

IMP2525A

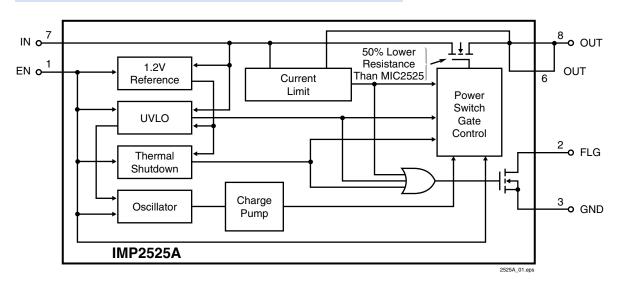
POWER MANAGEMENT

Low-Resistance USB High-Side Power Switch

- Single switch
- 0.07Ω "ON" resistance at 3V
- 50% lower resistance than MIC2525
- MIC2525 pin compatible

The IMP2525A high-side power switch IC is designed for self-powered and bus-powered Universal Serial Bus (USB) power supply and power management applications. The IMP2525A conforms to USB standards with a low output switch ON-resistance (R_{ON}) and minimal voltage drop across the switch. Switch resistance is 50% lower than the MIC2525. The fault current is limited to 1.5A typically, and a flag output conveys fault conditions to the local USB controller. The IMP2525A provides a "Soft-Start" function that ramps up the ON-current to eliminate any excessive voltage drop on the input side that could occur due to charging a capacitive load in bus-powered applications. Self-monitoring features include thermal shutdown to prevent catastrophic switch failure from high-current loads and undervoltage lockout (UVLO) that insures that the device remains off unless there is a valid supply voltage present. The Enable input logic can be interfaced with both 3.3V and 5V logic. Both active-HIGH and active-LOW enable logic versions are available. The IMP2525A devices are available in 8-pin DIP and 8-pin SO packages.

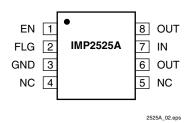
IMP offers a complete family of USB power management products. For dual-switch applications see the IMP2526 data sheet and for quad-switch application, see the IMP2524. The single-switch IMP2525 matches the performance of the Micrel MIC2525.

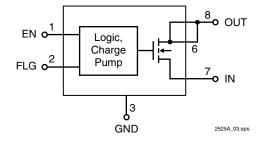

Block Diagrams

Key Features

- Meets or exceeds USB Rev. 1.1 and 2.0 specification
- ♦ Low MOSFET R_{ON} (0.07 Ω at 3V)
- ◆ Pin compatible with the Micrel MIC2525
 - 50% lower than MIC2525
- ◆ 2.7V to 5.5V input operation
- Current limiting
- ◆ Soft-start turn-on (1ms) prevents turn-on glitches
- ◆ 500mA continuous load current
- ◆ MOSFET short-circuit current limit (2.5A max)
- ♦ Low supply current
 - 110µA ON state current, 1µA OFF state current
- ◆ Active-LOW or Active-HIGH Enable input
- ◆ 3.3V or 5V logic compatibility
- Open-drain Fault Flag indicates three fault conditions:
 - Undervoltage
 - Current limit
 - Thermal shutdown
- ◆ 2.4V Undervoltage Lockout (UVLO)

Applications


- USB power management
- ◆ USB hosts and self-powered hubs
- Battery-charger circuits and power supplies



Pin Configuration

SO/DIP

Pin Descriptions

Pin Number	Name	Function
1	EN	Enable input. This pin is the MOSFET switch driver logic input. Both active-HIGH (-1 suffix) and active-LOW (-2 suffix) logic devices are available.
2	FLG	Fault flag output. This open-drain output goes into an active-LOW state in response to undervoltage, current limit or thermal shutdown conditions.
3	GND	Ground. Power supply return for the internal circuitry of the IC.
4, 5	NC	No connection. These pins have no internal connections to the device.
6	OUT	MOSFET source. The output pin supplies power to the load.
7	IN	Positive power supply voltage input. This is the switching MOSFET drain connection as well as the positive supply for the IC.
8	OUT	MOSFET source. The output pin supplies power to the load.

Ordering Information

Part Number	Enable Logic	Temperature Range	Pins-Package
IMP2525A-1BM	Active HIGH	-40°C to +85°C	8-SO
IMP2525A-2BM	Active LOW	-40°C to +85°C	8-SO
IMP2525A-1BN	Active HIGH	-40°C to +85°C	8-DIP
IMP2525A-2BN	Active LOW	-40°C to +85°C	8-DIP

Absolute Maximum Ratings

Output Voltage+6.0V

 $\begin{array}{cccc} \text{Output Current} & & & \text{Internally Limited} \\ \text{Enable Input} & & & -0.3 \text{V to } 12 \text{V} \\ \text{Storage Temperature} & & & -65 ^{\circ}\text{C to } +150 ^{\circ}\text{C} \\ \end{array}$

Lead Temperature (Soldering, 5 sec.)260°C

Package Thermal Resistance

 Note: All voltages are referenced to GND.

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, V_{IN} = 5V and T_A = 25°C.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Supply Voltage Range	V _{IN}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	2.7		5.5	V
Operating Temperature Range	T _A				85	°C
Supply Current	I _{IN OFF}	Switch OFF, No load		0.75	5	μΑ
Switch OFF		$V_{ENOFF} \le 0.8V$, $V_{ENON} \ge 2.4V$ IMP2525A-1				
	$V_{ENON} \le 0.8V$, $V_{ENOFF} \ge 2.4V$ IMP2525A-2					
Supply Current	I _{IN ON}	Switch ON, No load		110	160	μΑ
Switch ON		$V_{ENOFF} \le 0.8V$, $V_{ENON} \ge 2.4V$ IMP2525A-1				
		$V_{ENON} \le 0.8V$, $V_{ENOFF} \ge 2.4V$ IMP2525A-2				
Enable Input Threshold	Enable Input Threshold V _{ENH} LOW to HIGH ("0" to "1") Enable Voltage, Note 1, 2			2.1	2.4	V
	V_{ENL}	HIGH to LOW ("1" to "0") Enable Voltage, Note 1, 2	0.8	1.9		
Enable Input Current	I _{EN}	$V_{EN} = 0V$ to 5.5V	-1	±0.01	1	μΑ
Enable Input Capacitance	C_{EN}			1		pF
Switch ON Resistance	R _{ON}	$V_{IN} = 5V$, $I_{OUT} = 500$ mA		0.05	0.07	Ω
		$V_{IN} = 3.3V, I_{OUT} = 500mA$		0.07	0.09	
Output Turn-On Delay	T_DON	$R_L = 10\Omega$		0.25		ms
Output Turn-On Rise Time	T _{RON}	$R_L = 10\Omega$		1		ms
Output Turn-Off Delay	T_{DOFF}	$R_L = 10\Omega$, Note 2		1	20	μs
Output Turn-Off Fall Time	T _{FOFF}	$R_L = 10\Omega$, Note 2		1	20	μs
Output Leakage Current	I _{OFF}				10	μΑ
Short-circuit Current Limit	I _{SC}		1.0	1.5	2.5	Α
Overtemperature Shutdown		T _J increasing		135		°C
Threshold		T _J decreasing		125		
Error Flag Output Resistance	R _{FLAG}	V _{IN} = 5V, I _L = 10mA		10	25	Ω
		V _{IN} = 3.3V, I _L = 10mA		15	40	
Error Flag Output Current	I _{FLAG}	V _{FLAG} = 5V		0.01	1	μΑ
UVLO Threshold	V _{UVLO}	V _{IN} Increasing		2.5		V
		V _{IN} Decreasing		2.3		

Notes 1. Switch OFF is $V_{EN} \le 0.8V$ and Switch ON is $V_{EN} \ge 2.4V$ for the IMP2525A-1. Switch OFF is $V_{EN} \ge 2.4V$ and Switch ON is $V_{EN} \le 0.8V$ for the IMP2525A-2. The Enable input has approximately 200mV of hysteresis.

^{2.} Over operating temperature range, $-40^{\circ}C \le T_A \le 85^{\circ}C$.

Detailed Descriptions

The IMP2525A is a high-side N-channel MOSFET switch that interfaces with a USB controller by means of a Switch-Enable input and a Fault-Flag output. The Enable input turns ON the power MOSFET with either a logic "1" for the IMP2525-1 or logic "0" for the IMP2525-2. Any one of three fault conditions will activate the open-drain Fault-Flag Output to alert the controller that the power MOSFET has been turned OFF.

Input and Output

The IN (input) pin is the power supply connection to the logic circuitry and the "High-Side" of the switch (the Drain of the power MOSFET). The OUT (output) pin is the "Low-Side" of the switch (the Source of the power MOSFET). In a typical circuit, current flows through the switch from IN to OUT toward the load.

The switch is referred to as a "High-Side" switch since it drives the positive (or high) side of the load. The output MOSFET source can be forced to a higher voltage than the drain ($V_{OUT} > V_{IN}$) when the output is OFF with little leakage current. If, however, V_{IN} drops below 2.3V, reverse current may flow out the IN pin regardless of the enable state.

When the power switch is ON, current can flow in either direction.

Fault Flag - FLG Pin

The Fault Flag pin, FLG, connects to an N-channel, open-drain MOSFET and goes LOW ("0") for an occurrence of one or more of three conditions: undervoltage, current limit, or thermal shutdown. The FLG output MOSFET is capable of sinking a 10mA load to typically 100mV above ground. *Table 1* gives the states of the FLG and OUT pins when a fault condition is detected.

Thermal Shutdown

Thermal shutdown is active when the output switch is enabled (turned ON). Thermal shutdown shuts off the output MOSFET and sets the Fault Flag if the on-chip temperature sensor exceeds 135°C. The switch is held OFF until the die temperature drops to 125°C or below. This 10°C of hysteresis will result in ON-OFF short-circuit cycling if the short-circuit condition is not removed or the bus-controller does turn off the switch with the Enable input. Over temperature detection is active only if the chip is enabled.

Undervoltage Lockout

The Undervoltage lockout (UVLO) prevents the output MOSFET from being put into the ON state until the positive supply voltage, $V_{\rm IN}$, exceeds 2.5V. When the output switch is in the ON state and the positive supply voltage drops below 2.3V, the UVLO circuitry will assert the Fault Flag, FLG, and shut OFF the output MOSFET. The FLG output will only assert an active LOW state when the MOSFET switch is in the ON state. Undervoltage detection is active only if the chip is enabled.

Current Limiting

Current limiting is achieved by sensing the voltage drop from Drain-to-Source of the power MOSFET. When the internal threshold is exceeded the power MOSFET is turned OFF.

Table 1. Fault Flag Conditions - Switch Enabled

Condition	Cause	FLG pin "0" Until	Switch State (FLG = "0")
Thermal Shutdown	T _J > 135°C	T _J ≤ 125°C	Turns OFF
Undervoltage Lockout (UVLO)	V _{IN} < 2.3V	V _{IN} > 2.5V	Turns OFF
Current Limiting	$I_O > 1.0A$ (step load) $I_O > 1.25A$ (ramped load)	Enable off or Thermal Shutdown	Stays ON

Supply Filtering

IMP strongly recommends the use of a $0.1\mu F$ to $1\mu F$ bypass capacitor to control transients on the power supply pin. This capacitor, connected from IN to GND, should be in close proximity to the IMP2525A for maximum transient suppression. The lack of suitable bypassing can result in ringing on the IN input when transients occur. This ringing, due to supply lead inductance, could damage IMP2525A control circuitry if the 8V maximum input rating is exceeded.

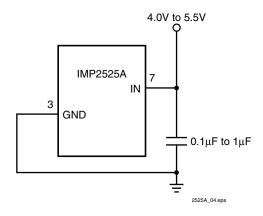


Figure 1. Supply Bypassing

Application Information

Enable Input

As with any logic input, the enable pin, EN, must be driven to a definitive logic state at all times. Floating the input can result in spurious operation. Do not drive EN below GND.

Fault Flag Output

Soft Start

The IMP2525A provides a "Soft-Start" function that ramps up the ON-current to eliminate any excessive voltage drop that could occur due to charging a capacitive load in bus-powered applications. The "Soft-Start" results from a switch ON resistance, $R_{\rm ON}$, that is ramped down from a high impedance to 0.07Ω in milliseconds. This $R_{\rm ON}$ ramping reduces the inrush current and related transients occur when charging capacitive loads; a requirement for meeting the USB voltage drop standards for bus-powered applications (see *Figure 2*). In circuits with large load capacitances, $C_{\rm BULK}$, exceeding $10\mu F$, the soft-start circuit shown in *Figure 3* can be used to limit the inrush start-up current to USB transient specifications. The current limiting feature of the IMP2525A provides this high-load, soft-start operation.

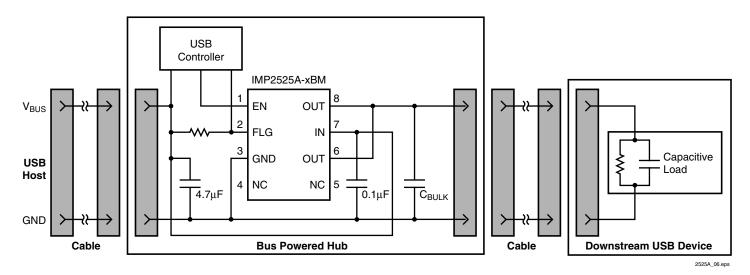


Figure 2. Soft-Start Application

Application Information

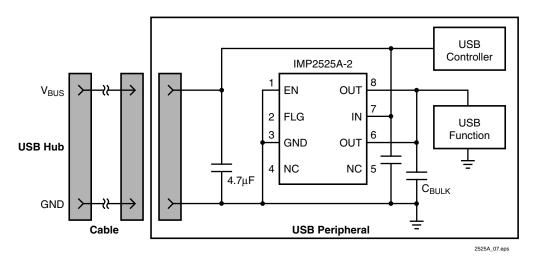


Figure 3. Inrush Current-Limit Application

Transient Overcurrent Filter

If a heavy capacitive load is suddenly connected to the output, the switch current-limiting function may cause the fault-flag to go low for 10µs to 200µs as the switch, in a constant current mode, charges the capacitance. If this transient over-current fault reporting is not wanted, a simple 1ms RC low-pass filter in series with the fault flag circuit will prevent this momentary flag (*Figure 4*).

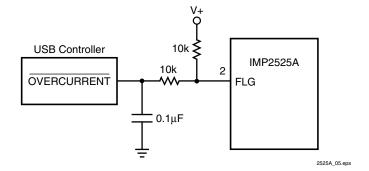
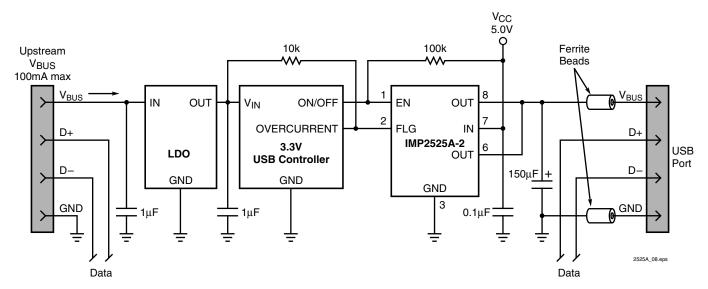
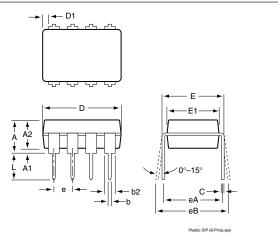
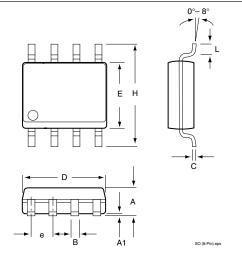
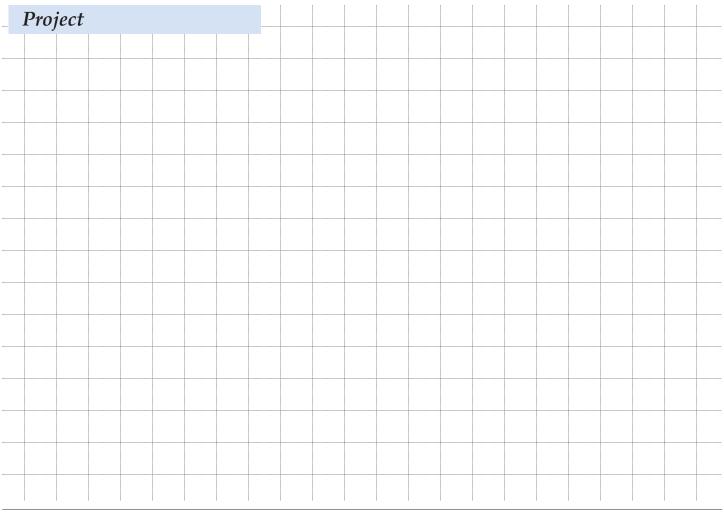


Figure 4. Transient Filter


Figure 5. Single-Port Self-Powered Hub Application

Plastic DIP (8-Pin)


SO (8-Pin)

Package Dimensions

Inches			Millimeters		
	Min	Max	Max Min		
	Plastic DIP (8-Pin)*				
Α		0.210		5.33	
A1	0.015		0.38		
A2	0.115	0.195	2.92	4.95	
b	0.014	0.022	0.36	0.56	
b2	0.045	0.070	1.14	1.78	
b3	0.030	0.045	0.80	1.14	
D	0.355	0.400	9.02	10.16	
D1	0.005		0.13		
Е	0.300	0.325	7.62	8.26	
E1	0.240	0.280	6.10	7.11	
е	0.100		2.54		
eA	0.300		7.62		
еВ		0.430		10.92	
еC		0.060			
L	0.115	0.150	2.92	3.81	
SO (8-Pin)**					
Α	0.053	0.069	1.35	1.75	
A1	0.004	0.010	0.10	0.25	
В	0.013	0.020	0.33	0.51	
С	0.007	0.010	0.19	0.25	
е	0.050		1.27		
Е	0.150	0.157	3.80	4.00	
Н	0.228	0.244	5.80	6.20	
L	0.016	0.050	0.40	1.27	
D	0.189	0.197	4.80	5.00	

^{*} JEDEC Drawing MS-001BA ** JEDEC Drawing MS-012AA

