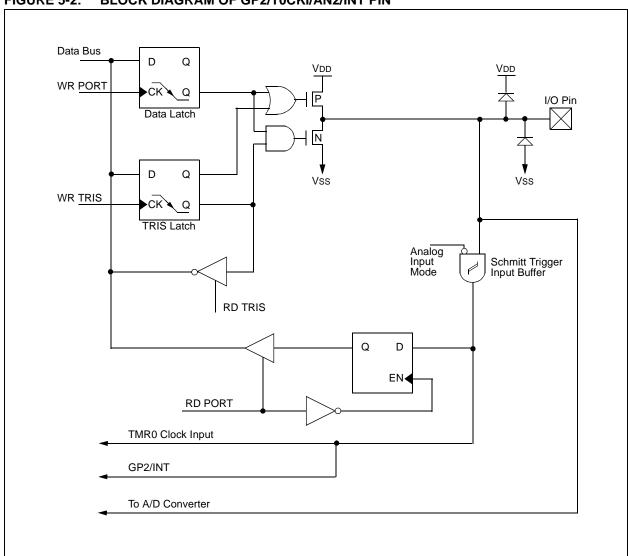
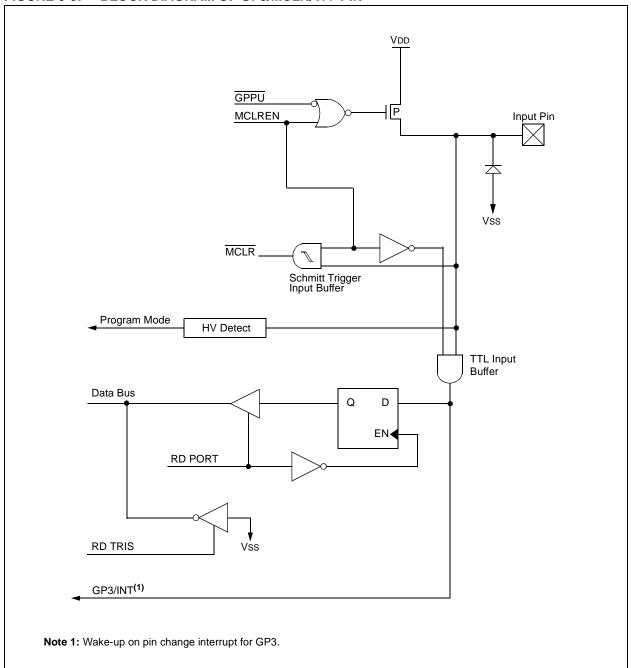



FIGURE 5-2: BLOCK DIAGRAM OF GP2/T0CKI/AN2/INT PIN

FIGURE 5-3: BLOCK DIAGRAM OF GP3/MCLR/VPP PIN

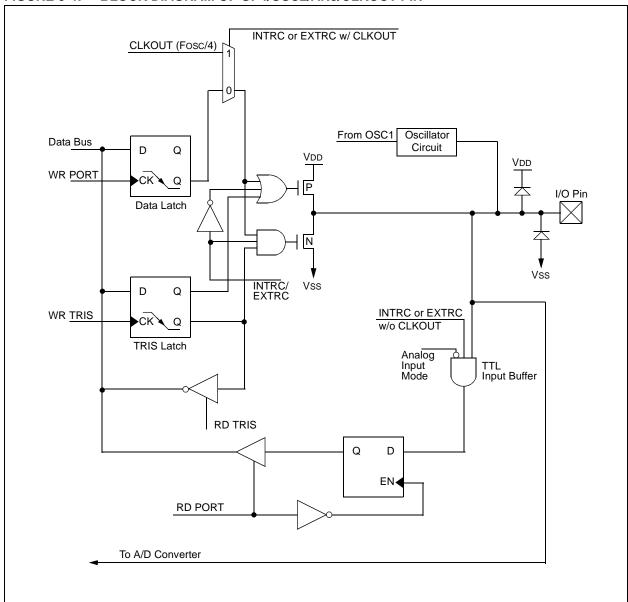


FIGURE 5-4: BLOCK DIAGRAM OF GP4/OSC2/AN3/CLKOUT PIN

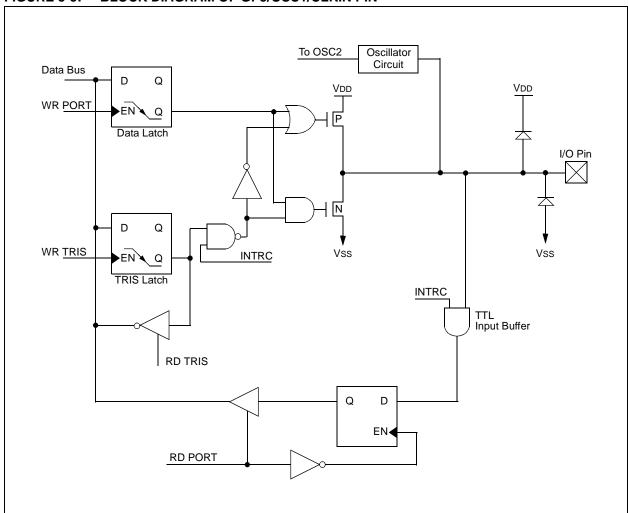


FIGURE 5-5: BLOCK DIAGRAM OF GP5/OSC1/CLKIN PIN

TABLE 5-1: SUMMARY OF PORT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
85h	TRIS			GPIO Data Direction Register						11 1111	11 1111
81h	OPTION	GPPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
05h	GPIO	LINTX	LINRX	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu

Legend: Shaded cells not used by Port Registers, read as '0', — = unimplemented, read as '0', x = unknown, u = unchanged, q = see tables in Section 9.4 for possible values.

Note 1: The IRP and RP1 bits are reserved on the PIC16C433; always maintain these bits clear.

5.5 <u>I/O Programming Considerations</u>

5.5.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of GPIO will cause all eight bits of GPIO to be read into the CPU. Then, the BSF operation takes place on bit5 and GPIO is written to the output latches. If another bit of GPIO is used as a bi-directional I/O pin (i.e., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

Reading the port register reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (i.e., BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-1 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

```
;Initial GPIO Settings
; GPIO<5:3> Inputs
; GPIO<2:0> Outputs
;
; GPIO latch GPIO pins
; ------
BCF GPIO, 5 ;--01 -ppp --11 pppp
BCF GPIO, 4 ;--10 -ppp --11 pppp
MOVLW 007h
; TRIS GPIO ;--10 -ppp --10 pppp
```

;Note that the user may have expected the pin ;values to be --00 pppp. The 2nd BCF caused ;GP5 to be latched as the pin value (High).

A pin actively outputting a Low or High should not be driven from external devices at the same time, in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

NOTES:

6.0 LIN bus TRANSCEIVER

The PIC16C433 has an integrated LIN bus transceiver, which allows the microcontroller to communicate via a LIN bus. The LIN bus protocol is handled by the microcontroller. The conversion from 5V signal to LIN bus signals is handled by the transceiver

6.1 The LIN bus Protocol

The LIN bus protocol is not described within this document. For further information regarding the LIN bus protocol, please refer to www.lin-subbus.de.

6.2 LIN bus Interfacing

The LIN bus will be transmitted by toggling the LINTX bit in the LININTF register. Data transmitted on the LIN bus is read by checking the LINRX bit in the PORTA register.

For a LIN bus Slave software implementation, please refer to AN729.

6.3 LIN bus Hardware Interface

Figure 6-1shows how to implement a hardware LIN bus interface for the PIC16C433.

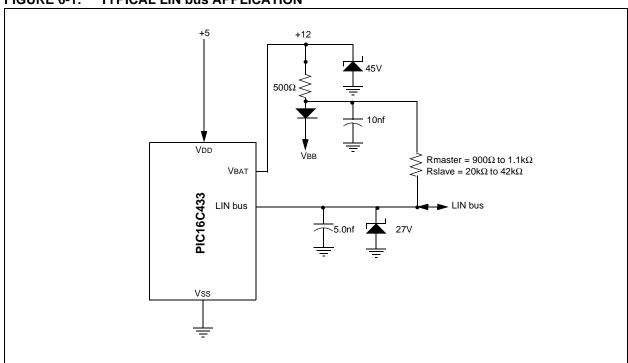
An external 45V zener diode between VBB and ground, with a 500Ω resistor in series with the battery supply and the VBB pin, protects the PIC16C433 from power transients.

An external reverse battery blocking diode is used to provide polarity protection.

6.4 Thermal Shut-down

In thermal shut-down, the LIN bus output is disabled instantaneously. The output transistor is turned off, regardless of the input level at pin LINTX bit and only a limited current can flow into the receiver connected to the LIN bus pin.

Note: TLINRX must be set to '1' at all times.


6.5 Wake-up from SLEEP upon Bus Activity

The PIC16C433 can wake-up from SLEEP upon bus activity in the following way:

1. Connect BACT to GP2/T0CKI/AN2/INT.

The BACT signal is a mirror of the LIN bus. This signal can be routed to GP2/T0CKI/AN2/INT pin. The GP2/T0CKI/AN2/INT interrupt wakes up the device from SLEEP.

FIGURE 6-1: TYPICAL LIN bus APPLICATION

NOTES:

7.0 TIMERO MODULE

The Timer0 module timer/counter has the following features:

- · 8-bit timer/counter
- · Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- · Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit T0CS (OPTION<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit TOCS (OPTION<5>). In Counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the bit TOSE

(OPTION<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 <u>Timer0 Interrupt</u>

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP. See Figure 7-4 for Timer0 interrupt timing.

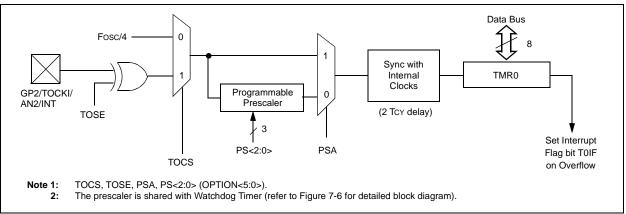


FIGURE 7-2: TIMERO TIMING: INTERNAL CLOCK/NO PRESCALE

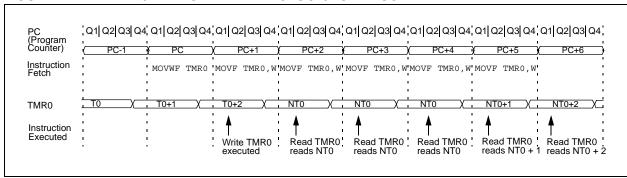
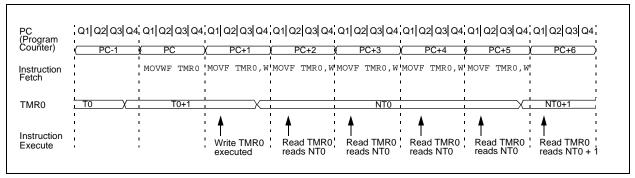
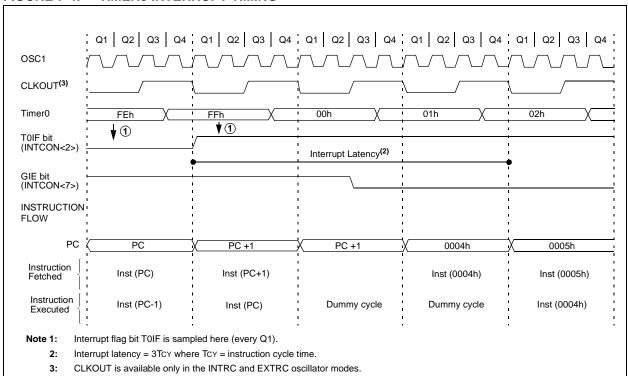




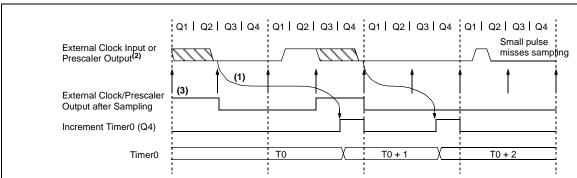
FIGURE 7-3: TIMERO TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 7-4: TIMERO INTERRUPT TIMING

7.2 <u>Using Timer0 with an External Clock</u>

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

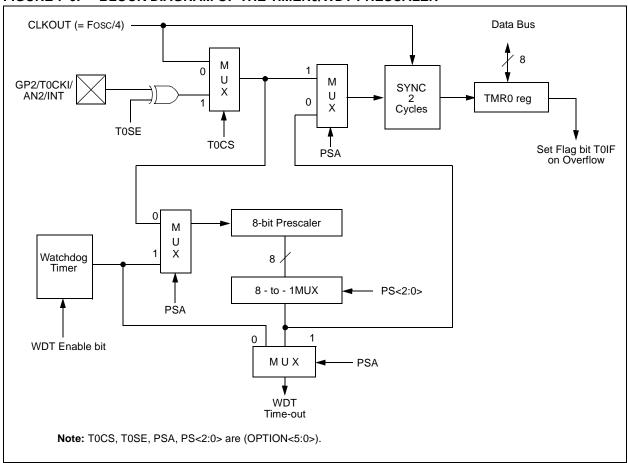

When no prescaler is used, the external clock input is used as the clock source. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for TOCKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T0CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns), divided by the prescaler value. The only requirement on T0CKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

- Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc (Duration of Q = Tosc). Therefore, the error in measuring the interval between two edges on Timer0 input = ±4Tosc max.
 - 2: External clock if no prescaler selected; prescaler output otherwise.
 - 3: The arrows indicate the points in time where sampling occurs.


7.3 **Prescaler**

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (i.e., CLRF 1, MOVWF 1, 1, x...., etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

BLOCK DIAGRAM OF THE TIMERO/WDT PRESCALER FIGURE 7-6:

7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution).

Note: To avoid an unintended device RESET, the following instruction sequence (shown in Example 7-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0 → WDT)

BCF STATUS, RP0 ;Bank 0
CLRF TMR0 ;Clear TMR0 & Prescaler
BSF STATUS, RP0 ;Bank 1
CLRWDT ;Clears WDT
MOVLW b'xxxx1xxx' ;Select new prescale
MOVWF OPTION_REG ;value & WDT
BCF STATUS, RP0 ;Bank 0

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2.

EXAMPLE 7-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT ;Clear WDT and ;prescaler

BSF STATUS, RP0 ;Bank 1

MOVLW b'xxxx0xxx' ;Select TMR0, new ;prescale value and MOVWF OPTION_REG ;clock source

BCF STATUS, RP0 ;Bank 0

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMERO

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
01h	TMR0	Timer0	Module's F	Register						xxxx xxxx	uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF	0000 000x	0000 000u
81h	OPTION	GPPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRIS	_	_	TRIS5	TRIS4	TRIS3	TRIS2	TRIS1	TRIS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

PIC16C433

NOTES:

8.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has four analog inputs.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD), or the voltage level on the GP1/AN1/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 Register, shown in Figure 8-1, controls the operation of the A/D module. The ADCON1 Register, shown in Figure 8-2, configures the functions of the port pins. The port pins can be configured as analog inputs (GP1 can also be a voltage reference) or as digital I/O.

- Note 1: If the port pins are configured as analog inputs (RESET condition), reading the port (MOVF GPIO, W) results in reading '0's.
 - 2: Changing ADCON1 Register can cause the GPIF and INTF flags to be set in the INTCON Register. These interrupts should be disabled prior to modifying ADCON1.

REGISTER 8-1: ADCON0 REGISTER (ADDRESS 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS1	ADCS0	reserved	CHS1	CHS0	GO/DONE	reserved	ADON
bit7							bit0

bit 7-6 ADCS<1:0>: A/D Conversion Clock Select bits

00 = Fosc/2

01 = Fosc/8

10 = Fosc/32

11 = FRC (clock derived from an RC oscillation)

bit 5 Reserved

bit 4-3 CHS<1:0>: Analog Channel Select bits

00 = channel 0, (GP0/AN0)

01 = channel 1, (GP1/AN1)

10 = channel 2, (GP2/AN2)

11 = channel 3, (GP4/AN3)

bit 2 GO/DONE: A/D Conversion Status bit

If ADON = 1:

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion)
- 0 = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete)

bit 1 Reserved

bit 0 ADON: A/D On bit

1 = A/D converter module is operating

0 = A/D converter module is shut-off and consumes no operating current

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

- n = Value at POR reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

REGISTER 8-2: ADCON1 REGISTER (ADDRESS 9Fh

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	PCFG2	PCFG1	PCFG0
bit7							bit0

bit 7-2 Unimplemented: Read as '0'

bit 1-0 PCFG<2:0>: A/D Port Configuration Control bits

PCFG<2:0>	GP4	GP2	GP1	GP0	VREF
000(1)	А	А	Α	Α	Vdd
001	Α	Α	VREF	Α	GP1
010	D	Α	Α	Α	VDD
011	D	Α	VREF	Α	GP1
100	D	D	Α	Α	VDD
101	D	D	VREF	Α	GP1
110	D	D	D	Α	Vdd
111	D	D	D	D	VDD

A = Analog Input

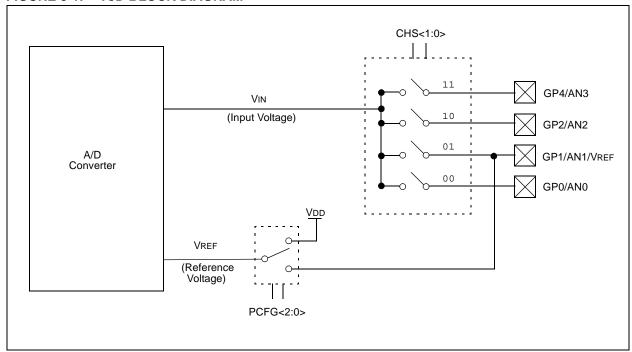
D = Digital I/O

Note 1: Value on RESET.

2: Any instruction that reads a pin configured as an analog input will read a '0'.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

© 2001 Microchip Technology Inc.


The ADRES Register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared and A/D interrupt flag bit ADIF (PIE1<6>) is set. The block diagrams of the A/D module are shown in Figure 8-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine sample time, see Section 8.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference/ and digital I/O (ADCON1 and TRIS)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - · Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared OR
 - Waiting for the A/D interrupt
- Read A/D Result Register (ADRES), clear bit ADIF if required.
- 7. For the next conversion, go to step 1, step 2, or step 3, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 8-1: A/D BLOCK DIAGRAM

8.1 A/D Sampling Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 8-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 8-2. The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 8-1 may be used. This equation assumes that 1/2 LSb error is used (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

EQUATION 8-1: A/D MINIMUM CHARGING TIME

VHOLD = (VREF - (VREF/512)) • (1 - $e^{(-Tc/CHOLD(RiC + Rss + Rs))}$)
or

 $Tc = -(51.2 pF)(1 k\Omega + Rss + Rs) ln(1/511)$

Example 8-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following system assumptions.

 $Rs = 10 \text{ k}\Omega$

1/2 LSb error

 $\text{VDD} = 5\text{V} \rightarrow \text{Rss} = 7~\text{k}\Omega$

Temperature (system max.) = 50°C

VHOLD = 0 @ t = 0

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

2: The charge holding capacitor (CHOLD) is not discharged after each conversion.

3: The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.

4: After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.

EXAMPLE 8-1: CALCULATING THE MINIMUM REQUIRED SAMPLE TIME

TACQ = Internal Amplifier Settling Time +
Holding Capacitor Charging Time +
Temperature Coefficient

TACQ = $5 \mu s + Tc + [(Temp - 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$

TC = -CHOLD (RIC + RSS + RS) $\ln(1/512)$

-51.2 pF (1 kΩ + 7 kΩ + 10 kΩ) ln(0.0020)

-51.2 pF (18 kΩ) ln(0.0020)

-0.921 μs (-6.2146)


5.724 µs

TACQ = $5 \mu s + 5.724 \mu s + [(50^{\circ}C - 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$

 $10.724 \mu s + 1.25 \mu s$

11.974 μ s

FIGURE 8-2: ANALOG INPUT MODEL

8.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5 TAD per 8-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- · Internal ADC RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 μ s. If the minimum TAD time of 1.6 μ s can not be obtained, TAD should be \leq 8 μ s for preferred operation.

Table 8-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

8.3 Configuring Analog Port Pins

The ADCON1 and TRIS Registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<2:0> bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channel will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input (including the AN<3:0> pins) may cause the input buffer to consume current that is out of the devices specification.

TABLE 8-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock Source	(TAD)	Device Frequency				
Operation	ADCS<1:0>	4 MHz	1.25 MHz	333.33 kHz		
2Tosc	00	500 ns ⁽²⁾	1.6 μs	6 μs		
8Tosc	01	2.0 μs	6.4 μs	24 μs ⁽³⁾		
32Tosc	10	8.0 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾		
Internal ADC RC Oscillator ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾		

- Note 1: The RC source has a typical TAD time of 4 μs .
 - 2: These values violate the minimum required TAD time.
 - 3: For faster conversion times, the selection of another clock source is recommended.
 - 4: While in RC mode, with device frequency above 1 MHz, conversion accuracy is out of specification.
 - 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

8.4 A/D Conversions

Example 8-2 shows how to perform an A/D conversion. The GPIO pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled and the A/D conversion clock is FRC. The conversion is performed on the GP0 channel.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 8-2: DOING AN A/D CONVERSION

```
STATUS, RP0
                            ; Select Page 1
  BSF
  CLRF
         ADCON1
                            ; Configure A/D inputs
                           ; Enable A/D interrupts
  BSF
         PIE1, ADIE
                            ; Select Page 0
  BCF
         STATUS, RP0
  MOVLW
         0xC1
                             ; RC Clock, A/D is on, Channel 0 is selected
         ADCON0
  MOVWF
                             ; Clear A/D interrupt flag bit
  BCF
          PIR1, ADIF
  BSF
          INTCON, PEIE
                             ; Enable peripheral interrupts
  BSF
          INTCON, GIE
                             ; Enable all interrupts
Ensure that the required sampling time for the selected input channel has elapsed.
Then the conversion may be started.
  BSF
          ADCONO, GO
                             ; Start A/D Conversion
                             ; The ADIF bit will be set and the GO/DONE bit
                             ; is cleared upon completion of the A/D Conversion.
```

8.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS<1:0> = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared, and the result loaded into the ADRES Register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the A/D module will then be turned off, although the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS<1:0> = 11). To perform an A/D conversion in SLEEP, the GO/DONE bit must be set, followed by the SLEEP instruction.

8.6 A/D Accuracy/Error

The overall accuracy of the A/D is less than \pm 1 LSb for VDD = $5V \pm 10\%$ and the analog VREF = VDD. This overall accuracy includes offset error, full scale error, and integral error. The A/D converter is monotonic over the full VDD range. The resolution and accuracy may be less when either the analog reference (VDD) is less than 5.0V, or when the analog reference (VREF) is less than VDD.

The maximum pin leakage current is specified in the Device Data Sheet electrical specification, parameter #D060.

In systems where the device frequency is low, use of the A/D RC clock is preferred. At moderate to high frequencies, TAD should be derived from the device oscillator. TAD must not violate the minimum and should be $\leq 8~\mu s$ for preferred operation. This is because TAD, when derived from ToSC, is kept away from on-chip phase clock transitions. This reduces, to a large extent, the effects of digital switching noise. This is not possible with the RC derived clock. The loss of accuracy due to digital switching noise can be significant if many I/O pins are active.

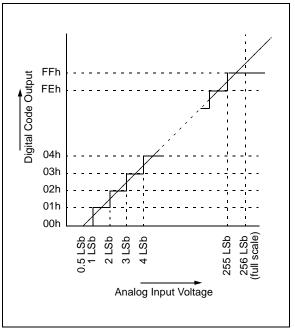
In systems where the device will enter SLEEP mode after the start of the A/D conversion, the RC clock source selection is required. In this mode, the digital noise from the modules in SLEEP is stopped. This method gives high accuracy.

8.7 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted. The value that is in the ADRES register is not modified for a RESET. The ADRES register will contain unknown data after a Power-on Reset.

8.8 Connection Considerations

If the input voltage exceeds the rail values (Vss or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.


Note: For the PIC16C433, care must be taken when using the GP4 pin in A/D conversions due to its proximity to the OSC1 pin.

An external RC filter is sometimes added for antialiasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k Ω recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

8.9 <u>Transfer Function</u>

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is 1 LSb (or Analog VREF/256) (Figure 8-3).

FIGURE 8-3: A/D TRANSFER FUNCTION

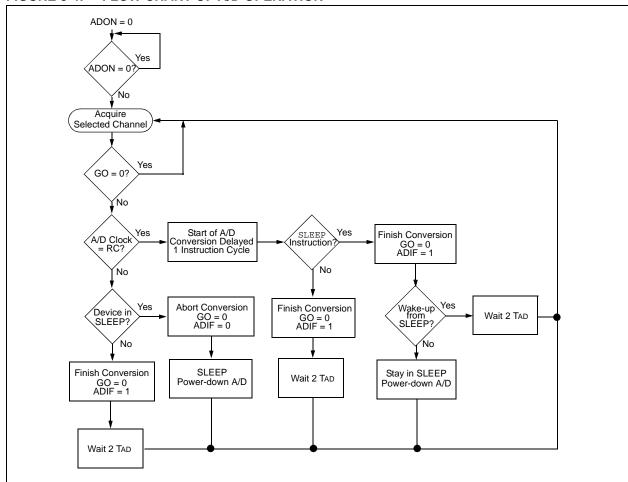


FIGURE 8-4: FLOW CHART OF A/D OPERATION

TABLE 8-2: SUMMARY OF A/D REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other RESETS
0Bh/8Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	_	_	_	_	_	_	-0	-0
8Ch	PIE1	_	ADIE	_	_	_	_	_	_	-0	-0
1Eh	ADRES	A/D Res	sult Regist	er						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	reserved	CHS1	CHS0	GO/DONE	reserved	ADON	0000 0000	0000 0000
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000
05h	GPIO	LINTX	LINRX	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu
85h	TRIS	_	-	TRIS5	TRIS4	TRIS3	TRIS2	TRIS1	TRIS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers can be addressed from either bank.

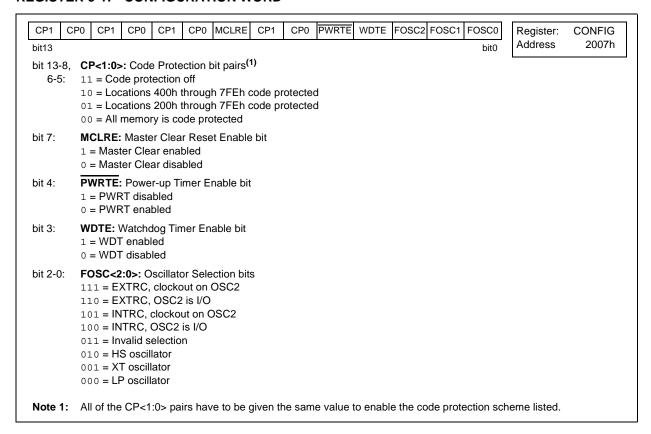
9.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC16C433 device has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- · Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- · Code Protection
- ID Locations
- · In-Circuit Serial Programming

The PIC16C433 has a Watchdog Timer, which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is

the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.


SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The INTRC/EXTRC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits is used to select various options.

9.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h-3FFFh), which can be accessed only during programming.

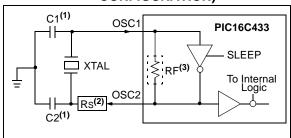
REGISTER 9-1: CONFIGURATION WORD

9.2 <u>Oscillator Configurations</u>

9.2.1 OSCILLATOR TYPES

The PIC16C433 can be operated in seven different oscillator modes. The user can program three configuration bits (Fosc<2:0>) to select one of these seven modes:

LP: Low Power Crystal


HS: High Speed Crystal/Resonator

XT: Crystal/Resonator
 INTRC*: Internal 4 MHz Oscillator
 EXTRC*: External Resistor/Capacitor
 *Can be configured to support CLKOUT

9.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, HS or LP modes, a crystal or ceramic resonator is connected to the GP5/OSC1/CLKIN and GP4/OSC2 pins to establish oscillation (Figure 9-1). The PIC16C433 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, HS or LP modes, the device can have an external clock source drive the GP5/OSC1/CLKIN pin (Figure 9-2).

FIGURE 9-1: CRYSTAL OPERATION
OR CERAMIC RESONATOR
(XT, HS OR LP OSC
CONFIGURATION)

Note 1: See Capacitor Selection tables for recommended values of C1 and C2.

- 2: A series resistor (Rs) may be required for AT strip cut crystals.
- 3: RF varies with the oscillator mode selected (approx. value = 10 $M\Omega$).

FIGURE 9-2: EXTERNAL CLOCK INPUT OPERATION (XT, HS OR LP OSC CONFIGURATION)

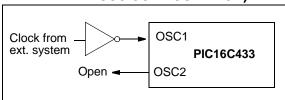


TABLE 9-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS - PIC16C433

Osc Type	Resonator Freq	Cap. Range C1	Cap. Range
XT	455 kHz	22-100 RF	22-100 pF
	2.0 MHz	15-68, pH	√>15-68 pF
	4.0 MHz	15-68 DF)	15-68 pF
HS	4.0 MHz	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	15-68 pF
	8.0 MHz	[∆] 10-68 pF	10-68 pF
	100 MHz	10-22 pF	10-22 pF

These values are for design guidance only. Since each esonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR - PIC16C433

	_		
Osc Type	Resonator Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz ⁽¹⁾	15 pF	15 pF
	100 kHz	15-30 pF	30-47 pF
	200 kHz	15-30 pF	75-82 pF
XT	100 kHz	15-30 pF	2003300 pF
	200 kHz	15-30 OF	√100-200 pF
	455 kHz	/ (1/5/30/pE) [15-100 pF
	1 MHz \\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	15-30 pF
	21/1Hz \	√√15-30 pF	15-30 pF
	ATAHZ	15-47 pF	15-47 pF
(HS)	14 MHz	15-30 pF	15-30 pF
1 /2 ,	8 MHz	15-30 pF	15-30 pF
	10 MHz	15-30 pF	15-30 pF

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

These values are for design guidance only. Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

9.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a pre-packaged oscillator, or a simple oscillator circuit with TTL gates, can be used as an external crystal oscillator circuit. Pre-packaged oscillators provide a wide operating range and better stability. A well designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with parallel resonance, or one with series resonance.

Figure 9-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 $k\Omega$ resistor provides the negative feedback for stability. The 10 $k\Omega$ potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 9-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

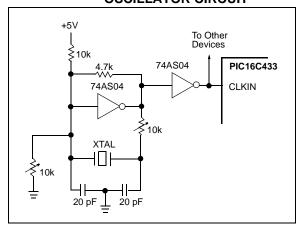
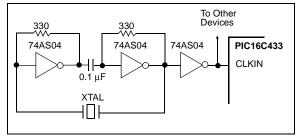



Figure 9-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 9-4: EXTERNAL SERIES
RESONANT CRYSTAL
OSCILLATOR CIRCUIT

9.2.4 EXTERNAL RC OSCILLATOR

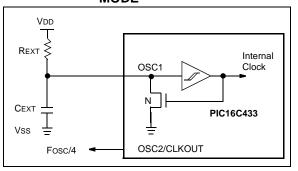

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit, due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used.

Figure 9-5 shows how the R/C combination is connected to the PIC16C433. For REXT values below 2.2 k Ω , the oscillator operation may become unstable or stop completely. For very high REXT values (i.e., 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping REXT between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (CEXT = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

The variation is greater for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

FIGURE 9-5: EXTERNAL RC OSCILLATOR MODE

9.2.5 INTERNAL 4 MHz RC OSCILLATOR

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at VDD = 5V and $25^{\circ}C$. See Section 13.0 for information on variation over voltage and temperature.

In addition, a calibration instruction is programmed into the last address of the program memory, which contains the calibration value for the internal RC oscillator. This value is programmed as a RETLW XX instruction, where XX is the calibration value. In order to retrieve the calibration value, issue a CALL YY instruction, where YY is the last location in program memory. Control will be returned to the user's program with the calibration value loaded into the W register. The program should then perform a MOVWF OSCCAL instruction to load the value into the internal RC oscillator trim register.

OSCCAL, when written to with the calibration value, will "trim" the internal oscillator to remove process variation from the oscillator frequency. Bits <7:4>, CAL<3:0> are used for fine calibration, while bit3, CALFST, and bit2, CALSLW, are used for more coarse adjustment. Adjusting CAL<3:0> from 0000 to 1111 yields a higher clock speed. Set CALFST = 1 for greater increase in frequency, or set CALSLW = 1 for greater decrease in frequency. Note that bits 1 and 0 of OSCCAL are unimplemented and should be written as 0, when modifying OSCCAL for compatibility with future devices.

Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be saved prior to erasing the part.

9.2.6 CLKOUT

The PIC16C433 can be configured to provide a clock out signal (CLKOUT) on pin 3, when the configuration word address (2007h) is programmed with Fosc2, Fosc1, and Fosc0, equal to 101 for INTRC or 111 for EXTRC. The oscillator frequency, divided by 4, can be used for test purposes or to synchronize other logic.

9.3 RESET

The PIC16C433 differentiates between various kinds of RESET:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- WDT Reset (normal operation)

Some registers are not affected in any RESET condition; their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset (POR), $\overline{\text{MCLR}}$ Reset, WDT Reset, and $\overline{\text{MCLR}}$ Reset during SLEEP. They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different RESET situations, as indicated in Table 9-5. These bits are used in software to determine the nature of the RESET. See Table 9-6 for a full description of RESET states of all registers.

A simplified block diagram of the On-Chip Reset circuit is shown in Figure 9-6.

The PIC16C433 has a MCLR noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

When MCLR is asserted, the state of the OSC1/CLKIN and CLKOUT/OSC2 pins are as follows:

TABLE 9-3: CLKIN/<u>CLKO</u>UT PIN STATES WHEN MCLR ASSERTED

Oscillator Mode	OSC1/CLKIN Pin	OSC2/CLKOUT Pin
EXTRC, CLKOUT on OSC2	OSC1 pin is tri-stated and driven by external circuit	OSC2 pin is driven low
EXTRC, OSC2 is I/O	OSC1 pin is tri-stated and driven by external circuit	OSC2 pin is tri-state input
INTRC, CLKOUT on OSC2	OSC1 pin is tri-state input	OSC2 pin is driven low
INTRC, OSC2 is I/O	OSC1 pin is tri-state input	OSC2 pin is tri-state input

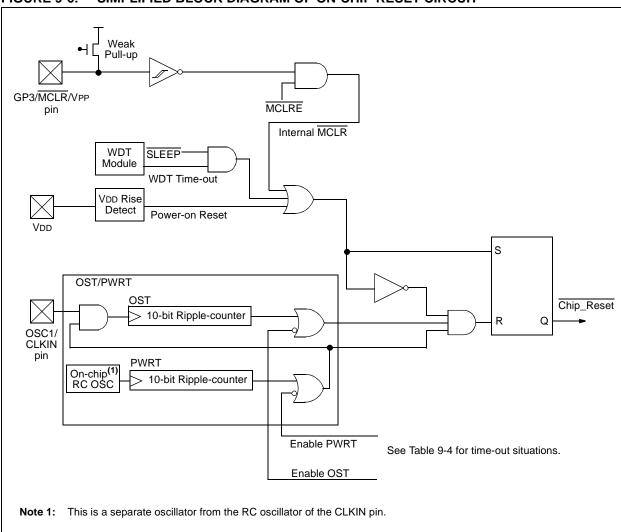


FIGURE 9-6: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

9.4 Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)

9.4.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in RESET until VDD has reached a high enough level for proper operation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create a Poweron Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

For additional information, refer to Application Note AN607, "Power-up Trouble Shooting."

9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature and process variation.

9.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator, or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 TIME-OUT SEQUENCE

On power-up, the Time-out Sequence is as follows: first, PWRT time-out is invoked after the POR time delay has expired; then, OST is activated. The total time-out will vary, based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 9-7, Figure 9-8, and Figure 9-9 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Then bringing MCLR high will begin execution immediately (Figure 9-9). This is useful for testing purposes, or to synchronize more than one PIC16C433 device operating in parallel.

9.4.5 POWER CONTROL/STATUS REGISTER (PCON)

The Power Control/Status Register, PCON (address 8Eh), has one bit.

Bit1 is POR (Power-on Reset). It is cleared on a Power-on Reset and is unaffected otherwise. The user sets this bit following a Power-on Reset. On subsequent RESETS, if POR is '0', it will indicate that a Power-on Reset must have occurred.

TABLE 9-4: TIME-OUT IN VARIOUS SITUATIONS

0	Power	r-up	W.L. (01550
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Wake-up from SLEEP
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024Tosc
INTRC, EXTRC	72 ms	_	_

TABLE 9-5: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	ТО	PD	
0	1	1	Power-on Reset
0	0	х	Illegal, TO is set on POR
0	х	0	Illegal, PD is set on POR
1	0	u	WDT Reset
1	0	0	WDT Wake-up
1	u	u	MCLR Reset during normal operation
1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

Legend: u = unchanged, x = unknown

TABLE 9-6: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0-
MCLR Reset during normal operation	000h	000u uuuu	u-
MCLR Reset during SLEEP	000h	0001 0uuu	u-
WDT Reset during normal operation	000h	0000 uuuu	u-
WDT Wake-up from SLEEP	PC + 1	uuu0 0uuu	u-
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuu1 0uuu	u-

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 9-7: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Power-on Reset	MCLR Reset WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	0000 0000	0000 0000	0000 0000
TMR0	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	0000 0000	0000 0000	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu(3)
FSR	xxxx xxxx	uuuu uuuu	uuuu uuuu
GPIO	11xx xxxx	11uu uuuu	11uu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 000x	0000 000u	uuuu uqqq(1)
PIR1	-0	-0	-q (4)
ADCON0	0000 0000	0000 0000	uuuu uquu ⁽⁵⁾
OPTION	1111 1111	1111 1111	uuuu uuuu
TRIS	11 1111	11 1111	uu uuuu
PIE1	-0	-0	-u
PCON	0-	u-	u-
OSCCAL	0111 00	uuuu uu	uuuu uu
ADCON1	000	000	uuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', <math>q = value depends on condition **Note 1:** One or more bits in INTCON and PIR1 will be affected (to cause wake-up).

- 2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
- 3: See Table 9-5 for RESET value for specific condition.
- 4: If wake-up was due to A/D completing then bit 6 = 1, all other interrupts generating a wake-up will cause bit 6 = u.
- 5: If wake-up was due to A/D completing then bit 3 = 0, all other interrupts generating a wake-up will cause bit 3 = u.

FIGURE 9-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

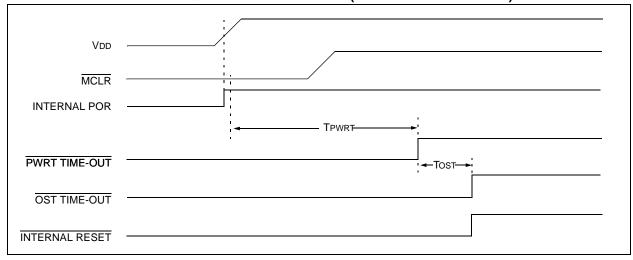


FIGURE 9-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

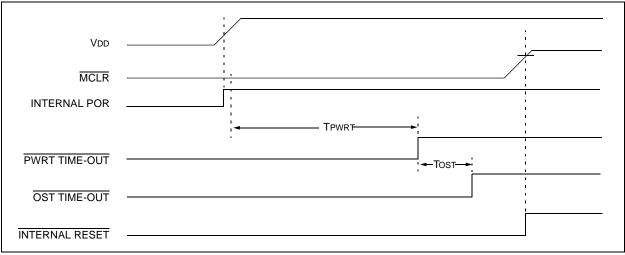
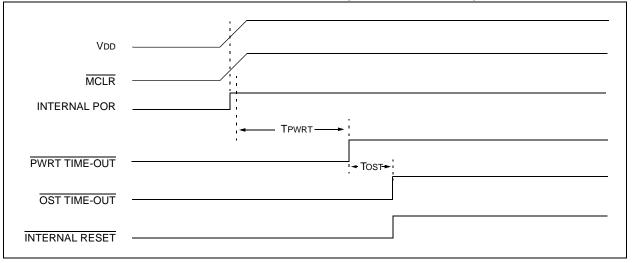
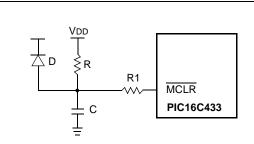




FIGURE 9-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

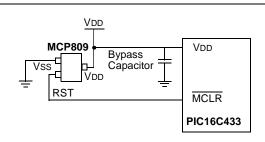


FIGURE 9-10: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

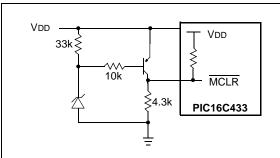
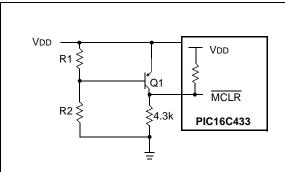

- Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - 3: R1 = 100Ω to 1 k Ω will limit any current flowing into \overline{MCLR} from external capacitor C, in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD), or Electrical Overstress (EOS).

FIGURE 9-11: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 3

This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. The MCP8XX and MCP1XX families of supervisors provide push-pull and open collector outputs, with both high and low active RESET pins. There are 7 different trip point selections to accommodate 5V and 3V systems.


FIGURE 9-12: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

Note 1: This circuit will activate RESET when VDD goes below (Vz + 0.7V), where Vz = Zener voltage.

2: Resistors should be adjusted for the characteristics of the transistor.

FIGURE 9-13: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level, such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

2: Resistors should be adjusted for the characteristics of the transistor.

9.5 Interrupts

There are four sources of interrupt:

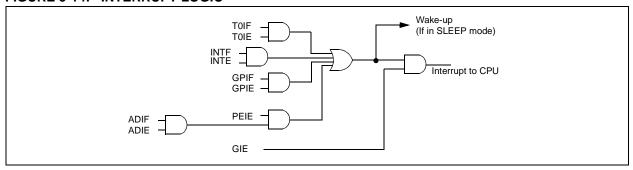
Interrupt Sources
TMR0 Overflow Interrupt
External Interrupt GP2/INT pin
GPIO Port Change Interrupts (pins GP0, GP1, GP3)
A/D Interrupt

The Interrupt Control Register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

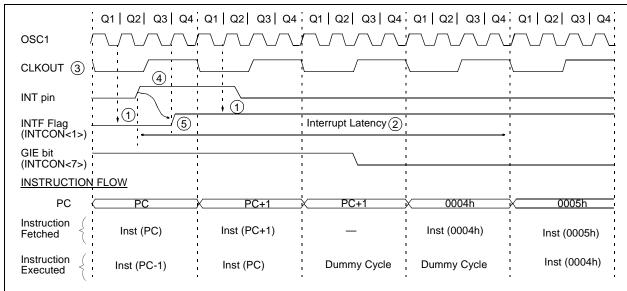
Note:	Individual interrupt flag bits are set, regard-
	less of the status of their corresponding
	mask bit, or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>), enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit. The GIE bit is cleared on RESET.

The "return-from-interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.


The GP2/INT, GPIO port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flag ADIF, is contained in the Special Function Register PIR1. The corresponding interrupt enable bit is contained in Special Function Register PIE1, and the peripheral interrupt enable bit is contained in Special Function Register INTCON.


When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid repeated interrupts.

For external interrupt events, such as GPIO change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends on when the interrupt event occurs (Figure 9-15). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.

FIGURE 9-14: INTERRUPT LOGIC

FIGURE 9-15: INT PIN INTERRUPT TIMING

Note 1: INTF flag is sampled here (every Q1).

2: Interrupt latency = 3-4 TcY where TcY = instruction cycle time.

Latency is the same whether Inst (PC) is a single cycle, or a 2-cycle instruction.

3: CLKOUT is available only in INTRC and EXTRC oscillator modes.

4: For minimum width of INT pulse, refer to AC specs.

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

9.5.1 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (see Section 7.0). The flag bit T0IF (INTCON<2>) will be set, regardless of the state of the enable bits. If used, this flag must be cleared in software.

9.5.2 INT INTERRUPT

External interrupt on GP2/INT pin is edge triggered; either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the GP2/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.8 for details on SLEEP mode.

9.5.3 GPIO INTCON CHANGE

An input change on GP3, GP1 or GP0 sets flag bit GPIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit GPIE (INTCON<3>) (Section 5.1) . This flag bit GPIF (INTCON<0>) will be set, regardless of the state of the enable bits. If used, this flag must be cleared in software.

9.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e., W register and STATUS register). This will have to be implemented in software.

Example 9-1 shows the storing and restoring of the STATUS and W registers. The register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

Example 9-2 shows the saving and restoring of STATUS and W using RAM locations 0x70 - 0x7F. W_TEMP is defined at 0x70 and STATUS_TEMP is defined at 0x71.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- Restores the STATUS register (and bank select bit).
- e) Restores the W register.
- f) Returns from interrupt.

EXAMPLE 9-1: SAVING STATUS AND W REGISTERS USING GENERAL PURPOSE RAM (0x20 - 0x6F)

```
MOVWF
         W TEMP
                           ; Copy W to TEMP register, could be bank one or zero
SWAPF
         STATUS, W
                           ;Swap status to be saved into W
BCF
         STATUS, RPO
                           ; Change to bank zero, regardless of current bank
                           ; Save status to bank zero STATUS TEMP register
MOVWF
         STATUS TEMP
: (ISR)
SWAPF
         STATUS_TEMP,W
                           ;Swap STATUS_TEMP register into W
                           ; (sets bank to original state)
         STATUS
                           ; Move W into STATUS register
MOVWF
SWAPF
         W TEMP, F
                           ; Swap W TEMP
SWAPF
         W TEMP, W
                           ;Swap W TEMP into W
RETFIE
                           ;Return from interrupt
```

EXAMPLE 9-2: SAVING STATUS AND W REGISTERS USING SHARED RAM (0x70 - 0x7F)

```
MOVWF
         W TEMP
                           ;Copy W to TEMP register (bank independent)
MOVF
         STATUS, W
                           ; Move STATUS register into W
         STATUS TEMP
                           ; Save contents of STATUS register
MOVWF
: (ISR)
MOVF
         STATUS_TEMP,W
                           ;Retrieve copy of STATUS register
MOVWF
         STATUS
                           ; Restore pre-isr STATUS register contents
         W TEMP, F
SWAPF
SWAPF
         W_TEMP,W
                           ;Restore pre-isr W register contents
RETFIE
                           ;Return from interrupt
```

9.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLK-OUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 9.1).

9.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control, by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out early and generating a premature device RESET condition.

The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

9.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., and Max. WDT prescaler), it may take several seconds before a WDT time-out occurs.

Note: When the prescaler is assigned to the WDT, always execute a CLRWDT instruction before changing the prescale value, otherwise a WDT Reset may occur.

See Example 7-1 and Example 7-2 for changing prescaler between WDT and Timer0.

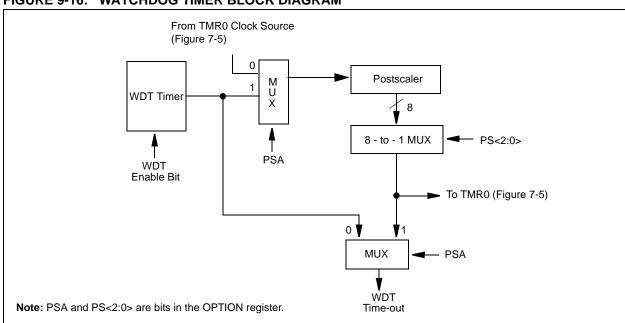


FIGURE 9-16: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 9-8: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits ⁽¹⁾	MCLRE	CP1	CP0	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
81h	OPTION	GPPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 9-1 for operation of these bits. Not all CP0 and CP1 bits are shown.

9.8 Power-down Mode (SLEEP)

Power-down mode is entered by executing a ${\tt SLEEP}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input, if enabled, should also be at VDD or Vss, for lowest current consumption. The contribution from on-chip pull-ups on GPIO should be considered.

The MCLR pin, if enabled, must be at a logic high level (VIHMC).

9.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin.
- Watchdog Timer Wake-up (if WDT was enabled).
- 3. GP2/INT interrupt, interrupt GPIO port change or some peripheral interrupts.
- LIN bus activity (connect BACT to GP2/T0CKI/ AN2/INT pin).

External MCLR Reset will cause a device RESET. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupt can wake the device from SLEEP:

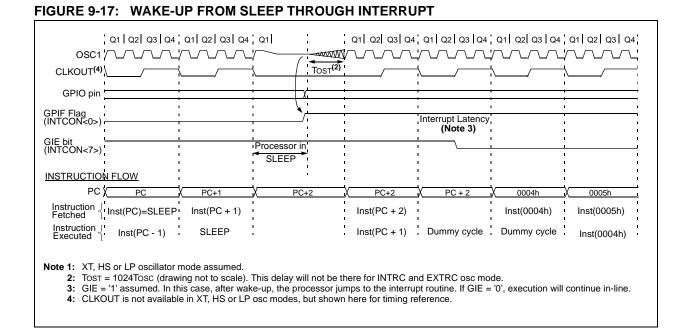
1. A/D conversion (when A/D clock source is RC).

Other peripherals cannot generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

9.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:


- If the interrupt occurs before the the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

9.8.3 WAKE-UP FROM SLEEP UPON BUS ACTIVITY

The PIC16C433 can be woken up upon bus activity on the LIN bus. This is done by connecting the BACT pin with either GP0, GP1 or GP2. The pin which will be connected to the BACT pin has to be configured to wake the microcontroller up from SLEEP.

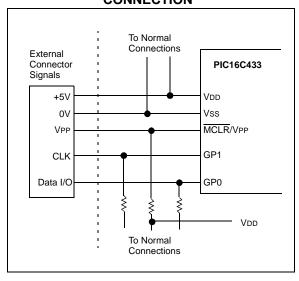
9.9 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices.

9.10 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.


9.11 In-Circuit Serial Programming

PIC16C433 microcontrollers can be serially programmed, while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the GP1 and GP0 pins low, while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). GP1 (clock) becomes the programming clock and GP0 (data) becomes the programming data. Both GP0 and GP1 are Schmitt Trigger inputs in this mode.

After RESET, and if the device is placed into Programming/Verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C433 Programming Specifications.

FIGURE 9-18: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

PIC16C433

NOTES:

10.0 INSTRUCTION SET SUMMARY

Each PIC16C433 instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C433 instruction set summary in Table 10-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 10-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 10-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
х	Don't care location (= 0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
label	Label name
TOS	Top-of-Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
$\overline{ ext{PD}}$	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
€	In the set of
italics	User defined term (font is courier)

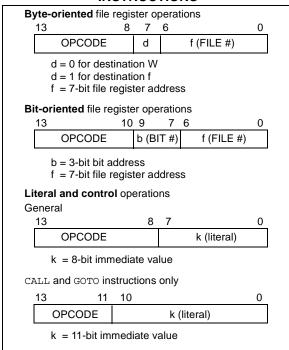
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μs . If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μs .

Table 10-2 lists the instructions recognized by the MPASM assembler.

Figure 10-1 shows the three general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16C433 products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 10-1: GENERAL FORMAT FOR INSTRUCTIONS

10.1 <u>Special Function Registers as</u> <u>Source/Destination</u>

The PIC16C433's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations specified in the following sections the user should be aware of.

10.1.1 STATUS AS DESTINATION

If an instruction writes to STATUS, the Z, C and DC bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF STATUS will clear register STATUS, and then set the Z bit leaving 0000 0100b in the register.

10.1.2 TRIS AS DESTINATION

Bit 3 of the TRIS register always reads as a '1' since GP3 is an input only pin. This fact can affect some read-modify-write operations on the TRIS register.

10.1.3 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC: $PCL \rightarrow dest$

Write PCL: PCLATH \rightarrow PCH;

8-bit destination value → PCL

Read-Modify-Write: PCL → ALU operand

PCLATH → PCH; 8-bit result → PCL

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

10.1.4 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

TABLE 10-2: INSTRUCTION SET SUMMARY

	Description	Cycles	14-Bit Opcode			Status	Notes	
Operands	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIENTED FILE REGISTER OPERATIONS								
ADDWF f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW -	Clear W	1	00	0001	0000	0011	Z	
COMF f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF f	Move W to f	1	00	0000	lfff	ffff		
NOP -	No Operation	1	00	0000	0xx0	0000		
RLF f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF f, d	Rotate Right f through Carry	1	0.0	1100	dfff	ffff	С	1,2
SUBWF f, d	Subtract W from f	1	0.0	0010	dfff	ffff	C,DC,Z	1,2
SWAPF f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENTED F	LE REGISTER OPERATIONS							
BCF f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL AND CO	NTROL OPERATIONS							
ADDLW k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT -	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE -	Return from interrupt	2	00	0000	0000	1001		
RETLW k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN -	Return from Subroutine	2	00	0000	0000	1000		
SLEEP -	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW k	Exclusive OR literal with W	1	11	1010	kkkk		Z	

Note 1: When an I/O register is modified as a function of itself (i.e., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

^{2:} If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

^{3:} If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

10.2 **Instruction Descriptions**

ADDLW	Add Literal and W					
Syntax:	[label] ADDLW k					
Operands:	$0 \le k \le 255$					
Operation:	$(W) + k \to (W)$					
Status Affected:	C, DC, Z					
Encoding:	11 111x kkkk kkkk					
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.					
Words:	1					
Cycles:	1					
Example	ADDLW 0x15					
	Before Instruction $W = 0x10$ After Instruction $W = 0x25$					

ANDLW	And Literal with W					
Syntax:	[label] ANDLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .AND. $(k) \rightarrow (W)$					
Status Affected:	Z					
Encoding:	11 1001 kkkk kkkk					
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.					
Words:	1					
Cycles:	1					
Example	ANDLW 0x5F					
	Before Instruction W = 0xA3 After Instruction W = 0x03					

ADDWF	Add W a	nd f				
Syntax:	[label] ADDWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(W) + (f)	\rightarrow (dest)				
Status Affected:	C, DC, Z					
Encoding:	00 0111 dfff ffff					
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	ADDWF	FSR,	0			
	After Inst	W = FSR =	0x17 0xC2 0xD9			

0xC2

FSR =

ANDWF	AND W with f				
Syntax:	[label] ANDWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) .AND. (f) \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 0101 dfff ffff				
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	ANDWF FSR, 1				
	Before Instruction $W = 0x17$ $FSR = 0xC2$ After Instruction $W = 0x17$ $FSR = 0x02$				

BCF	Bit Clear	f				
Syntax:	[label] BCF f,b					
Operands:	$0 \le f \le 127$ $0 \le b \le 7$					
Operation:	$0 \rightarrow (f < b:$	>)				
Status Affected:	None					
Encoding:	01 00bb bfff ffff					
Description:	Bit 'b' in r	egister 'f	is cleare	ed.		
Words:	1					
Cycles:	1					
Example	BCF	FLAG_	REG, 7			
	Before Instruction FLAG_REG = 0xC7 After Instruction FLAG_REG = 0x47					

BTFSC	Bit Test, Skip if Clear	
Syntax:	[label] BTFSC f,b	
Operands:	$0 \le f \le 127$ $0 \le b \le 7$	
Operation:	skip if $(f < b >) = 0$	
Status Affected:	None	
Encoding:	01 10bb bfff ffff	
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a 2 cycle instruction.	
Words:	1	
Cycles:	1(2)	
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •	
	Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address TRUE if FLAG<1>=1,	

PC =

address FALSE

BSF	Bit Set f			
Syntax:	[label] B	SF f,b		
Operands:	$0 \le f \le 12$ $0 \le b \le 7$	27		
Operation:	$1 \rightarrow (f < b)$	>)		
Status Affected:	None			
Encoding:	01	01bb	bfff	ffff
Description:	Bit 'b' in r	egister 'f	is set.	
Words:	1			
Cycles:	1			
Example	BSF	FLAG_F	REG, 7	
	After Inst	FLAG_RE	EG = 0x0A $EG = 0x8A$	

PIC16C433

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if $(f < b >) = 1$
Status Affected:	None
Encoding:	01 11bb bfff ffff
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a 2-cycle instruction.
Words:	1
Cycles:	1(2)
Example	HERE BTFSS FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •
	Before Instruction PC = address HERE
	After Instruction if FLAG<1> = 0, PC = address FALSE if FLAG<1> = 1, PC = address TRUE

CLRF	Clear f			
Syntax:	[label] (CLRF f		
Operands:	$0 \le f \le 12$	27		
Operation:	$00h \rightarrow (f)$ $1 \rightarrow Z$)		
Status Affected:	Z			
Encoding:	00	0001	1fff	ffff
Description:	The conte			
Words:	1			
Cycles:	1			
Example	CLRF	FLAG	_REG	
		FLAG_RE		0x5A
	After Inst	ruction FLAG_RE	EG =	0x00
		Z	=	1

CALL	Call Subroutine
Syntax:	[label] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$ \begin{array}{l} (PC)+\ 1\rightarrow TOS, \\ k\rightarrow PC<10:0>, \\ (PCLATH<4:3>)\rightarrow PC<12:11> \end{array} $
Status Affected:	None
Encoding:	10 0kkk kkkk kkkk
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.
Words:	1
Cycles:	2
Example	HERE CALL THERE
	Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$00h \rightarrow (W)$ $1 \rightarrow Z$
Status Affected:	Z
Encoding:	00 0001 0000 0011
Description:	W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example	CLRW
	Before Instruction W = 0x5A
	After Instruction W = 0x00 Z = 1

CLRWDT	Clear Wa	atchdog	Timer	
Syntax:	[label] CLRWDT			
Operands:	None			
Operation:	00h → WDT 0 → WDT prescaler, 1 → \overline{TO} 1 → \overline{PD}			
Status Affected:	$\overline{TO}, \overline{PD}$			
Encoding:	00	0000	0110	0100
Description:	CLRWDT i Watchdoo prescaler TO and F	g Timer. of the V	It also res VDT. Stat	ets the
Words:	1			
Cycles:	1			
Example	CLRWDT			
	Before In	struction WDT cou		?
		ruction WDT cou <u>WD</u> T pres <u>TO</u> PD		0x00 0 1

DECF	Decrement f		
Syntax:	[label] DECF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	(f) - 1 \rightarrow (dest)		
Status Affected:	Z		
Encoding:	00 0011 dfff ffff		
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.		
Words:	1		
Cycles:	1		
Example	DECF CNT, 1		
	Before Instruction $CNT = 0x01$ $Z = 0$ After Instruction $CNT = 0x00$ $Z = 1$		

COMF	Complement f				
Syntax:	[label] (COMF	f,d		
Operands:	$0 \le f \le 12$ $d \in [0,1]$	0 ≤ f ≤ 127 d ∈ [0,1]			
Operation:	$(\overline{f}) \rightarrow (des$	st)			
Status Affected:	Z				
Encoding:	00	1001	df:	ff	ffff
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	COMF	REG	31,0		
	After Instr	REG1	= = =	0x13 0x13 0xE0	3

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0
Status Affected:	None
Encoding:	00 1011 dfff ffff
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.
Words:	1
Cycles:	1(2)
Example	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE • •
	Before Instruction PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ½ 0,

PC =

address HERE+1

GOTO	Unconditional Branch		
Syntax:	[label] GOTO k		
Operands:	$0 \le k \le 2047$		
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>		
Status Affected:	None		
Encoding:	10 1kkk kkkk kkkk		
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.		
Words:	1		
Cycles:	2		
Example	GOTO THERE		
	After Instruction PC = Address THERE		

INCFSZ	Increment f, Skip if 0		
Syntax:	[label] INCFSZ f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0		
Status Affected:	None		
Encoding:	00 1111 dfff ffff		
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.		
Words:	1		
Cycles:	1(2)		
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •		
	Before Instruction PC = address HERE After Instruction CNT = CNT + 1 if CNT= 0, PC = address CONTINUE if CNT≠ 0, PC = address HERE +1		

INCF	Increment f			
Syntax:	[label] INCF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	(f) + 1 \rightarrow (dest)			
Status Affected:	Z			
Encoding:	00 1010 dfff ffff			
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.			
Words:	1			
Cycles:	1			
Example	INCF CNT, 1			
	Before Instruction $\begin{array}{rcl} CNT & = & 0xFF \\ Z & = & 0 \end{array}$ After Instruction $\begin{array}{rcl} CNT & = & 0x00 \\ Z & = & 1 \end{array}$			

IORLW	Inclusive OR Literal with W
Syntax:	[label] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Encoding:	11 1000 kkkk kkkk
Description:	The contents of the W register are OR'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	IORLW 0x35
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 1

IORWF	Inclusive OR W with f				
Syntax:	[label]	IORWF	f,c	ł	
Operands:	$0 \le f \le 12$ $d \in [0,1]$				
Operation:	(W) .OR	$(f) \rightarrow (d)$	est)		
Status Affected:	Z				
Encoding:	00	0100	df	ff	ffff
Description:	Inclusive register' placed ir the resul register'	f'. If 'd' is the W ro t is place	0, th	er. If	sult is 'd' is 1,
Words:	1				
Cycles:	1				
Example	IORWF		RESU	JLT,	0
	Before In	RESULT W	=	0x13 0x91 0x13 0x93	3

MOVF	Move f		
Syntax:	[label] MOVF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	$(f) \to (dest)$		
Status Affected:	Z		
Encoding:	00 1000 dfff ffff		
Description:	The contents of register f are moved to a destination dependant upon the status of d. If d = 0, destination is W register. If d = 1, the destination is file register f itself. d = 1 is useful to test a file register since status flag Z is affected.		
Words:	1		
Cycles:	1		
Example	MOVF FSR, 0		
	After Instruction W = value in FSR register Z = 1		

MOVLW	Move Literal to W			
Syntax:	[label]	MOVLW	/ k	
Operands:	$0 \le k \le 25$	55		
Operation:	$k\to (W)$			
Status Affected:	None			
Encoding:	11	00xx	kkkk	kkkk
Description:	The eight into W rewill asser	gister. Tl	ne don't d	
Words:	1			
Cycles:	1			
Example	MOVLW	0x5A		
	After Inst	ruction W =	0x5A	

Move W to f			
[label] MOVWF f			
$0 \le f \le 127$			
$(W) \rightarrow (f)$			
None			
00 0000 lfff ffff			
Move data from W register to register 'f'.			
1			
1			
MOVWF OPTION			
Before Instruction OPTION = 0xFF W = 0x4F After Instruction OPTION = 0x4F W = 0x4F			

NOP	No Operation				
Syntax:	[label]	NOP			
Operands:	None				
Operation:	No operation				
Status Affected:	None				
Encoding:	0.0	0000	0xx0	0000	
Description:	No opera	tion.			
Words:	1				
Cycles:	1				
Example	NOP				

RETFIE	Return from Interrupt				
Syntax:	[label]	RETFIE			
Operands:	None				
Operation:	$TOS \to P$ $1 \to GIE$	PC,			
Status Affected:	None				
Encoding:	00	0000	0000	1001	
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.				
Words:	1				
Cycles:	2				
Example	RETFIE				
		rrupt PC = GIE =	TOS 1		

OPTION	Load Op	tion Reg	gister		
Syntax:	[label]	OPTION	٧		
Operands:	None				
Operation:	$(W) \rightarrow O$	PTION			
Status Affected:	None				
Encoding:	0.0	0000	0110	0010	
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.				
Words:	1				
Cycles:	1				
Example					
	To maintain upward compatibility with future PIC16C433 products, do not use this instruction.				

RETLW	Return with Literal in W				
Syntax:	[label] RETLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC				
Status Affected:	None				
Encoding:	11 01xx kkkk kkkk				
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.				
Words:	1				
Cycles:	2				
Example	CALL TABLE; W contains table ; offset value				
TABLE	• ;W now has table value •				
	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; •				
	RETLW kn ; End of table				
	Before Instruction $W = 0x07$				
	After Instruction W = value of k8				

RETURN	Return from Subroutine					
Syntax:	[label] R	ETUR	N			
Operands:	None					
Operation:	$TOS \to PC$					
Status Affected:	None					
Encoding:	00 0000 0000 1000					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.					
Words:	1					
Cycles:	2					
Example	RETURN					
	After Interru PC	ipt =	TOS			

Rotate Right f through Carry					
[label] RRF f,d					
$0 \le f \le 127$ $d \in [0,1]$					
See desc	ription b	elow			
С					
00	1100	dff	f	ffff	
The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.					
		Regis	ter f	_	
1					
1					
RRF		REG1	, 0		
After Inst	REG1 C ruction REG1 W	= = = = =	1110 0 1110 0111	0110	
	[label] $0 \le f \le 12$ $d \in [0,1]$ See described on the Carry is placed 1, the respective of the Carry is placed 1. The series of the Carry is placed 1. The respective of the Carry is placed 1. The respective of the Carry is placed 1. The respective of the Carry is placed 1. The carry is placed 1	[label] RRF f, $0 \le f \le 127$ d ∈ [0,1] See description b C	$ [label] RRF f,d \\ 0 ≤ f ≤ 127 \\ d ∈ [0,1] \\ See description below \\ C \\ \hline 00 1100 dff \\ The contents of register otated one bit to the rithe Carry Flag. If 'd' is 6 is placed in the W regi 1, the result is placed register 'f'. \\ \hline C Regis \\ 1 \\ 1 \\ RRF REG1 \\ C = After Instruction \\ REG1 = \\ C = After Instruction \\ REG1 = \\ W = $	$ [label] RRF f,d \\ 0 ≤ f ≤ 127 \\ d ∈ [0,1] \\ See description below \\ C \\ \hline 00 1100 dfff \\ The contents of register 'f' a rotated one bit to the right the Carry Flag. If 'd' is 0, the is placed in the W register. 1, the result is placed back register 'f'. \hline C $	

RLF Rotate Left f through Carry Syntax: [label] RLF f,d Operands: $0 \le f \le 127$ $d\in \left[0,1\right]$ Operation: See description below Status Affected: С Encoding: 00 1101 dfff ffff Description: The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'. Register f Words: 1 Cycles: 1 Example RLF REG1,0 Before Instruction REG1 1110 0110 After Instruction REG1 1110 0110 W 1100 1100

С

SLEEP					
Syntax:	[label] SLEEP				
Operands:	None				
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ \text{0} \rightarrow \underline{\text{WDT}} \text{ prescaler,} \\ \text{1} \rightarrow \overline{\overline{\text{TO}}}, \\ \text{0} \rightarrow \overline{\text{PD}} \end{array}$				
Status Affected:	$\overline{TO}, \overline{PD}$				
Encoding:	00	0000	0110	0011	
Description:	The power cleared. It is set. Was prescaler The procumode wit	Time-out atchdog a are clea essor is p	status b Timer an ared. put into S	it, TO d its SLEEP	
Words:	1				
Cycles:	1				
Example:	SLEEP				

1

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[label] SUBLW k	Syntax:	[label] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k - (W) \rightarrow (W)$		d ∈ [0,1]
Status Affected:	C, DC, Z	Operation: Status	(f) - (W) \rightarrow (dest) C, DC, Z
Encoding:	11 110x kkkk kkkk	Affected:	
Description:	The W register is subtracted (2's	Encoding:	00 0010 dfff ffff
	complement method) from the eight bit literal 'k'. The result is placed in the W register.	Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in
Words:	1		register 'f'.
Cycles:	1	Words:	1
Example 1:	SUBLW 0x02	Cycles:	1
	Before Instruction	Example 1:	SUBWF REG1,1
	W = 1 C = ?		Before Instruction
	After Instruction		REG1 = 3
	W = 1		W = 2 C = ?
Everente O	C = 1; result is positive		After Instruction
Example 2:	Before Instruction		REG1 = 1
	W = 2 C = ?		W = 2 C = 1; result is positive
	After Instruction	Example 2:	Before Instruction
	W = 0		REG1 = 2
	C = 1; result is zero		W = 2 C = ?
Example 3:	Before Instruction		•
	W = 3 C = ?		After Instruction
	After Instruction		REG1 = 0 W = 2
	W = 0xFF		C = 1; result is zero
	C = 0; result is negative	Example 3:	Before Instruction
			REG1 = 1
			W = 2 C = ?
			After Instruction
			REG1 = 0xFF
			W = 2 C = 0; result is negative
			= 0, rocalt to mogative

SWAPF	Swap Nibbles in f						
Syntax:	[label] SWAPF f,d						
Operands:	$0 \le f \le 12$ $d \in [0,1]$	7					
Operation:	(f<3:0>) - (f<7:4>) -						
Status Affected:	None						
Encoding:	00 1110 dfff ffff						
Description:	0, the res	are excluding are	hange ced in	d. If 'd' is W regis- placed in			
Words:	1						
Cycles:	1						
Example	SWAPF REG, 0						
	Before Instruction						
		REG1	=	0xA5			
	After Instruction						
		REG1 W	=	0xA5 0x5A			

XORLW	Exclusive OR Literal with W					
Syntax:	[label] XORLW k					
Operands:	$0 \le k \le 2$	55				
Operation:	(W) .XOF	R. k –	→ (V	V)		
Status Affected:	Z					
Encoding:	11	101	LO	kkkk	kkkk	
Description:	The cont are XOR eral 'k'. T W registe	'ed w he re:	ith t	he eight	bit lit-	
Words:	1					
Cycles:	1					
Example:	XORLW	0xA	F			
	Before In	struc	tion			
		W	=	0xB5		
	After Instruction					
		W	=	0x1A		

Load TRIS Register				
[label] TRIS f				
$5 \le f \le 7$				
(W) \rightarrow TRIS register f;				
None				
00 0000 0110 Offf				
The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.				
1				
1				
To maintain upward compatibility with future PIC16C433 products, do not use this instruction.				

XORWF	Exclusive OR W with f						
Syntax:	[label] XORWF f,d						
Operands:	$0 \le f \le 12$ $d \in [0,1]$	7					
Operation:	(W) .XOR	$R. (f) \rightarrow (e$	dest)				
Status Affected:	Z						
Encoding:	00	0110	dfff	ffff			
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example	XORWF	REG	1				
	Before In	struction					
		REG W	= =	0xAF 0xB5			
	After Inst	ruction					
		REG W	=	0x1A 0xB5			

NOTES:

11.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- · Integrated Development Environment
 - MPLAB® IDE Software
- · Assemblers/Compilers/Linkers
 - MPASMTM Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC™ In-Circuit Emulator
- · In-Circuit Debugger
 - MPLAB ICD for PIC16F87X
- · Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART® Plus Entry-Level Development Programmer
- · Low Cost Demonstration Boards
 - PICDEM™ 1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ® Demonstration Board

11.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows®-based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor
- · A project manager
- · Customizable toolbar and key mapping
- · A status bar
- · On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

11.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PICmicro MCU's.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- · Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process.

11.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

11.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

11.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

11.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft® Windows environment were chosen to best make these features available to you, the end user.

11.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

11.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC16F87X and can be used to develop for this and other PICmicro microcontrollers from the PIC16CXXX family. The MPLAB ICD utilizes the in-circuit debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming™ protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time.

11.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PICmicro devices. It can also set code protection in this mode.

11.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PICmicro devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

11.11 PICDEM 1 Low Cost PICmicro Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42. PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

11.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C™ bus and separate headers for connection to an LCD module and a keypad.

11.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

11.14 PICDEM 17 Demonstration Board

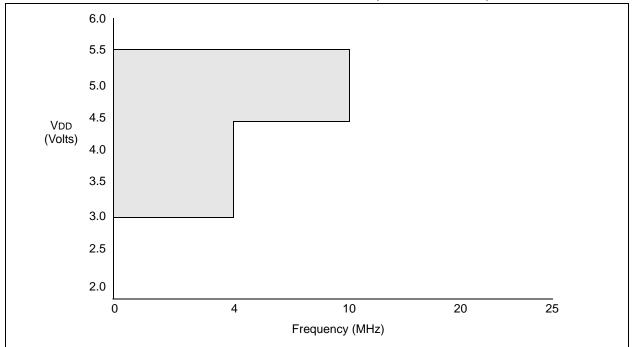
The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware

11.15 <u>KeeLog Evaluation and Programming Tools</u>

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

TABLE 11	-1:	D	EΝ	/ELC	PI	MENT	TOOLS	FRO	м міс	ROC	HIP										
WCP2510																					<i>></i>
MCREXXX																	~	>	>	>	74.76
нсеххх				>					>						>	^					EE 70 73
93CXX S2CXX/ S4CXX/				>					>												63 63
PIC18CXX2	>		>	>	^			>	>		>										C46062
XXTOTIO	>	>		>	>			>	>					>							- 1 mith
X4271519	>	>		>	>			>	>	>											00/46/00
PIC16C9XX	>			>	^	>		>	>			>									to use the MD AB® ICD Incircuit Debugger (D)/48/0014 with DIO-18/C82
PIC16F8XX	>			>	^		>	>	>												- ti zi
PIC16C8X	>			>	^	>		>	>	>											- GI GOI 82
PIC16C7XX	>			>	^	>		>	>												- IdM of
PIC16C7X	>			>	^	>	*	>	>	7	+										# 631 04
PIC16F62X	>			>	**^			**	**												100
PIC16CXXX	>			>	>	>		>	>	>) ite autofai
PIC16C6X	>			>	>	>	*	>	>		7										Joy aloo
PIC16C5X	>			>	^	>		>	>	>											microchin
PIC14000	>			>	>			>	>				>								Twant to
PIC12CXXX	>			>	>	>		>	>												- dow
	MPLAB® Integrated Development Environment	MPLAB® C17 C Compiler	MPLAB® C18 C Compiler	MPASM [™] Assembler/ MPLINK [™] Object Linker	MPLAB® ICE In-Circuit Emulator	ICEPIC TM In-Circuit Emulator	MPLAB® ICD In-Circuit Debugger	PICSTART® Plus Entry Level Development Programmer	PRO MATE® II Universal Device Programmer	PICDEM™ 1 Demonstration Board	PICDEM™ 2 Demonstration Board	PICDEM™ 3 Demonstration Board	PICDEM™ 14A Demonstration Board	PICDEM™ 17 Demonstration Board	KEELOQ® Evaluation Kit	KEELoo® Transponder Kit	microlD™ Programmer's Kit	125 kHz microID TM Developer's Kit	125 kHz Anticollision microID TM Developer's Kit	13.56 MHz Anticollision microID™ Developer's Kit	MCP2510 CAN Developer's Kit

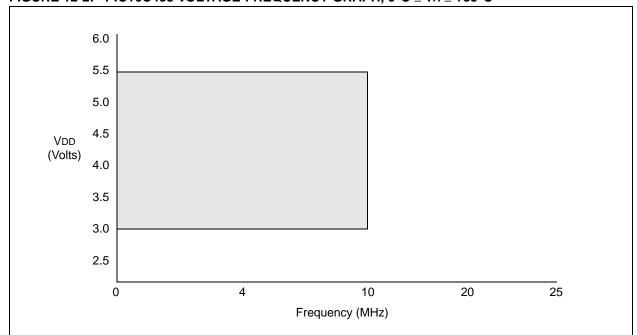
NOTES:


12.0 ELECTRICAL SPECIFICATIONS FOR PIC16C433

Absolute Maximum Ratings †

<u> </u>	
mbient temperature under bias	40° to +125°C
torage temperature	65°C to +150°C
oltage on any pin with respect to Vss (except VDD, MCLR, LIN and BACT)	0.3V to (VDD + 0.3V)
oltage on VDD with respect to Vss	0 to +7.0V
oltage on MCLR with respect to Vss (Note 2)	
otal power dissipation (Note 1)	700 mW
laximum current out of Vss pin	200 mA
laximum current into VDD pin	150 mA
nput clamp current, IiK (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	± 20 mA
faximum output current sunk by any I/O pin (except LIN and BACT)	25 mA
laximum output current sunk by LIN and BACT	200 mA
laximum output current sourced by any I/O pin	25 mA
laximum current sunk by GPIO pins combined	100 mA
laximum current sourced by GPIO pins combined	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDI)	D - VOH) \times IOH} + Σ (VOI \times IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.


FIGURE 12-1: PIC16C433 VOLTAGE-FREQUENCY GRAPH, $-40^{\circ}C \le TA < 0^{\circ}C$, $+85^{\circ}C < TA \le +125^{\circ}C$

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

FIGURE 12-2: PIC16C433 VOLTAGE-FREQUENCY GRAPH, 0°C ≤ TA ≤ +85°C

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

12.1 <u>DC Characteristics</u>

PIC16C	433 strial, Ext	tended)	Standard Operating Conditions (unless otherwise specified) Operating Temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for extended								
Parm No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions				
D001	VDD	Supply Voltage	3.0		5.5	V					
D001A	VBAT	Operating Battery Voltage	8.0	13.8	18	V					
D002	VDR	RAM Data Retention Voltage (Note 1)		1.5*		V	Device in SLEEP mode				
D003	VPOR	VDD Start Voltage to ensure Power-on Reset		Vss		V	See section on Power-on Reset for details				
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*			V/ms	See section on Power-on Reset for details				
D010	IDD	Supply Current (Note 2)	_	1.2	2.5	mA	FOSC = 4MHz, VDD = 3.0V XT and EXTRC mode (Note 3)				
D010C			_	1.2	2.5	mA	Fosc = 4MHz, VDD = 3.0V				
			_	2.2	8	mA	INTRC mode (Note 5) FOSC = 10MHz, VDD = 5.5V				
D010A			_	19	29	μΑ	HS mode FOSC = 32kHz, VDD = 3.0V, WDT disabled				
			_	19	37	μΑ	LP mode, Commercial Temperature FOSC = 32kHz, VDD = 3.0V, WDT disabled				
			_	32	60	μΑ	LP mode, Industrial Temperature FOSC = 32kHz, VDD = 3.0V, WDT disabled LP mode, Extended Temperature				
D020 D021 D021B	IPD	Power-down Current (Note 4)		0.25 0.25 2 0.5 0.8 3	6 7 14 8 9 16	μΑ μΑ μΑ μΑ μΑ	VDD = 3.0V, Commercial, WDT disabled VDD = 3.0V, Industrial, WDT disabled VDD = 3.0V, Extended, WDT disabled VDD = 5.5V, Commercial, WDT disabled VDD = 5.5V, Industrial, WDT disabled VDD = 5.5V, Extended, WDT disabled				
D022	Δlwdt	Watchdog Timer Current	_ _ _	2.2 2.2 4	5 6 11	μΑ μΑ μΑ	VDD = 3.0V, Commercial VDD = 3.0V, Industrial VDD = 3.0V, Extended				
D028	ΔIEE	Supply Current (Note 2) During read/write to EEPROM peripheral	_	0.1	0.2	mA	FOSC = 4MHz, VDD = 5.5V, SCL = 400kHz				
	Fosc	LP Oscillator Operating	0		200	kHz	All temperatures				
		Frequency INTRC/EXTRC Oscillator	_		4 ⁽⁵⁾	MHz	All temperatures				
		Operating Frequency XT Oscillator Operating	0		4	MHz	All temperatures				
		Frequency HS Oscillator Operating Frequency	0		10	MHz	All temperatures				

- * These parameters are characterized but not tested.
- † Data in Typical ("Typ") column is based on characterization results at 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature, also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in active operation mode are:

 OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT disabled.
 - For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.
 - 3: For EXTRC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula:
 - Ir = VDD/2REXT (mA) with REXT in kOhm.
 - 4: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSs.
 - 5: INTRC calibration value is for 4MHz nominal at 5V, 25°C.

12.2 <u>DC Characteristics:</u> PIC16C433 (Industrial, Extended) and PIC16LC433 (Industrial)

	ARACTERISTICS	Operat	Standard Operating Conditions (unless otherwise specified) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ (industrial) $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ (extended) Operating voltage VDD range as described in DC spec Section 12.1.									
Param No.	Characteristic	Sym	Min	Typ†	Max	Units	Conditions					
	Input Low Voltage											
	I/O ports	VIL										
D030	with TTL buffer		Vss	_	0.8V	V	For $4.5V \le VDD \le 5.5V$					
			Vss	_	0.15VDD	V	otherwise					
D031	with Schmitt Trigger buffer		Vss	_	0.2Vdd	V						
D032	MCLR, GP2/T0CKI/AN2/INT (in EXTRC mode)		Vss	_	0.2VDD	V						
D033	OSC1 (in EXTRC mode)		Vss	_	0.2Vdd		(Note 1)					
D033	OSC1 (in XT, HS, and LP)		Vss	_	0.3VDD	V	(Note 1)					
	Input High Voltage											
	I/O ports	VIH		_								
D040	with TTL buffer		2.0V	_	VDD	V	$4.5V \le VDD \le 5.5V$					
D040A			0.25VDD + 0.8V	_	VDD	V	otherwise					
D041	with Schmitt Trigger buffer		0.8Vpd	_	Vdd	V	For entire VDD range					
D042	MCLR, GP2/T0CKI/AN2/INT		0.8VDD	_	Vdd	V						
D042A	OSC1 (XT, HS, and LP)		0.7Vdd	_	Vdd	V	(Note 1)					
D043	OSC1 (in EXTRC mode)		0.9Vdd	_	Vdd	V						
	Input Leakage Current (Notes 2, 3)											
D060	I/O ports	lı∟	_	_	<u>+</u> 1	μΑ	Vss ≤ Vpin ≤ Vdd, pin at hi-impedance					
D061	GP3/MCLR (Note 5)				<u>+</u> 30	μΑ	$Vss \le Vpin \le Vdd$					
D061A	GP3 (Note 6)				<u>+</u> 5	μΑ	Vss ≤ Vpin ≤ Vdd					
D062	GP2/T0CKI		_	_	<u>+</u> 5	μΑ	Vss ≤ Vpin ≤ Vdd					
D063	OSC1		_	_	<u>+</u> 5	μΑ	Vss ≤ VPIN ≤ VDD, XT, HS, and LP osc configuration					
D070	GPIO weak pull-up current (Note 4)	IPUR	50	250	400	μΑ	VDD = 5V, VPIN = VSS					
	MCLR pull-up current	_	_	_	30	μΑ	VDD = 5V, VPIN = VSS					
	Output Low Voltage											
D080	I/O ports	VOL	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5 V, - 40 °C to $+85$ °C					
D080A			_	_	0.6	V	IOL = 7.0 mA , VDD = 4.5V , -40°C to $+125^{\circ}\text{C}$					
D083	OSC2/CLKOUT		_	_	0.6	V	IOL = 1.6 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$					
D083A			_	_	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C					

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C433 be driven with external clock in RC mode.
 - 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as coming out of the pin.
 - 4: Does not include GP3. For GP3 see parameters D061 and D061A.
 - 5: This spec. applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal pull-up enabled.
 - 6: This spec. applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic.

DC CH	ARACTERISTICS	Standard Operating Conditions (unless otherwise specified) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ (industrial) $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ (extended) Operating voltage VDD range as described in DC spec Section 12.1.								
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
Dooo	Output High Voltage	1/5	1/ 0.7				Jan. 0.0 A 1/5 A 51/			
D090	I/O ports (Note 3)	Voн	VDD - 0.7	_	_	V	$IOH = -3.0 \text{ mA}, VDD = 4.5V, -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$			
D090A			VDD - 0.7	_	_	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C			
D092	OSC2/CLKOUT		VDD - 0.7	_	_	V	IOH = 1.3 mA, VDD = 4.5V, -40°C to +85°C			
D092A			VDD - 0.7	_	_	V	IOH = 1.0 mA, VDD = 4.5V, -40°C to +125°C			
	Capacitive Loading Specs on									
D100	Output Pins OSC2 pin	Cosc2	_		15	pF	In XT and LP modes when external clock is used to drive OSC1			
D101	All I/O pins	Cio	_	_	50	pF				

- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C433 be driven with external clock in RC mode.
 - 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 - 3: Negative current is defined as coming out of the pin.
 - 4: Does not include GP3. For GP3 see parameters D061 and D061A.
 - 5: This spec. applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal pull-up enabled.
 - **6:** This spec. applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic.

TABLE 12-1: LIN bus TRANSCEIVER OPERATING SPECIFICATIONS

Operating Conditions: VDD range as described in Table 12-1, -40°C < TA < +125°C.

Param No.	Characteristics	Sym	Min	Тур	Max	Units	Comments
D313	VDD Quiescent Operating Current	IDD_LIN	-	-	1	mA	
D314	VBAT Low Power Current	I BAT			50	μΑ	

^{*} These parameters are characterized but not tested.

TABLE 12-2: LIN bus TRANSCEIVER INTERFACE SPECIFICATIONS

Operating Conditions: VDD range as described in Table 12-1, - 40° C < TA < + 125° C.

Param No.	Characteristics	Sym	Min	Тур	Max	Units	Comments
D315	Low Level Output Current	IOL_LIN_DOMINANT	40	-	200	mA	VBUS = 12V
D316	High Level Output Leakage Current	IOH_LIN	-20		20	μΑ	VBUS ≥ VBAT; VBUS < 40V
D317	Low Level Output Current, Open Ground	IOH_LIN_REVERS	-1		1	mA	
D318	Low Level Input Voltage	VIL_LIN	-8		0.4VBAT	V	Dominant State
D319	High Level Input Voltage	VIH_LIN	0.6VBAT		18	V	Recessive State
D320	Input Hysteresis	VHYS_LIN	0.05VBAT		0.1VBAT	V	VIH_LIN - VIL_LIN
D321	Short Circuit Current Limit	ISC_LIN	0.05		200	mA	
D322	High Level Output Voltage	VOH_LIN	0.8VBAT			V	
D323	Low Level Output Voltage	VOL_LIN			0.2VBAT	V	

^{*} These parameters are characterized but not tested.

(I²C specifications only)

12.3 <u>Timing Parameter Symbology</u>

1. TppS2ppS

The timing parameter symbols have been created following one of the following formats:

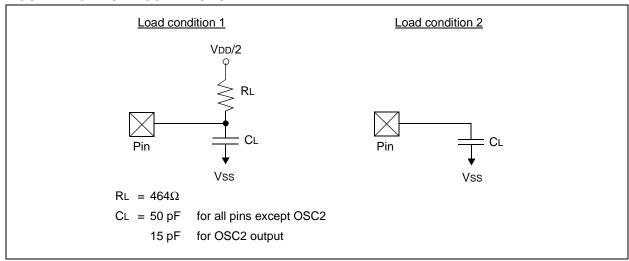
2. TppS

4. Ts (I²C specifications only)

T
F Frequency
Lowercase letters (pp) and their meanings:

3. Tcc:st

рр	WI,		
СС	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	cs	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	T0CKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR


Uppercase letters and their meanings:

S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low

Tcc:st (I²C specifications only)

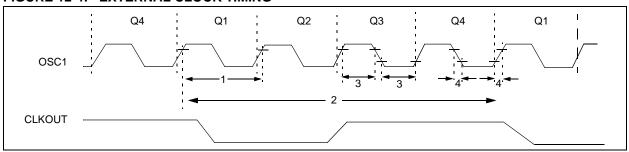

CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 12-3: LOAD CONDITIONS

12.4 <u>Timing Diagrams and Specifications</u>

FIGURE 12-4: EXTERNAL CLOCK TIMING

TABLE 12-3: CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and EXTRC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode
			DC	_	10	MHz	HS osc mode
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	EXTRC osc mode
		(Note 1)	.455	_	4	MHz	XT osc mode
			4	_	4	MHz	HS osc mode
			4	_	10	MHz	HS osc mode
			5		200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT and EXTRC osc mode
		(Note 1)	250	_	_	ns	HS osc mode
			100	_	_	ns	HS osc mode
			5		_	μs	LP osc mode
		Oscillator Period	250	_	_	ns	EXTRC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode
			100	_	250	ns	HS osc mode
			5		_	μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	400	_	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	50	_	_	ns	XT oscillator
	TosH	or Low Time	2.5	_	_	μs	LP oscillator
			10	_	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_		25	ns	XT oscillator
	TosF	or Fall Time	_	_	50	ns	LP oscillator
			_		15	ns	HS oscillator

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1/CLKIN pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C433.

TABLE 12-4: CALIBRATED INTERNAL RC FREQUENCIES - PIC16C433

AC Characteristics		Standard Operating Conditions (unless otherwise specified) Operating Temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ (industrial) Operating Voltage VDD range is described in Section 10.1								
Parameter No.	Sym	n Characteristic		Typ ⁽¹⁾	Max*	Units	Conditions			
		Internal Calibrated RC Frequency	3.65	4.00	4.28	MHz	VDD = 5.0V			

^{*} These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 12-5: CLKOUT AND I/O TIMING

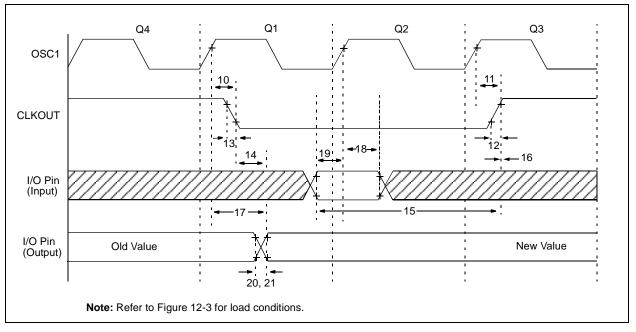


TABLE 12-5: CLKOUT AND I/O TIMING REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	(Note 1)
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	75	200	ns	(Note 1)
12*	TckR	CLKOUT rise time		_	35	100	ns	(Note 1)
13*	TckF	CLKOUT fall time		_	35	100	ns	(Note 1)
14*	TckL2ioV	CLKOUT ↓ to Port out valid		_		0.5Tcy + 20	ns	(Note 1)
15*	TioV2ckH	Port in valid before CLKOU	Tosc + 200	1	1	ns	(Note 1)	
16*	TckH2iol	Port in hold after CLKOUT	0	1	1	ns	(Note 1)	
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port of	_	50	150	ns		
18*	TosH2iol	OSC1↑ (Q2 cycle) to Port	PIC16 C 433	100	1	1	ns	
18A*		input invalid (I/O in hold time)	PIC16 LC 433	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC1↑ (Itime)	/O in setup	0	_		ns	
20*	TioR	Port output rise time	PIC16 C 433	_	10	40	ns	
20A*			PIC16 LC 433	_	_	80	ns	
21*	TioF	Port output fall time	PIC16 C 433	_	10	40	ns	
21A*			PIC16 LC 433	_		80	ns	
22††*	Tinp	GP2/INT pin high or low time		Tcy			ns	
23††*	Trbp	GP0/GP1/GP3 change INT time	high or low	Tcy	_	_	ns	

^{*} These parameters are characterized but not tested.

Note 1: Measurements are taken in EXTRC and INTRC modes where CLKOUT output is 4 x Tosc.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edge.

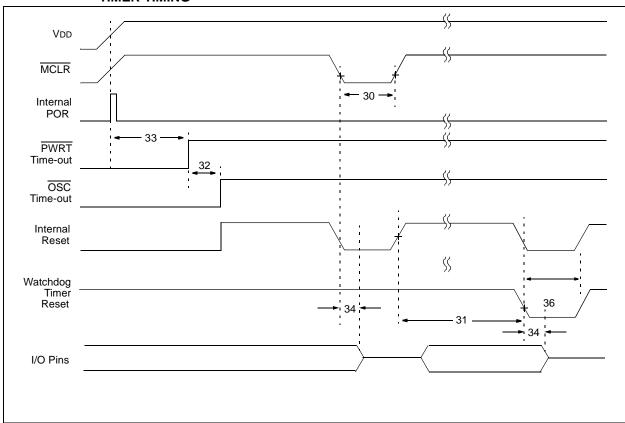


FIGURE 12-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, AND POWER-UP TIMER TIMING

TABLE 12-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_		μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	_	Tosc = OSC1 period
33*	Tpwrt	Power up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	TIOZ	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.1	μs	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 12-7: TIMERO CLOCK TIMINGS

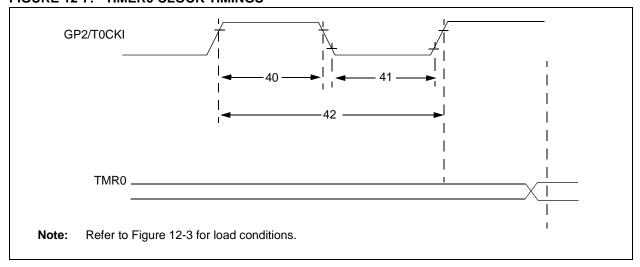


TABLE 12-7: TIMERO AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteris	Characteristic		Тур†	Max	Units	Conditions	
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	_	_	ns	Must also meet	
			With Prescaler	10	_	_	ns	parameter 42	
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5Tcy + 20	_	_	ns	Must also meet	
			With Prescaler	10	_	_	ns	parameter 42	
42*	Tt0P	T0CKI Period	No Prescaler	Tcy + 40	_	_	ns		
			With Prescaler	Greater of: 20 or TCY + 40 N	_	_	ns	N = prescale value (2, 4,, 256)	
48	TCKE2tmr1	Delay from external clock edge to timer increment		2Tosc	_	7Tosc	_		

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 12-8: GPIO PULL-UP RESISTOR RANGES

VDD (Volts)	Temperature (°C)	Min	Тур	Max	Units						
	GP0/GP1										
2.5	-40	38K	42K	63K	Ω						
	25	42K	48K	63K	Ω						
	85	42K	49K	63K	Ω						
	125	50K	55K	63K	Ω						
5.5	-40	15K	17K	20K	Ω						
	25	18K	20K	23K	Ω						
	85	19K	22K	25K	Ω						
	125	22K	24K	28K	Ω						
		G	P3								
2.5	-40	285K	346K	417K	Ω						
	25	343K	414K	532K	Ω						
	85	368K	457K	532K	Ω						
	125	431K	504K	593K	Ω						
5.5	-40	247K	292K	360K	Ω						
	25	288K	341K	437K	Ω						
	85	306K	371K	448K	Ω						
	125	351K	407K	500K	Ω						

^{*} These parameters are characterized but not tested.

TABLE 12-9: LIN bus AC CHARACTERISTICS

Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
dV/dt	Slope rising and falling edges	1	2		V/µs	
T _{trans_pd}	Propagation delay of transmitter			4	μs	$T_{trans_pd} = max(T_{trans_pdr} \text{ or } T_{trans_pdf})$
T _{rec_pd}	Propagation delay of receiver			6	μs	$T_{rec_pd} = max(T_{rec_pdr} \text{ or } T_{rec_pdf})$
T _{rec_sym}	Symmetry of receiver propagation delay rising edge w.r.t. falling edge	-2		2	μs	T _{rec_sym} = T _{rec_pdf} - T _{rec_pdr)}
T _{trans_sym}	Symmetry of transmitter propagation delay rising edge w.r.t. falling edge	-2		2	μs	$T_{trans_sym} = T_{trans_pdf} - T_{rans_pdr}$

TABLE 12-10: LIN THERMAL CHARACTERISTICS

Symbol	Parameter	Тур.	Max.	Unit	Note
$\Theta_{ m recovery}$	Recovery Temperature	+135		°C	Information Parameter
$\Theta_{ m shutdown}$	Shut-down Temperature	+155		°C	Information Parameter
T _{THERM}	Short Circuit Recovery Time		1.5	ms	Information Parameter

FIGURE 12-8: TIMING DIAGRAM

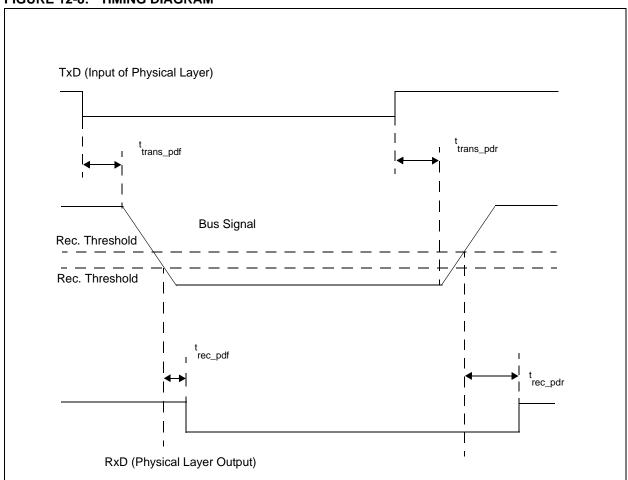
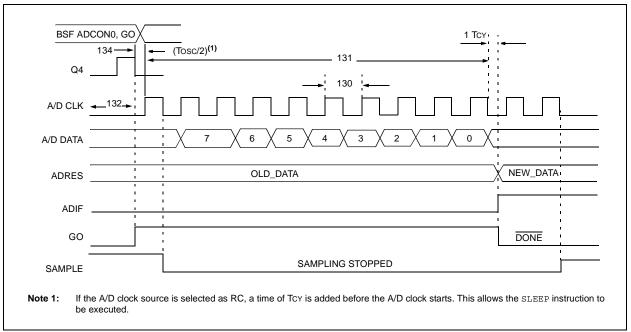


TABLE 12-11: A/D CONVERTER CHARACTERISTICS: PIC16C433

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
A01	NR	Resolution		_	_	8-bits	bit	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A02	EABS	Total absolute erro	r	_	_	< ±1	LSb	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A03	EIL	Integral linearity er	ror	_	_	< ±1	LSb	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A04	EDL	Differential linearity error		_	_	< ±1	LSb	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A05	EFS	Full scale error		_	_	< ±1	LSb	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A06	Eoff	Offset error		_	_	< ±1	LSb	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A10	_	Monotonicity		_	guaranteed (Note 3)	_	_	VSS ≤ VAIN ≤ VREF
A20	VREF	Reference voltage		2.5V	_	VDD + 0.3	V	
A25	VAIN	Analog input voltag	ge	Vss - 0.3	_	VREF + 0.3	V	
A30	ZAIN	Recommended im analog voltage sou		_	_	10.0	kΩ	
A40	IAD	A/D conversion	PIC16 C 433	_	180	_	μΑ	Average current
		current (VDD)	PIC16 LC 433	_	90	_	μΑ	consumption when A/D is on (Note 1)
A50	IREF	VREF input current	(Note 2)	10	_	1000	μА	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 8.1
				_	_	10	μΑ	During A/D Conversion cycle

^{*} These parameters are characterized but not tested.


- 2: VREF current is from GP1 pin or VDD pin, whichever is selected as reference input.
- 3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

© 2001 Microchip Technology Inc.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

FIGURE 12-9: A/D CONVERSION TIMING

TABLE 12-12: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period	PIC16 C 433	1.6	_	_	μs	Tosc based, VREF ≥ 3.0V
			PIC16 LC 433	2.0	_	_	μs	Tosc based, VREF full range
			PIC16 C 433	2.0	4.0	6.0	μs	A/D RC mode
			PIC16 C 433	3.0	6.0	9.0	μs	A/D RC mode
131	TCNV	Conversion time (not including S/H time) (Note 1)		11	_	11	Tad	
132	TACQ	Acquisition time		(Note 2)	20	_	μs	
				5*		-	μs	The minimum time is the amplifier setting time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of Tcy is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from conv	/ert → sample	1.5 §			Tad	

^{*} These parameters are characterized but not tested.

Note 1: ADRES register may be read on the following TcY cycle.

2: See Section 8.1 for minimum conditions.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

[§] This specification ensured by design.

NOTES:

13.0 DC AND AC CHARACTERISTICS - PIC16C433

The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices will operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively, where σ is standard deviation.

FIGURE 13-1: CALIBRATED INTERNAL RC FREQUENCY RANGE VS.
TEMPERATURE (VDD = 5.0V)
(INTERNAL RC IS
CALIBRATED TO 25°C, 5.0V)

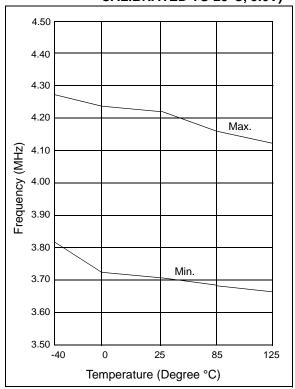


FIGURE 13-2: CALIBRATED INTERNAL RC FREQUENCY RANGE VS.
TEMPERATURE (VDD = 2.5V)
(INTERNAL RC IS
CALIBRATED TO 25°C, 5.0V)

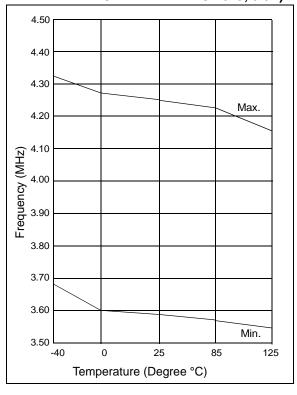


TABLE 13-1: DYNAMIC IDD (TYPICAL) - WDT ENABLED, 25°C

Oscillator	Frequency	VDD = 2.5V	VDD = 5.5V		
External RC	4 MHz	400 μΑ*	900 μΑ*		
Internal RC	4 MHz	400 μΑ	900 μΑ		
XT	4 MHz	400 μΑ	900 μΑ		
LP	32 kHz	15 μΑ	60 μΑ		

^{*}Does not include current through external R&C.

FIGURE 13-3: WDT TIMER TIME-OUT PERIOD vs. VDD

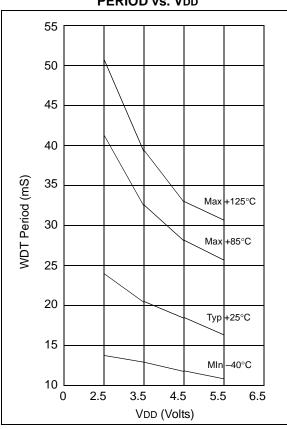


FIGURE 13-4: IOH vs. VOH, VDD = 2.5V

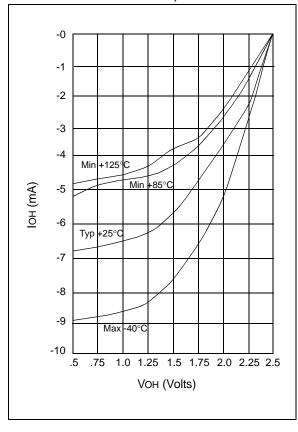


FIGURE 13-5: IOH vs. VOH, VDD = 3.5V

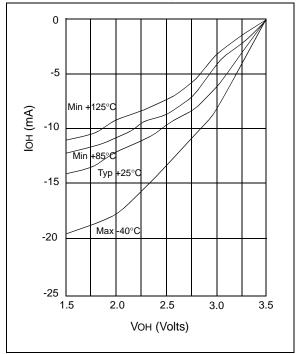


FIGURE 13-6: IOH vs. VOH, VDD = 5.5V

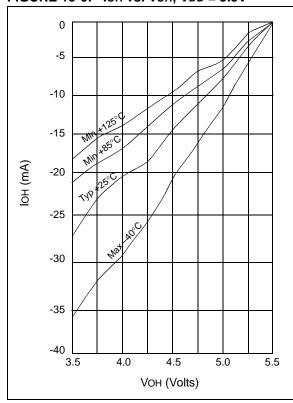


FIGURE 13-7: IoL vs. Vol, VDD = 2.5V

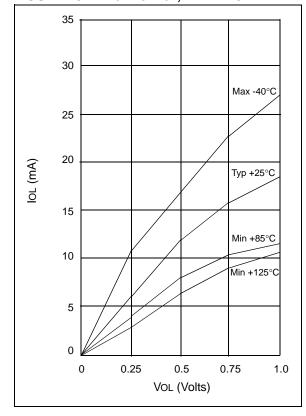


FIGURE 13-8: IoL vs. Vol., VDD = 3.5V

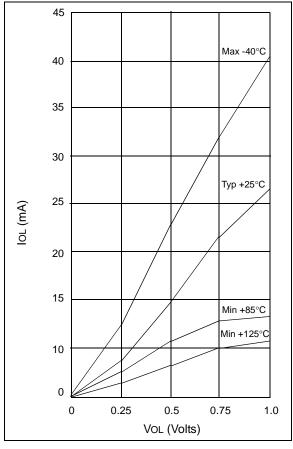


FIGURE 13-9: IoL vs. Vol, VDD = 5.5V

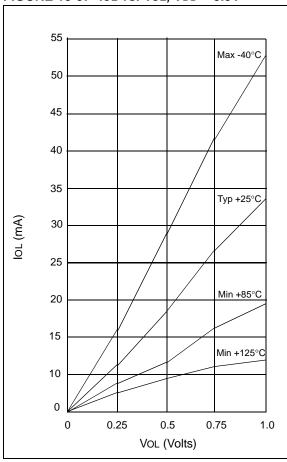


FIGURE 13-10: VTH (INPUT THRESHOLD VOLTAGE) OF GPIO PINS vs. VDD

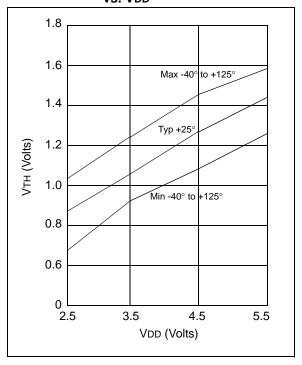
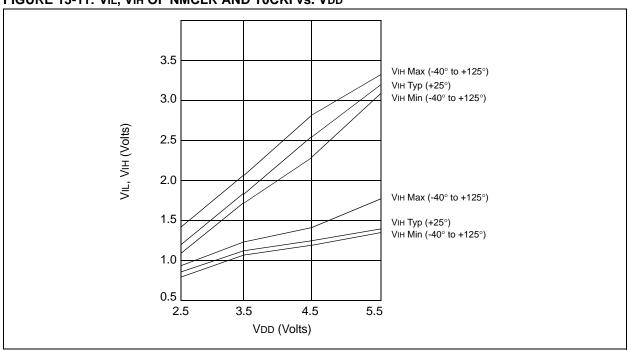



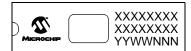
FIGURE 13-11: VIL, VIH OF NMCLR AND TOCKI vs. VDD

14.0 PACKAGING INFORMATION

14.1 Package Marking Information

18-Lead PDIP

Example

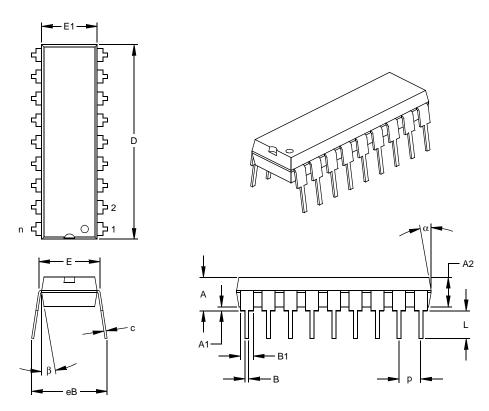

18-Lead SOIC (.300")

Example

18-Lead CERDIP Windowed

Example

Legend: XX...X Customer specific information*


YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

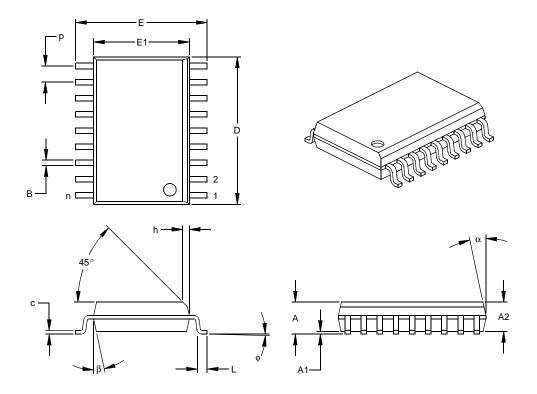
NNN Alphanumeric traceability code

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer specific information.

* Standard marking consists of Microchip part number, year code, week code, and traceability code. For marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

18-Lead Plastic Dual In-line (P) - 300 mil (PDIP)

	Units	its INCHES*		MILLIMETERS		3	
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

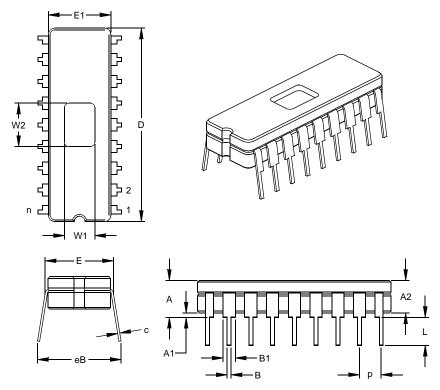
JEDEC Equivalent: MS-001

Drawing No. C04-007

^{*} Controlling Parameter § Significant Characteristic

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

	Units		INCHES*		N	IILLIMETERS	3
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	f	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side.

JEDEC Equivalent: MS-013 Drawing No. C04-051

^{*} Controlling Parameter § Significant Characteristic

18-Lead Ceramic Dual In-line with Window (JW) - 300 mil (CERDIP)

	Units		INCHES*		N	IILLIMETERS	3
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.023	.030	0.38	0.57	0.76
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49
Overall Length	D	.880	.900	.920	22.35	22.86	23.37
Tip to Seating Plane	L	.125	.138	.150	3.18	3.49	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53
Overall Row Spacing §	eВ	.345	.385	.425	8.76	9.78	10.80
Window Width	W1	.130	.140	.150	3.30	3.56	3.81
Window Length	W2	.190	.200	.210	4.83	5.08	5.33

 ^{*} Controlling Parameter
 \$ Significant Characteristic
 JEDEC Equivalent: MO-036
 Drawing No. C04-010

APPENDIX A: COMPATIBILITY

To convert code written for PIC16C5X to PIC16C433, the user should take the following steps:

- Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change Reset Vector to 0000h.

NOTES:

INDEX

A	
A/D	
Accuracy/Error	47
ADCON0 Register	
ADIF bit	
Analog Input Model Block Diagram	
Analog-to-Digital Converter	
Configuring Analog Port Pins	
Configuring the Interrupt	
Configuring the Module	
Connection Considerations	47
Conversion Clock	45
Conversions	46
Converter Characteristics	
Delays	
Effects of a RESET	
Equations	
Flow Chart of A/D Operation	
GO/DONE bit	
Internal Sampling Switch (Rss) Impedence	
Operation During SLEEP	47
Sampling Requirements	44
Sampling Time	44
Source Impedence	
Time Delays	
Transfer Function	
Absolute Maximum Ratings	
ADDLW Instruction	
ADDWF Instruction	68
ADIE bit	18
ADIE bit	_
ADIF bit	19
	19 13, 41, 43
ADRES Register ALU	19 13, 41, 43 7
ADIF bit	19 13, 41, 43 7
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction	19 13, 41, 43 7
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes	1913, 41, 43768
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler MPASM™ Assembler	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler MPASM™ Assembler B BCF Instruction	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler MPASM™ Assembler B BCF Instruction Bit Manipulation	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler MPASM™ Assembler B BCF Instruction Bit Manipulation Block Diagrams	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler MPASM™ Assembler B BCF Instruction Bit Manipulation Block Diagrams Analog Input Model	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler MPASM™ Assembler B BCF Instruction Bit Manipulation Block Diagrams	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler MPASMTM Assembler B BCF Instruction Bit Manipulation Block Diagrams Analog Input Model On-Chip Reset Circuit Timer0	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler MPASMTM Assembler B BCF Instruction Bit Manipulation Block Diagrams Analog Input Model On-Chip Reset Circuit	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler MPASMTM Assembler B BCF Instruction Bit Manipulation Block Diagrams Analog Input Model On-Chip Reset Circuit Timer0	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler MPASMTM Assembler B BCF Instruction Bit Manipulation Block Diagrams Analog Input Model On-Chip Reset Circuit Timer0 Timer0/WDT Prescaler Watchdog Timer	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler MPASM™ Assembler B BCF Instruction Bit Manipulation Block Diagrams Analog Input Model On-Chip Reset Circuit Timer0 Timer0/WDT Prescaler Watchdog Timer BSF Instruction	
ADIF bit ADRES Register ALU ANDLW Instruction ANDWF Instruction Application Notes AN546 AN556 Architecture Harvard Overview von Neumann Assembler MPASMTM Assembler B BCF Instruction Bit Manipulation Block Diagrams Analog Input Model On-Chip Reset Circuit Timer0 Timer0/WDT Prescaler Watchdog Timer	

C	
C bit	. 15
CAL0 bit	
CAL1 bit	. 21
CAL2 bit	. 21
CAL3 bit	. 21
CALFST bit	. 21
CALL Instruction	
CALSLW bit	. 21
Carry bit	
Clocking Scheme	
CLRF Instruction	. 70
CLRW Instruction	
CLRWDT Instruction	. 71
Code Examples	
Changing Prescaler (Timer0 to WDT)	. 39
Changing Prescaler (WDT to Timer0)	
Indirect Addressing	
Code Protection	
COMF Instruction	
Computed GOTO	
Configuration Bits	. 49
D	
DC and AC Characteristics	103
DC bit	
DC Characteristics	
PIC16C433	87
DECF Instruction	
DECFSZ Instruction	
Development Support	
Diagrams - See Block Diagrams	
Digit Carry bit	7
Direct Addressing	
_	
E	
EEPROM Peripheral Operation	. 33
Electrical Characteristics	
PIC16C433	. 85
Errata	
External Brown-out Protection Circuit	
External Power-on Reset Circuit	. 57
F	
Features	1
FSR Register	•••
	,
G	
General Description	
GIE bit	
GOTO Instruction	
GPIF bit	
GPIO	
GPIO Register	
GPPU bit	. 16

I	
I/O Interfacing	
I/O Ports	
I/O Programming Considerations 3° ID Locations 4°	
INCF Instruction 72	
INCFSZ Instruction	2
In-Circuit Serial Programming49, 63	
INDF Register	
Indirect Addressing	5
Instruction Cycle	
Instruction Flow/Pipelining10	0
Instruction Format	5
Instruction Set ADDLW	0
ADDWF	
ANDLW68	В
ANDWF68	
BCF	
BSF	_
BTFSS	
CALL70	
CLRF70	
CLRW	
CLRWDT71 COMF	
DECF71	
DECFSZ71	1
GOTO72	
INCF	
IORLW	
IORWF73	3
MOVF73	
MOVLW	
MOVWF	
OPTION	
RETFIE74	
RETLW74	
RETURN	_
RRF	
SLEEP75	5
SUBLW	
SUBWF	
TRIS	
XORLW77	7
XORWF77	
Section	
INTEDG bit	
Internal Sampling Switch (Rss) Impedence44	
Interrupts49	
A/D	
GP2/INT	
Section	
TMR060	
TMR0 Overflow	
IORLW Instruction	
IRP bit	

N	
KEELOQ [®] Evaluation and Programming Tools	. 82
L	
LIN bus Hardware Interface	33
LIN bus Interfacing	
LIN bus Protocol	
Loading of PC	
M	
MCLR52	
	, ວວ
Memory Data Memory	4.4
Program Memory	. 11
Register File Map	40
PIC16C433	
MOVF Instruction	
MOVLW Instruction	
MOVWF Instruction	. 73
MPLAB® Integrated Development	
Environment Software	. 79
N	
NOP Instruction	. 74
0	
_ Opcode	65
OPTION Instruction	
OPTION Instituction	
Orthogonal	
OSC Selection	
OSCCAL Register	
Oscillator	. ∠ 1
EXTRC	51
HS	
INTRC	. 54
INTRCLP	. 54 . 54
INTRC LP XT	. 54 . 54 . 54
INTRC LP XT Oscillator Configurations	. 54 . 54 . 54
INTRC	. 54 . 54 . 54 . 50
INTRC	. 54 . 54 . 54 . 50
INTRC	. 54 . 54 . 54 . 50 . 50
INTRC	. 54 . 54 . 50 . 50 . 50
INTRC	. 54 . 54 . 50 . 50 . 50 . 50

P		S	
Package Marking Information	107	Services	
Packaging Information	107	One-Time-Programmable (OTP)	5
Paging, Program Memory	22	Quick-Turnaround-Production (QTP)	5
PCL	66	Serialized Quick-Turnaround Production (SC)TP) 5
PCL Register13		SFR	66
PCLATH	55	SFR As Source/Destination	66
PCLATH Register13	3, 14, 22	SLEEP	,
PCON Register	20, 54	SLEEP Instruction	
PD bit	15, 52	Software Simulator (MPLAB SIM)	
PICDEM™ 1 Low Cost PICmicro		Special Features of the CPU	49
Demonstration Board	81	Special Function Register	
PICDEM™ 2 Low Cost PIC16CXX		PIC16C433	
Demonstration Board	81	Special Function Registers	
PICDEM™ 3 Low Cost PIC16CXXX		Special Function Registers, Section	
Demonstration Board		Stack	
PICSTART® Plus Entry Level Development System .		Overflows	
PIE1 Register	18	Underflow	
Pinout Description	_	STATUS Register	
PIC16C433		DC Bit	
PIR1 Register		IRP Bit	
POP		TO Bit	
POR	_	Z Bit	
Oscillator Start-up Timer (OST)		SUBLW Instruction	
Power Control Register (PCON)		SUBWF Instruction	
Power-on Reset (POR)49		SWAPF Instruction	77
Power-up Timer (PWRT)		Т	
Power-up-Timer (PWRT)		•	40
Time-out Sequence		TOCS bit	
Time-out Sequence on Power-up		TAD	
<u>TO</u>		Thermal Shut-down	33
Power		Timer0	
Power-down Mode (SLEEP)	62	RTCC	55
Power-on Reset (POR)	4.5	Timers	
Time-out (TO Bit)		Timer0	25
Prescaler, Switching Between Timer0 and WDT		Block Diagram External Clock	
PRO MATE [®] II Universal Programmer		External Clock Timing	
Program Branches	/	Increment Delay	
Program Memory	00	Interrupt	
Paging		Interrupt Timing	
Program Verification		Prescaler	
PS0 bit	_	Prescaler Block Diagram	
PS1 bit	_	Section	
PS2 bit		Switching Prescaler Assignment	
PSA bit		Synchronization	
PUSH	22	TOCKI	
R		TOIF	
RC Oscillator	51	Timing	
Read-Modify-Write		TMR0 Interrupt	
Read-Modify-Write		Timing Diagrams	
Register File		A/D Conversion	101
Registers	1 1	CLKOUT and I/O	_
		External Clock Timing	
Map PIC16C433	12	Time-out Sequence	
RESET Conditions		Timer0	
RESET CONDITIONS		Timer0 Interrupt Timing	
RESET Conditions for Special Registers		Timer0 interrupt Firming Timer0 with External Clock	
RETFIE Instruction		Wake-up from SLEEP via Interrupt	
RETLW Instruction		TO bit	
RETURN Instruction		TOSE bit	
RLF Instruction		TRIS Instruction	_
RP0 bit		TRIS Register	
RP1 bit		Two's Complement	
DDE Instruction	13	i wo a Complement	/

U	
UV Erasable Devices	5
W	
W Register ALU	7
Wake-up from SLEEP	62
Watchdog Timer (WDT)	
Block Diagram	
Period	61
Programming Considerations	61
Timeout	55
WWW, On-Line Support	2
X	
XORLW Instruction	77
XORWF Instruction	77
Z	
Z bit	15
Zero hit	

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- Design Tips
- Device Errata
- · Job Postings
- · Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and 1-480-792-7302 for the rest of the world.

013001

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

lo:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Froi	m: Name	
	Company	<u> </u>
	olication (optional):	
Wo	uld you like a reply?YN	
Dev	vice: PIC16C433 Literature	Number: DS41139A
Que	estions:	
1.	What are the best features of this documen	t?
2.	How does this document meet your hardwa	ire and software development needs?
3.	Do you find the organization of this data she	eet easy to follow? If not, why?
4.	What additions to the data sheet do you thin	nk would enhance the structure and subject?
5.	What deletions from the data sheet could be	e made without affecting the overall usefulness?
6.	Is there any incorrect or misleading informa	tion (what and where)?
7.	How would you improve this document?	
8.	How would you improve our software, syste	ms, and silicon products?

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X /XX XXX Temperature Package Pattern Range	Examples: a) PIC16C433-I/P = Industrial temp., PDIP, 4 MHz - 10 MHz, normal VDD limits b) PIC16C433-E/P = Extended temp., PDIP, 4 MHz - 10 MHz, normal VDD limits
Device	PIC16C433 PIC16LC433 PIC16C433T (Tape & reel for SOIC only) PIC16LC433T (Tape & reel for SOIC only)	
Temperature Range	I = -40° C to $+85^{\circ}$ C E = -40° C to $+125^{\circ}$ C	
Package	P = PDIP JW* = Windowed CERDIP SM = SOIC	
Pattern	Special Requirements	

^{*} JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Austin

Analog Product Sales 8303 MoPac Expressway North Suite A-201 Austin, TX 78759 Tel: 512-345-2030 Fax: 512-345-6085

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Boston

Analog Product Sales Unit A-8-1 Millbrook Tarry Condominium 97 Lowell Road Concord, MA 01742 Tel: 978-371-6400 Fax: 978-371-0050

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001

Tel: 972-818-7423 Fax: 972-818-2924 Dayton

Two Prestige Place, Suite 130 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

Mountain View

Analog Product Sales 1300 Terra Bella Avenue Mountain View, CA 94043-1836 Tel: 650-968-9241 Fax: 650-967-1590

New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Microchip Technology Beijing Office New China Hong Kong Manhattan Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Shanghai

Microchip Technology Shanghai Office Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

Hong Kong

Microchip Asia Pacific RM 2101, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

ASIA/PACIFIC (continued)

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea

Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850

Taiwan

Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany Arizona Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Germany

Analog Product Sales Lochhamer Strasse 13 D-82152 Martinsried, Germany Tel: 49-89-895650-0 Fax: 49-89-895650-22

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/30/01

All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 2/01 Printed on recycled paper.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.